
A Fully Automatic Approach to the
Assessment of Programming Assignments*

MARCO TORCHIANO, MAURIZIO MORISIO
Computer and Control Department, Politecnico di Torino, Italy.
E-mail: {marco.torchiano, maurizio.morisio}@polito.it

The (semi-)automated management of programming assignments promises efficiency in large
classes and fairness for the students. This paper presents an approach and the relative supporting
environment for automated assessment of programming assignments that was developed for an
object-oriented programming course. The user interface of the tool is tightly integrated into the
Eclipse development environment, which is used by students in the labs. The assessment and grading
are based on automated tests that allow an objective evaluation of the working features delivered by
the students. The grading is based on the number of test cases passed, and on the distance, measured
in lines of code, between the program developed in the lab and a corrected, fully functional version
of it. This two-phased approach allows achieving a quantitative evaluation of the defects and of the
missing functions.

Keywords: Laboratory-based teaching; automated learning systems; teaching/learning strate-
gies; programming and programming languages; object-oriented programming; Java program-
ming

INTRODUCTION

UNIVERSITY COURSES of object-oriented
analysis, design and programming are now main-
stream in software engineering and computer
science curricula.

The computer science curriculum at the Politec-
nico di Torino, Italy (three years, roughly corres-
ponding to a B.S. in the American system) includes
three programming courses: basic programming
(using the C language), algorithms and data struc-
tures (using C language with pointers and dynamic
memory), object-oriented programming (using
Java [1]). These courses each weight five credits
in the European ECTS system [2] that is roughly
equivalent to 50 hours in the classroom. The
authors are involved in the latter course.

All these courses follow a constructivist
approach: students attend the lessons, receive
assignments that they develop either in the labs,
with assistance from senior students, or at home.
Eventually they take an exam, which consists in
developing a program. Traditionally the program
was developed on paper in a traditional classroom
(no PCs available) during a session lasting around
two hours. After this session the students, using a
carbon copy of the program handed to the teacher,
developed the program on a PC, completing and
debugging it as needed. Next, they had another
individual session with the teacher, who graded the
student according to several factors: the program
developed in the classroom, the program devel-

oped on the PC, the differences between them in
terms of provided functionality, design choices and
defects.

The drawbacks of the paper-based approach
have been evident to all teachers for a long time.
The basic obstacle has always been the lack of a
PC per student in the labs both for logistic and
budget limitations. This problem has been solved
recently. Therefore, since the 2003 edition of the
course, the building of a tool (PoliGrader) was
undertaken to automate the delivery and
evaluation of assignments. The system has
become stable since 2006 and offers the following
main features:

. Storage and delivery of assignments

. Validation of assignments (automatic, test
based)

. Grading (also automatic, based on the quant-
itative evaluation of defects)

. Tight integration into the development environ-
ment (Eclipse)

. Web-based monitoring and management.

This paper presents our approach to summative
(designed to make a judgment about student
achievement) and formative (designed to improve
student knowledge and skill) automatic assessment
of programming assignments. Below we will
discuss the tool, called PoliGrader, the corres-
ponding assignment process, and how the educa-
tional goals were achieved.

While many features of PoliGrader can be found
in other tools, the distinctive feature and our main
contribution consists in the quantitative evaluation
of the defects and missing functions.* Accepted 20 March 2009.

814

Int. J. Engng Ed. Vol. 25, No. 4, pp. 814±829, 2009 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2009 TEMPUS Publications.

CONTEXT AND MOTIVATION

The assignment assessment approach and the
relative organization of the laboratories were born
out of several factors. First of all, the maturity
achieved by the development tools (i.e. Eclipse[3]
and Junit [4]) provided the basis to build a stable
and robust infrastructure. Thus it became possible
targeting a large set of issues deriving from both
general considerations and lessons learned in
teaching the object-oriented programming course:
they are presented below, grouped under major
headings.

Local context
During the course, every week the students

develop a new assignment, partly in assisted labs
and partly on their own. Senior students provide
assistance during lab hours, both on use of the
tools and on programming and Java topics. The
main problem with such an approach lies in the
limited number of senior students available, and
therefore in the low assistant to student ratio.
Ideally, each assignment developed by each
student should be evaluated for programming
style and functional correctness, but this is not
possible with the available resources.

Besides, it appeared that the students considered
a program complete as soon as they concluded the
coding phase. They did not go through a testing
phase, apart from, in some cases, running the
program with a sample input and observing the
results. Moreover, many students, in the lab
session, didn't even go as far as compiling the
programs; therefore their programs were full of
syntactic errors. A related issue is about students'
motivation. Ample anecdotal experience was
collected from the paper-based exams; for instance
when explaining to the students how to use an
Integrated Development Environments (IDE)
some students asked: `Why do we have to learn
how to use an IDE when the exam is on paper'?

This negative attitude derives from the habit of
handing out programming assignments on paper.

In addition, from the point of view of the
students, developing the program on paper is frus-
trating, especially because they are used to state of
the art tool support in the lab sessions, including
extensive Java documentation, syntax checks, auto-
matic code completion, pretty printing etc.

Finally; from the point of view of the teacher
and the students, grading fairly and consistently,
especially when more than one teacher is involved
(the course has around 200 students per year), is
hard. And the textual description of the program
to be developed is often subject to ambiguities or
misunderstandings.

Educational goals and constraints
The course builds upon preceding programming

courses and focuses on object-oriented program-
ming, while object-oriented analysis and design are
taught in a successive software engineering course.

Given the current schedule of the faculty, the
course has severe time contraints: it has to fit into a
seven-weeks (60 hours) slot, including lectures and
labs. The main consequence is that only essential
topics find a place in the course and no time is left
for design issues: this is inevitably a programming
only course.

The educational goals defined for the course are:

. Basic OO concepts and mechanisms. A student
who follows successfully the course should
master concepts like class, instance, encapsula-
tion, message passing, inheritance and their
implementation in Java.

. Exceptions and error handling. A student
should master exceptions, as supported by
Java, as a mechanism for error handling.

. Collections framework. A student should be
able to understand and master the most used
data structures and algorithms provided by the
Java Collection Framework (such as maps, lists,
sorting and searching algorithms).

. Syntactic correctness. A student should be able
to write synctactically correct Java programs.

. Functional correctness. A student should learn
that a program should be functionally correct,
and not only synctactically correct. Functional
correctness is not intended as absolute, but as
evidenced by success on a number of black box
test cases. Apart from being a must in industrial
practice, functional correctness has an impor-
tant pedagogical side effect. In [5] it is suggested
that a `complete solution is regarded as an
important step in building the confidence of
student programmers, even if some initially
complete only the simplest task'.

. Fairness in grading. Of course, all programs of
all students should be graded in a fair and
repeatable way. Syntactical and functional cor-
rectness are the starting point. However, not all
defects are equal. A consequence of this is
adoption of the two phased grading scheme.
The scheme considers, in phase one, the deliv-
ered functionality (in terms of number of accep-
tance tests passed) and, in phase two, the
distance from the full functionality requested.
As a proxy of this distance the number of lines
added or changed from phase one to phase two
is used. The grading process is described in detail
below.

The capability to write effective test cases [6] [7]
could be another educational goal linked to this
course, but the limited time factor has excluded it.
Object-oriented style is another key goal. A
student should be able to write programs in
object-oriented style, i.e. with minimum coupling
between classes, with maximum encapsulation and
correct use of delegation. To state it on the
negative side, a program written by a student
should not have `bad smells', as defined in [8].
Automatic check of bad smells via Eclipse plug-ins
is currently being added to PoliGrader.

Automatic Approach to Assessment of Programming Assignments 815

System requirements
According to [9] there are three main compo-

nents in the assessment and grading process:
correctness, style and authenticity. In addition,
the authors identify a fourth component that is
essential to achieve fairness: error severity. The
reasons why a requirement in the assignment is not
satisfied by a student's program may be very
different; it is necessary to evaluate objectively
the error (or omission) committed by the student
in order to assign fair grades.

In the context in which the PoliGrader approach
was originated, style is difficult to evaluate due to
the small size of the programs; authenticity is a
minor issue because, during the exams, a number
of teaching assistants patrol the lab to reduce
plagiarism and communication. Thus the main
focus is on correctness and error severity.

The issues and constraints discussed so far can
be summarized in the following requirements for
an assessment approach:

. provide automated support for the lab assign-
ments (delivery to students and assessment)

. provide automated support for the final exam
(delivery to students, assessment and grading)

. support an automated grading process that
allows evaluation of error severity

. support monitoring of all steps in the process:
definition and scheduling of assignments, statis-
tics on assignments evaluated, passed by stu-
dents, etc.

. integrate all functions available to the student in
the IDE (Eclipse in this case).

RELATED WORK

The history of computer-based approaches to
handling, assessing and grading assignments for

students is now at least 20 years old. We consider
the related work from the two perspectives that are
of more concern from our point of view:

1) the tools and techniques used to handle and
manipulate the assignments

2) criteria adopted for grading the assignments.

Tools
Table 1 reports a list of the main tools aimed at

supporting exams and laboratories in computer
science education. The table presents the tools
(columns) and the features provided (rows). The
main features identified are storage and delivery of
assignments to students, assessment of assign-
ments, results of assessment, grading. An X in a
cell indicates that the tool in the column supports
the feature in the row. The bottom row reports the
programming language supported.

Ceilidh [10] is one of the first tools described in the
literature; it is a general purpose tool capable of
handling different kinds of assignments and
courses, and different roles (teacher, student, etc.).
Grading is achieved via different marking tools.

CourseMarker [11] is an evolution of Ceilidh,
mostly in terms of the support system software
architecture. Further, it adds more flexibility in
customizing and grading of assignments.

ASAP [12] has similar functions, originally
started for C++ programs; later it was provided
with Java support.

BOSS [8] was the first system to integrate JUnit
for testing Java assignments.

RoboProf [13] is a web-based application for
administering assignments to students and grading
them in function of the number of test cases
passed. It has been used to teach Java to first
year students, both with small assignments
during the course, and with longer assignments in
the final test. The author demonstrates that

Table 1. Computer-based systems for student assignments

P
o
li

G
ra

d
er

C
o
u
rs

eM
a
rk

er

C
ei

li
d
h

A
S

A
P

B
O

S
S

R
o
b
o
P

ro
f

W
E

B
-C

A
T

J
E

W
L

A
S

S
Y

S
T

T
R

A
K

L
A

2

P
IL

O
T

visual algorithm simulation � �
storage, delivery of assignments � � � � � �
validation/test of assignments � � � � � � � � � �
test execution results � � � � � �
grading � � � � � � � �

programming language ja
v

a

ja
v

a
,

o
th

er
s

ja
v

a

C
+

+
Ja

v
a

a
ft

er
2

0
0

4

C
,

Ja
v
a

fr
o

m
2

0
0

3
(v

2
.3

)

ja
v

a

ja
v

a
,

o
th

er
s

G
U

Is

C N
A

N
A

M. Torchiano and M. Morisio816

students performing best during the course, also
obtain higher grades in the final exam.

WEB-CAT [14] has the usual functions for mana-
ging and grading assignments. As well, it takes into
account tests written by the students, in particular
the WEB-CAT Grader plug-in grades assignments
that consider how well students have tested their
program (instead of using a black box approach for
testing, as made by all other approaches listed here).

JEWL [15] concentrates on definition and test-
ing of GUIs.

ASSYST [16], aimed at C, tries to provide mean-
ingful reports to students about the assessment.

Trakla, its evolution Trakla2 [17], and Pilot [18]
support the definition and analysis of algorithms
by visualizing the underlying data structures and
their evolution.

The tool, PoliGrader (in the leftmost column)
was started in 2003; at the time no tool provided
satisfactory support for Java programs. PoliGra-
der supports two roles, student and teacher, multi-
ple courses and specializes in Java assignments.
The teacher defines an assignment for a course and
a period of time. As students log in they get the
current assignment for their course automatically
downloaded to their PCs, then they work on it,
and eventually submit it. The whole procedure is
carried on within the IDE (Eclipse). When the
teacher triggers the assessment, the system sends
the results to the students, via e-mail.

The distinguishing features of PoliGrader are:

. Integration in the IDE used by the students.
Upload and download of assignments are imple-
mented via Eclipse plug-ins

. JUnit tests are a first class entity in the process

. Grading based on the evaluation of the severity
of errors.

It is worth noting a number of approaches and
tools that assign and evaluate questions (yes, no,
multiple closed answers, open answers) or
problems (expressed as a text or picture, with
related answer). Such approaches and tools can
be seen as more general than the ones we have
considered above, where the problem assigned
requires writing a computer program, which
cannot be simply compared to a reference `right'
answer. Apart from the commercial offerings,
there are many academic proposals, such as
OASIS [19] used in electronic courses, [20]
mechanics courses and [21] physics courses. Aula-
Web [22] uses a similar approach, but questions are
relative to computer science topics, including
TurboPascal programs. AulaWeb can be consid-
ered the ideal link between the two categories of
approaches, questions vs. programming problems.

Grading
An important issue for both teachers and

student, and one of the most frequently asked
questions in the classroom, is how exams are
graded. Different tools adopt different approaches
to the grading, as summarized as in Table 2.

Practically all the tools include functional
correctness as the main grading criterion. Roughly
half of them include some measure of code quality.
As far as the authors know PoliGrader is the only
one that focuses on measuring the distance
between an initial version developed by the student

Table 2. Grading capabilities

Criteria\Tools P
o
li

G
ra

d
er

A
u
to

G
ra

d
er

C
o
u
rs

eM
a
rk

er

C
ei

li
d
h

A
S

A
P

B
O

S
S

J
E

W
L

A
S

S
Y

S
T

Fully automated � � � � ± ± ± ±
Functional correctness � � � � � � � �
Defect weight/error severity � ± ± ± ± ± ± ±
Code quality ± � � ± ± � ± �
Non-functional properties ± ± � � ± ± ± �

Table 3. Comparison

Criteria\Tools P
o

li
G

ra
d

er

A
u

to
G

ra
d

er

C
o

u
rs

eM
a

rk
er

C
ei

li
d
h

A
S

A
P

B
O

S
S

J
E

W
L

A
S

S
Y

S
T

automated support lab assignment � � � � � � � �
automated support final exam � � � � � � � �
automated grading process � � � �
evaluation of defect weight/error severity �
IDE (Eclipse) integration �

Automatic Approach to Assessment of Programming Assignments 817

(V1) and a correct, working version (V2). Instead,
many other approaches do not provide the
students with test cases but only with the test
outcomes and allow multiple submissions.

The distinguishing features of PoliGrader are:

. JUnit test cases delivered to the students

. Students use tests to correct and complete their
program.

Comparison
We recap in Table 3 the main functions and

properties of PoliGrader, in comparison with sim-
ilar tools. The main differences lay in the two-
phased process for correction of assignments,
devised in order to evaluate error severity. And
the integration in Eclipse IDE, to allow students
complete all operations from the same tool.

However, the main reason why we started devel-

opment of a new tool, instead of using or adapting
an existing one, is that in 2003, when development
started, other tools were not yet published.

THE CORE PROCESS

The core process presented in Fig. 1 provides a
high level view of the approach. Variants of this
process, supporting tools and techniques will be
explained later. The process has four basic steps:

1) The teacher defines the program to be devel-
oped, the assignment definition consists of three
parts:

. a textual description of the program func-
tions and constraints (see Fig. 4 for an ex-
ample).

. skeleton code (under the form of Java classes

Fig. 1. The core process.

Fig. 2. The grading function.

M. Torchiano and M. Morisio818

with prototypes of public methods, or as Java
interfaces) (see Fig. 3).

. a suite of black box acceptance tests for the
program (under the form of one or more test
classes in JUnit format) (see Fig. 4).

Obviously the three parts of the program must
be consistent. Acceptance tests call public methods
of the wrapper class, and the textual description of

the program must match the public functions of
the wrapper class. In case of conflicts the part
written in Java (wrapper class and acceptance
tests) overrides the textual description.

2) The student develops the program in the lab
and delivers an initial version (V1) starting from
the textual description and the skeleton code.

3) After the end of the exam lab session, the test
suite is made available to the student together
with the results of the tests applied to his/her V1
program.

4) The student is asked to modify this program
until all tests pass. Tests can be run locally as a
JUnit test suite. The correct program is deliv-
ered as version V2.

5) The student is evaluated taking into account
both V1 and V2.

During the course, the students perform lab assign-
ments following the same process except for step 4,
which is not mandatory. During the exam all steps
are required and the program is graded in function
of tests passed by V1 and modifications made to
get a full working V2.

Assignment assessment and grading
The assessment and grading of the assignment is

made in a quantitative way, based on a set of
defined metrics [23]. The metrics are based on the
acceptance test suite developed by the teachers and
are summarized in Table 4.

Fig. 3. Frequency of Passed Tests and Changed Lines combinations.

Health System

Develop a program to manage doctors and patients.

Requirement 1: Patients

The program works through the main class HealthSystem.
The program allows adding doctors and patients into the

health system. Patients are characterized by firsts name,

last name, and social security number (SSN).

People can be registered as patient with the system
through method addPerson(), which accepts as argu-

ments first and last names and SSN.

To retrieve information about registered patients it is
possible to use method getPerson(), which accepts as a

parameter the SSN and returns an object implementing

interface Person. If there is no person with the specified

SSN then an ErrorNonexistingPerson exception is thrown
up.

First and last name of a person can be read through

methods getFirstName() and getLastName() in interface

Person.

Fig. 4. Example of textual description.

Table 4: Assessment metrics

Metric Definition

NAT Number of test methods defined in the Acceptance Test Suite
NPTs Number of acceptance tests passed by the program V1 developed by student s
NFTs Number of acceptance tests failed by the program V1 developed by student s. Derived measure = NAT±NPTs

PASSEDs

NPTs

NAT
Proportion of tests passed by program V1

MLOCs Modified lines of code in Program V2 with respect to Program V1 developed by student s

Automatic Approach to Assessment of Programming Assignments 819

The functionality of a program (PASSED) is
evaluated in terms of passed acceptance tests.
Because the teacher develops the Acceptance Test
Suite independently, it represents a proxy of the
field operation of the program.

The number of modified lines of code (MLOC)
represents a proxy of the rework effort and of the
severity of errors. The use of a proxy, though
subject to errors, is the only possible objective
measure.

The grading formula used in the proposed
approach is:

Grade � Offset � �MaxÿOffset��

1ÿ NFT

NAT
� 1ÿ Bonus

�MLOC � Bonus�
� �� �

The grading formula has two components:

1) a linear component that decreases with the
number of failed tests

2) a hyperbolic component that decreases with the
number of changes (in terms of lines of code
changed).

In the grading formula two parameters are used
for fine tuning:

1) the offset
2) the bonus.

The offset is a scale factor, which sets the maxi-
mum number of failures allowed to achieve a
sufficient grade (18 in the Italian grading system)
even in the worst case (i.e. very severe errors).

The bonus is a slope factor that defines the
relative importance of delivering fully working
single features with respect to achieving an
almost overall complete solution (with possibly
fewer requirements fully implemented).

The implication of this grading schema on the
grades achieved by the students can be better

understood by looking at the graph presented in
Figure 5. In the Italian University system grades
are in the range [0±30], an exam is failed if the
grade is < 18. An A in the US system corresponds
roughly to a grade in the range 27±30. The figure
presents the grade achieved in function of the
number of lines changed between the two versions
of the program (MLOC). Each curve corresponds
to a different number of tests failed by the first
version of the program (NFT).

For instance it can be observed that for any
number of failed tests, the less the lines changed,
the higher the grade. In general for small number
of tests failed, the influence of the number of
changed lines is limited.

In theory, a student who passed all the tests but
one (i.e. one failed test) even with 300 lines of code
changed will achieve at least a grade of 28.5. In
practice, if just one test fails the changes required
to fix this problem will be likely at most of 5±10
lines. In other terms, not all the domain of the
grading function (see Fig. 6) is equally probable.

The domain of the grading function is repre-
sented by the product of NFT and MLOC. The
actual frequency of the points in the domain is
plotted in Figure 6, based on 260 students from
three different courses. Students who made minor
changes are mostly those who passed most of the
tests. Students who made many changes are those
who failed more than half the tests. Obviously we
also observe exceptions: a few students whose
program passed few tests, who managed to fix
their program with minor changes, a small but
high impact defect. However, some students whose
program passed a most of the tests had to imple-
ment large changes: small impact but large defect.

The extreme case is considered here of a student
that developed an almost complete solution with
one single error (on a single line, e.g. the missing
initialization of a variable), that causes all tests to
fail. With a single line modification the program

package health;
import java.io.IOException;

public class HealthSystem {
public void addPerson(String first, String last, String ssn) {
}
public Person getPerson(String ssn) throws ErrorNonexistingPerson {
return null;
}
public void addDoctor(String id, String first, String last, String ssn){
}
public Doctor getDoctor(String id) throws ErrorNonexistingDoctor {
return null;
}
public void assignDoctor(String id, String ssn)
throws ErrorNonexistingPerson , ErrorNonexistingDoctor {
}
public int loadData(String fileName) throws IOException{
return 0;
}

}
Fig. 5. Example of wrapper class.

M. Torchiano and M. Morisio820

would pass all tests. The question is how should
such a student be graded? It is important to
observe how this decision can be expressed by
means of the two grading parameters. The grades
achieved by such a student in four different grad-
ing scenarios (combination of Bonus and Offset
parameters) are presented in Table 5.

If more weight is given to the presence of work-
ing solutions, the case in the exam will be graded
very low (20 ± 22.5). On the contrary, if working
solutions are not so important and the only aspect
considered is how close to the final complete
solution the student gets, then the result is a
higher grade (26 ± 27).

An example
To better understand how the proposed

approach works here is an example of an assign-
ment, as experienced by a student. Figure 4 shows
a textual description of a program, in this case a
trivial version of a health information system.

Along with the textual description, the student
receives a wrapper class, (see Fig. 3 above).
HealthSystem is the wrapper class with all
requested functions defined, such as getPerson(),
and exceptions, such as ErrorNonexistingPerson.
The wrapper pattern is used to allow the students
using the internal design they prefer. Having
received the wrapper class and the textual descrip-
tion, the student develops V1 of his/her program.

Then the student receives the acceptance test

suite in JUnit format, (see Fig. 6. AcceptHealth is
the test class that contains test methods, such as
testPerson(). testPerson() tests if the program is
capable of adding a person, finding a person that
has been defined or raising an exception if the
person has not been defined. The student has to
improve his/her program (version V2) until it
passes all tests.

SUPPORTING TOOL SUITE

A tool suite that supports the enactment of the
process described above is available. The tool suite
is based on the Eclipse platform. Eclipse is used
throughout all object-oriented programming
courses at the Politecnico di Torino it was
extended it to provide some simple features to
support the automated assessment approach.

The supporting environment requires a server-
side application to perform authentication and
store the assignments, it was developed as a web
application upon the Apache Tomcat platform.

Figure 7 shows a summary of how the environ-
ment supports the process.

The student sitting at the lab workstation runs
Eclipse. A plug-in that provides the authentication
features was developed.

When the student authenticates, the information
is sent back to the server that replies with both an
authorization and the assignment.

public class AcceptHealth extends TestCase {
public void testPerson(){

HealthSystem hs=new HealthSystem();
hs.addPerson(

"John", // name
"Smith",// surname
"123-45-6789"); // SSN

try{
Person p = hs.getPerson("123-45-6789");
assertEquals("John",p.getFirstName());
assertEquals("Smith", p. getLastName());

}catch(ErrorNonexistingPerson e){
fail("Smith should exist.");

}

try{
Person p2 = hs.getPerson("111-22-3333");
fail("SSN should not exist ");

}catch(ErrorNonexistingPerson e){
assertTrue(true); /* OK */

}

Fig. 6. Excerpt from an acceptance test suite.

Table 5. Extreme cases in grading function

Importance of working solution over completeness

High (Bonus=1) Low (Bonus = 4)

Grade Variation High (Offset=10) 20 26
Low (Offset=15) 22.5 27

Automatic Approach to Assessment of Programming Assignments 821

When the student has completed the assignment
(or the time for the exam has run out) he/she can
click a button on the (extended) Eclipse GUI to
submit it for evaluation.

The evaluation is usually performed offline and
the results of the tests, together with the acceptance
tests themselves, are sent to the student via email.

The system has two categories of users: teachers
and students. The functions provided to the system
users can be accessed through two distinct access
modalities: either within the Eclipse IDE or
through the web by means of a web browser. The
Eclipse modality requires the installation of a small
plug-in (already installed in all labs at Politecnico
di Torino). Table 6 shows an overview of the
functions provided by the system, the user using
them and the modality of access.

Students interact with the system though the
Eclipse IDE while in the lab, while they access it
using web browser when at home.

Teachers access the system solely through a web-
based interface. As an example Fig. 8 shows the
results of a lab session assessment: tests are run on
the projects submitted from the lab by the
students, a full report is generated with the results
from the tests.

Particularly relevant is the exam grading func-
tion, where the system takes projects submitted in
the lab and the corresponding projects submitted

Fig. 7. Support system overview.

Table 6. Main functions provided by the system

Modality Teacher Student

Eclipse Lab login and assignment download
Lab assignment delivery

Web Student data management Home login
Courses, lab and exam session management Home assignment upload
Assignment schedule definition
Lab or Exam assessment and grading

Fig. 8. Teacher web interface (ID and names of students have been erased).

M. Torchiano and M. Morisio822

from home and applies the grading algorithm
described earlier. The result consists in a spread-
sheet with all the data about the projects and three
free parameters: Offset, Bonus and Max. It is
possible to operate on these parameters to adjust
the grade spectrum.

For each student who submitted a solution for
the assignment, we have the following information:

. Student reference: ID, First and Last name

. Metrics of acceptance tests results:

. NPTs or number of passed acceptance tests,
a) Number of tests terminated by errors (an

error being an unexpected,
b) nullpoint exception),
c) NATÐNPTs or number of failed acceptance

tests.
. Product test statistics for the submitted pro-

gram:
a) Number of test classes and test methods

written by the student, indicating that he/
she tested the program,

b) Number of main methods written by the
student, indicating that he/she ran the pro-
gram.

. A summary of the acceptance tests, a short
output from JUnit documenting which tests
failed or caused an error.

Projects submitted by students in the form of
compressed files present several problems when it
comes to automatic processing. The most common
issues are:

. the root of the project may not match the root of
the compressed file (sub-)system

. the project may contain only part of the byte-
code or even only source files

. the project may already contain the tests we
want to run possibly modified (or hacked) by
the students

. the student may have changed some method
signature

. the project may contain deadlocks or endless
loops

. the project may terminate the execution with a
System.exit() statement, that terminates the vir-
tual machine and therefore the whole evaluation
process.

To address these possible problems an automatic
testing procedure was designed together with the
relative testing harness based on JUnit.

The procedure consists in the following three
steps:

1) find Java project root (.project, .class files)
2) (re)compile source files
3) run tests.

The first step is to apply some heuristics in order to
identify the root of the Java project, which may
not coincide with the root of the file system portion
contained in the compressed file. Initially the
`project' file that is created by the Eclipse environ-
ment in the root of the project is sought; however,

it happens that if the project is wrongly imported
or exported (to/from Eclipse) many such files may
end in the compressed file system. If it is not
possible to find a root in such a way, then source
files are parsed to extract the package declaration
and deduce the root location as a relative path with
reference to the source file position. In this case a
majority voting is used if several sources point to
different roots.

The second step consists in (re-)compiling the
source code.

Finally, tests can be run. An ad-hoc environ-
ment is required to address the issues listed above.
In particular the system takes the following `coun-
ter-measures':

. tests are located in a specific hard-to-guess
package

. tests have been compiled in advance, once and
separately from the students code

. a watchdog is used to avoid endless loops or
deadlocks

. a security manager avoids undesired or mali-
cious behavior.

The use of a specific package practically avoids the
risk of using student-hacked test cases.

Since the test code is pre-compiled, the cases of
students who changed the signature of methods
invoked by tests can be handled gracefully: when a
method required by a test case is missing, a
NoSuchMethodException exception and the
resulting test failure are observed. In addition
since tests are not recompiled for every student, a
significant performance enhancement can be
achieved.

The presence of a watchdog in a parallel thread
allows forcing an exception in the testing thread,
therefore deadlocks and endless loops are reported
as errors to the user.

It is possible that student code contains calls to
`dangerous' methods, e.g. System.exit() that would
terminate the VM or accessing system files on the
testing server. During test execution a security
manager is activated that prohibits such behaviour
and generates an exception instead.

ASSESSMENT OF THE APPROACH

Assessment of the proposed approach can be
conducted from two points of view: teacher and
student. From the teacher's point of view, it is
important to verify how the approach helps to
attain stated educational goals. From the student's
point of view the focus is on perception of the new
approach with respect to the more traditional
paper-based approach.

The teacher's point of view: educational goals
Table 7 summarizes the educational goals of the

course, the measures proposed to evaluate their
achievement, and their results for academic year
2007/2008. The results are relative to programs

Automatic Approach to Assessment of Programming Assignments 823

developed by students in the first two exam
sessions following a course.

The first teaching objective relates to basics of
object orientation. For concepts such as class,
instance, constructor, message passing we evaluate
if a student has learned these concepts by checking
if he or she has defined and used at least one class.
This implies knowing what a class is, defining and
using a constructor, sending messages to instances
of the class. In practice all students achieve this
goal (98%).

A related teaching goal is to know and apply
visibility rules. The teachers insist on the need to
encapsulate data members of classes. As a measure
of achievement we verify if students define public
data members. This happens for 5% of students.
Overall the goal is achieved. Nonetheless, the fact
that some students define public members (and
probably use a global data programming style) is
discouraging, since the teachers explicitly remark
that data members should never be public.

Students should learn to define and use excep-
tions. Most functions requested of students are
tested via three to four test cases. These test cases
are mostly about nominal cases, while one or two
are about error cases handled via exceptions. If a
student passes a test case about an error condition,
he/she is able to use exceptions. 80% of students
pass test cases relative to exceptions.

Students are encouraged to use collections to
implement the data structures needed. All
programs requested require data structures that
can be implemented in terms of lists and maps.
Students have an inherent advantage using collec-
tions, because the time available to develop the

program during the exam is not sufficient to
develop their own data structures. So students
who develop all the functionality requested usually
master the use of collections. As a measure of
achievement we count the number of lists and
maps used in a program. 82% of students use at
least one of them. Typically, students who do not
use them use the more familiar arrays. They are
also the ones who score less on number of test
cases passed.

All exam programs require some kind of sorting.
Specific test cases are provided to test the sorting
functionality. 45% of students pass at least one of
these tests. This lower figure may be due to the
greater difficulty of learning sorting and interfaces
(Comparable, Comparator). But also to the fact
that sorting functions are typically developed at
the end of the assignment, when all basic functions
are in place. So shortage of time may also be a
reasonable explanation.

Inheritance is another key educational goal.
Sometimes a program requires the definition of
subclasses (e.g. class Vehicle, class Car, class
MotorBike etc). However, given the short
amount of time available and the small size of
programs developed, this case is not frequent.
Nevertheless, students have to use inheritance
indirectly, while using Java services, like collec-
tions and exceptions. For these reasons achieve-
ments on exceptions and collections are considered
as proxies of achievements on inheritance.

Syntactic correctness is easily evaluated on the
number of syntactic errors in a program. Only few
students (5%) fail to achieve this goal. Sometimes
this is due to lack of time to complete the assign-

Table 7. Educational goals and their achievement

Teaching goal Teaching sub-goal Measure of achievement Result

Basic OO concepts class, instance,
constructor, message
passing

classes defined and used
by student

98% of students define and use own classes

visibility rules number of public data
members

95% of students do not define public data
members

inheritance, interfaces see sorting and
exceptions

Exceptions exceptions, try, throw,
catch

test cases on exceptions 80% of students pass exception test

Collections List, Map number of List Map
used

82% of students use at least a Map or List

Search, sort,
comparable,
comparator

test cases on sorting 45% of students pass at least one test on sorting

Syntactic correctness no compilation errors 95% of student deliver a program without
syntactic errors

Functional correctness test cases passed 4% of students deliver a 100% working
program, 60% deliver a 50% working program

Fairness in grading LOCs changed to
correct the program

25% of students don't submit the corrected
program.

Around 5% of students are not satisfied with
the grade.

The others on average change 52 LOCs.

M. Torchiano and M. Morisio824

ment, and lack of planning on how to complete it.
But usually the reason is lousy preparation of the
exam.

Functional correctness is a key goal of the
course. It is tested by test cases that are written
by the teachers to verify functional coverage. Each
function required is covered by 2±4 test cases, and
the association test casesÐfunction is underlined
to the students. So they learn that syntactic
correctness is not enough, a function is complete
and correct if it works in a number of situations as
formalized by the test cases. A few students achieve
full coverage (4% of students pass all test cases),
but 60% pass at least half of the test cases.

Finally, fairness in grading is considered. The
grading mechanism currently in place is objective
and repeatable. It is also open, in the sense that the
information (tests passed and not passed, LOC
changed, grades) can be accessed, compared and
checked by the students. From these points of view
the approach is clearly superior to the paper-based
approach, especially because in that case the only
public information available to students is the final
grade. The open issue is whether the measure used
is unfair in some specific cases. In this regard
around 5% of students complain or want to discuss
the grade obtained. This figure is in line with what
the authors and their colleagues experience in
other exams. Out of this 5% of cases further
discussed and analyzed, the grade is changed in a
few cases. The most recurring case is a student who
fails to pass some tests (say five) and who has to
change several lines (say 30). Out of these lines, one
line fixes four tests. In this case the grading
algorithm penalizes the student, because all lines
carry the same weight.

Overall teaching objectives are achieved to a
greater or lesser degree. But in all cases the
PoliGrader tool and approach is instrumental in
evaluating how and to what extent these objectives
are achieved. Notably the two-phase grading
considerably improves the fairness, as compared
with the previous approach.

Student's point of view: course acceptance
Two different evaluations have been conducted:

one comparing the same course before and after
the introduction of the new approach, and another
comparing two similar programming courses using
the proposed approach and a traditional paper-
based approach.

First, the courses held in 2003 are compared
with those held in 2004. In the former, labs and
exams were managed in the traditional way; in the
latter labs and exams were managed for the first
time with the approach presented in this paper.

Students were requested to fill in an evaluation
form at the end of each course. The form is
anonymous, has the same questions for all courses
and is processed by the university teaching evalua-
tion unit. Out of the 10 questions in the form, one
addresses the labs.

The average score on this question was 2.6 (on a
scale 1 to 4) in 2003. It increased to 3.4 in 2004; this
difference is statistically significant (p < 0.001). All
other factors (labs, PCs, number of teaching assis-
tants) not having changed, we assume this variation
is due to the availability of the new process to
develop and test assignments in the labs. Direct
discussion with students confirmed that they were
quite happy with the development environment and
the way they could evaluate their programs.

As an additional evaluation it is possible to
compare two closely related programming courses:
the object oriented programming (OOP) course
(where the new approach is applied) and the
algorithms and advanced programming (APA)
course (where the previous paper-based approach
is still in use).

A questionnaire was given to the students to
assess their perception of the new approach
compared to the old one. The detailed questions
are presented in Table 8.

The answers to questions Q1 through Q4 are
summarized in Fig. 9. The difference in terms of
perceived usefulness is tested. The perceived
usefulness of OOP lab procedure is significantly

Table 8. Comparison questionnaire

ID Question Scale

Q1 The APA lab approach (program written on paper) supports learning
well.

5 points Likert scale

Q2 The APA exam approach (program written on paper) supports
learning well.

Q3 The OOP lab approach (program developed on PC) supports learning
well.

Q4 The OOP exam approach (program developed on PC) supports
learning well.

Q5 Which approach is most suitable to support learning programming
techniques and basic concepts?

pc-based development with automatic
correction;Ðdon't know;Ðpaper-based
approach

Q6 Which approach is most suitable to achieve good results in exams?

Automatic Approach to Assessment of Programming Assignments 825

higher than APA (p < 0.001) by one point in the 5-
point scale. The usefulness of OOP exam proce-
dure is significantly higher than APA procedure
(p < 0.001) by two points in the 5-point scale. The
difference remains significant also when opinions
about lab and exams are merged together
(p < 0.001).

Questions Q5 and Q6 propose the same concept
but in general and not on a specific exam. Answers
are summarized in Fig. 10. Also in this case the PC
based approach resulted largely preferred both for
labs (p < 0.001) and exams (p < 0.001). Particu-
larly, an average 82% of students found that the
PC based approach in the labs supports learning
better that the traditional paper based approach;
while 77 % thought that the PC-based approach in
the exams can lead to better results.

Open issues and future work
Continuous use of the PoliGrader approach

over several academic years allowed us to identify
the following problems and issues:

. Evaluation of the quality of elaborates of stu-
dents.

The acceptance tests developed by the teachers
are, by definition, black box and must not make

any assumption on the internals of what students
produce. The white box evaluation of student's
assignment (high level design issues such as choice
of classes and functions, correct use of inheri-
tance, use or misuse of patterns, simplicity; low
level design issues such as choice of algorithms
and data structures; formal issues such as names
of classes and functions, indentation and docu-
mentation), if required, has to be done manually.
It is possible to automate, at least partially, white
box evaluation. For instance UML class dia-
grams can be obtained automatically and design
metrics can be used to evaluate design. However,
a problem here is the low maturity of tools and
techniques available, although a number of
Eclipse plug-ins are emerging that can provide
immediate feedback to the programmer about the
quality of her code.

. Misunderstandings in the program description
The use of the wrapper class has reduced

student misunderstanding of the functionality
they are requested to develop. However, text in
natural language is still used to describe the
functions and in some cases misunderstandings
continue to happen. The provision of a full set of
acceptance test cases may be a solution; it is
planned for the future.

. Design freedom, wrapper class.
Teachers define a wrapper class (or sometimes

a Java interface) in order to define a single set of
acceptance tests for all programs developed by
all students. Students must develop their pro-
gram within the wrapper class and never modify
it. In case of even the slightest modification
compilation will fail and no test will pass. This
may be considered a constraint on the design of
the program developed by the students; in prac-
tice this is a minor issue compared to the advan-
tages of the approach. Besides, similar
constraints are typical in commercial develop-
ment. And finally students have full freedom of
choice within the wrapper class.

. Effort to develop acceptance tests.
Using this approach requires an upfront

investment in developing the tool infrastructure.
Besides, at every new exam session, the program
assigned to students must be developed and the
corresponding acceptance test cases defined.
Writing the test cases usually requires several
hours. Assuming five hours to write the test
cases (for programs featuring 4±6 classes, to be
developed in 2±4 hours) and assuming that an
exam in the new form takes 20 minutes vs. 40 in
the old form, break even lies at 15 students.

. Quantitative assessment of course, students and
programs

A side-effect of this approach is the availabil-
ity of a growing dataset of programs, from
assignments in the labs and in exams, from a
large population of students. This allows study-
ing quantitatively issues such as quality of pro-
grams, productivity of students.

It also allows a baseline of measures be devel-

Fig. 9. Answers to questions Q1±Q4.

Fig. 10. Answers to questions Q5±Q6.

M. Torchiano and M. Morisio826

oped to characterize the student population, to
compare it with professional developers, and to
use it for experiments with student subjects. The
measure baseline can thus be used to assess the
course itself: effectiveness of teaching techniques
and teaching materials, performance of teachers
and students.

And finally, the assignments themselves can
be measured. Ideally, all assignments (especially
for the final exams) should be of similar size and
complexity. Two quantitative means are now
available to assess them. A priori there are the
number of acceptance test cases, which can be
considered a proxy of size and complexity of a
program. However, this measure may be biased
because acceptance tests are defined by the
teacher. A-posteriori there is the difference in
size between the programs V2 and V1. If this
difference is larger than average, the program
may be more complex or longer than average. In
these cases the grading can be adjusted accord-
ingly.

CONCLUSIONS

This paper presented an approach for the auto-
mated assessment of programming assignments,
which is made up of a process and a tool-suite.
An assignment has the form of a textual descrip-
tion of a programming problem, and a suite of
acceptance tests. The tools support the download
of assignments from students, the upload of
programs to a testing server, the testing and
grading of programs developed by students, the
monitoring of all these activities by the teachers.

The evaluation process consists in three main
steps:

1) A student develops the required program,
uploads it to a server that executes the test suite,

2) Based on the failed tests (if any) the student
completes or improves his program untilall tests
pass,

3) Using the number of tests failed, and the
distance between the initial and the final pro-
gram, a grade is computed.

From an educational point of view, this approach
stresses the importance for the student of develop-
ing a working program. The student is exposed to
a variety of acceptance test cases that stimulate his
program in ways that may not have been consid-
ered. Besides, the approach stresses the importance
of incremental improvements until a program
passes all tests. The measure of the number of
changes performed is used to grade the program,
thus balancing the sharpness of the outcome of
each test case that either passes or fails.

In summary, the specific and novel features of
this approach are the following:

. grading is based on two versions of the program,
allowing an objective and quantitative evalua-
tion of defects and missing functions,

. the student's user interface is tightly integrated
in the Eclipse development environment, thus
there is no disruption between the development
phase and the assignment submission,

. the grading scheme allows fine-tuned balancing
between importance of fully working solutions
versus almost complete programs.

Finally, the students appreciate this new approach.
Their satisfaction, as measured by questionnaires,
is higher when the labs are organized around the
automatic assessment approach than the previous
paper-based version.

AcknowledgmentsÐWe wish to thank Giorgio Bruno, teacher at
Politecnico di Torino for his cooperation and Hakan Erdogmus
for the useful discussions that led to the definition of the
measures and tool infrastructure of the course.

REFERENCES

1. K. Arnold, J. Gosling and D. Holmes. The Java Programming Language, Addison-Wesley (2000).
2. European Commission, ECTSÐEuropean Credit Transfer and Accumulation System. Available at:

http://ec.europa.eu/education/programmes/socrates/ects/index_en.html (last visited on June, 2007).
(2006).

3. Eclipse Consortium, Eclipse Platform Technical Overview, Object Technology International (2003).
4. V. Massol and T. Husted, JUnit in Action, Manning Publications (2003).
5. C. Douce, D. Livingstone and J. Orwell, Automatic Test-Based Assessment of Programming: A

Review. ACM J. Educ. Res. Comp., 5(3), 2005.
6. S. H. Edwards, Rethinking Computer Science Education from a Test-first Perspective. In proc.

OOPSLA '03, (2003), pp. 148±155.
7. S. H. Edwards, Using Software Testing to Move Students from Trial-and-Error to Reflection-in-

Action. In proc. SIGCSE'04, (2004), pp. 26±30.
8. M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley (1999).
9. M. Joy, N. Griffiths, R. Boyatt, The BOSS Online Submission and Assessment System. ACM J.

Educ. Res. Comp. 5(3), 2005.
10. S. Benford, E. Burke, E. Foxley, N. Gutteridge and A.M. Zin. Ceilidh, A course administration

and marking system. In Proceedings of the 1st International Conference of Computer Based
Learning, Vienna, Austria, (1993), pp. 107±110.

11. C. Higgins, P. Symeonidis, A. Tsintsifas, The marking system for CourseMaster. In proc. of the 7th
annual conference on Innovation and technology in computer science education, (2002), pp. 46±50.

Automatic Approach to Assessment of Programming Assignments 827

12. C. Douce, D. Livingstone, J. Orwell, S. Grindle, and J. Cobb, (2005). Automatic Assessment of
Programming Assignments, In proceedings of ALT-C (2005).

13. C. Daly and J. M. Horgan. An automated learning system for Java programming, IEEE Transact.
Educ. 47(1), (2004), pp. 10±17.

14. S. H. Edwards, Improving student performance by evaluating how well students test their own
programs. J. Educ. Res. Comp. 3(3) (2003), pp. 1±24.

15. J. English, Experience with a computer-assisted formal programming examination. In Proc. 7th
annual conference on Innovation and technology in computer science education, (2002), pp. 51±54.

16. D. Jackson and M. Usher, Grading student programs using ASSYST. In Proceedings of 28th ACM
SIGCSE Tech. Symposium on Computer Science Education, (1997) pp. 335±339.

17. Malmi L., Korhonen A., Automatic Feedback and Resubmissions as Learning Aid, Proceedings of
the IEEE International Conference on Advanced Learning Technologies. ICALT'04. (2004).

18. S. Bridgeman, M. T. Goodrich, S. G. Kobourov, and R. Tamassia, PILOT: An interactive tool for
learning and grading. In The proceedings of the 31st SIGCSE Technical Symposium on Computer
Science Education, (2000), pp. 139±143.

19. S. Hussmann, G. Covic and N. Patel, Effective Teaching and Learning in Engineering Education
using Novel Web-based Tutorial and Assessment Tool for Advanced Electronics, Int. J. Eng. Educ.
20(2), (2004), pp. 161±169.

20. M. Negahban, Results of Implementing a Computer-based Mechanics Readiness Program in
Statics, Int. J. Eng. Educ. 16(5), (2000), pp. 408±416.

21. A. Tartaglia and E. Tresso, An Automatic Evaluation System for Technical Education at the
University Level, IEEE Transact. Educ. 45(3), (2002), pp. 268±275.

22. A. Garcia-Beltran and R. Martinez, Web Assisted Self-assessment in Computer Programming
Learning Using AulaWeb, Int. J. Eng. Educ., 22(5), (2006), pp. 1063±1069.

23. N. E. Fenton and S. L. Pfleeger, Software metrics: a rigorous and practical approach, PWS (1997).

APPENDIX AÐDATA ANALYSIS

A.1 Course evaluation

Using variables presented in Table 9, the following null and alternative hypotheses are formulated:

H1_0: there is no difference in terms of Satisfaction in the traditional and new course modality.
H1_a: there is a difference in terms of Satisfaction in the traditional and new course modality.

Since the dependent variable is ordinal, to compare the student satisfaction obtained with the traditional
approach vs. the new one, the non parametric Mann-Whitney test, with an alpha level of 5% is opted for.
The results were cross checked by also applying the t-test. The results are summarized in Table 10.

The null hypothesis that there is no difference in terms of student satisfaction can be rejected. Statistically
significant evidence proves that students like the new approach more.

A.2 Comparison Questionnaire

The answers to questions Q1 through Q4 can be encoded and treated as measures of the perceived
learning support provided by an exam type in a specific course modality. The variables are summarized in
the following Table 11.

Two null hypotheses are tested stating that no difference exists in terms of perceived usefulness of lab and
exam procedure for learning of APA and OOP courses. In detail:

H2_0: for lab sessions Support in APA course is equal to support in OOP course
H3_0: for exam sessions Support in APA course is equal to support in OOP course
H4_0: overall the Support in APA course is equal to support in OOP course

Table 9. Definition of variables

Variable Type Description

Satisfaction Likert scale encoded into and ordinal: 1
to 4 Dependente

Answer to the question (`̀ are the labs useful and managed
effectively?'') being 4 a fully positive answer

MODE Nominal: {Traditional, New}
Independent

The course modality, either Traditional or new

Table 10. Student satisfaction: traditional vs. new approach

Traditional New p-value Test

Satisfaction Median 3 4 0.0002 Mann-Whitney
Mean 2.58 3.43 < 0.001 t-test

M. Torchiano and M. Morisio828

To test the above hypotheses we use a paired two-tailed Mann-Whitney test because the data are not on an
interval scale and not normally distributed.

All three null hypotheses (p values < 0.001) can be rejected.
The results from question Q5Q7 and Q6Q8 that can be summarized in the contingency table presented in

Table 12.

Since the values are nominal, two Chi-Square tests are used on the two rows of the table. P-values are
< 0.001 in both cases. The odds of a student preferring the PC-based approach versus the paper-based one
are 9.2 (= 37/4) for the lab and 5.8 (= 35/6) for the exam.

Marco Torchiano received the M.Sc and Ph.D degrees in computer engineering from the
Politecnico di Torino, Italy, where he is currently an assistant professor. He was a
postdoctoral research fellow at the Norwegian University of Science and Technology
(NTNU), Norway. He has published more than 50 research papers in international journals
and conferences. He is a coauthor of the book Software DevelopmentÐCase Studies in Java
(Addison-Wesley) and is a coeditor of the book Developing Services for the Wireless Internet
(Springer). His current research interests include empirical software engineering, OTS-
based development and software engineering for mobile and wireless applications.

Maurizio Morisio received the Ph.D degree in software engineering and the M.Sc degree in
electronic engineering from the Politecnico di Torino, Turin, Italy, where he is currently an
associate professor. He spent two years working with the Experimental Software Engin-
eering Group at the University of Maryland, College Park. His current research interests
include experimental software engineering, service engineering, software reuse metrics and
models, agile methodologies and commercial off-the-shelf processes and integration. He is a
consultant for improving software production through technology and processes.

Table 11. Definition of variables

Variable Type Description

Support Likert scale encoded into and ordinal: 1 to 5
Dependent

Learning support perceived in the programming session

Type Nominal: {lab, exam}
Independent

Type of session: either laboratory or exam

Course Nominal: {APA, OOP}
Independent

The course modality, either traditional paper based APA exam
or the PC-based OOP exam

Table 12. Direct comparison contingency table

PC based Undecided Paper based

Lab 37 4 4
Exam 35 4 6

Automatic Approach to Assessment of Programming Assignments 829

