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The bending problem of Euler±Bernoulli discontinuous beams is a classic topic in mechanics. In this
paper stepped beams with internal springs are addressed based on the theory of generalized
functions. It is shown that in this context a closed-form expression may be given to the Green's
functions due to point forces and, based on these, to the beam response to arbitrary loads, for any
set of boundary conditions. The proposed solution method may be presented in a regular course in
Mechanics of Solids and Strength of Materials for undergraduate students. It does not require an
advanced knowledge of the theory of generalized functions but the knowledge of only a few basic
concepts, most of which are generally presented in other courses such as, for instance, Dynamics of
Structures. It is hoped that it may help students to address in a simple and effective way the many
engineering applications involving discontinuous beams.

Keywords: static Green's functions; Euler±Bernoulli beam theory; discontinuous beams; flex-
ural-stiffness steps; internal springs

NOMENCLATURE

A = coefficient matrix in set of boundary condi-
tions

a, b = left and right end of interval spanned by
loading function p x� �

ajk = elements of coefficient matrix A
c = vector of integration constants in beam differ-

ential equations
cj = components of vector c
G = matrix of functions for force Green's functions
g = vector of Green's functions
g P� � = vector of functions for force Green's func-

tions
gu, g', gM , gS = components of vector g
guj , g'j = functions in matrix G

g
P� �

u , g P� �
' = components of vector g P� �

EI = reference flexural stiffness of first uniform
beam segment

EIi = flexural stiffness of ith uniform beam
segment between xi and xi�1.

H xÿ x0� � = unit-step function at x � x0

Ij = closed-form integral
L = beam length
M x� � = bending moment
N = number of discontinuities
P = point force in the z-direction
p x� � = piecewise continuous transverse load
�p x� � = loading function for load p x� �
q j� � x� � = jth-order primitive in rotation and deflec-

tion solution to beam differential equations

Rn xÿ x0� � = nth-order ramp function at x � x0

r x� � = response vector to arbitrary loads
S x� � = shear force
s = integration variable
u x� � = deflection
V = reaction of roller support
v = vector in set of boundary conditions
vj = components of vector v
x; z = coordinate of reference system
xi = discontinuity location
xV = roller support location

xinf
i , x

sup
i = right and left integration bounds in

integral solution for arbitrary loads

y = location of applied point force
�i = parameter for flexural-stiffness step at xi


i = parameter giving flexural stiffness of i th
uniform beam segment in terms of reference
flexural stiffness EI

� xÿ x0� � = Dirac delta at x � x0

� xÿx0

�

ÿ �
= unit-area rectangle function at x � x0

spanning an interval �

' x� � = rotation

� x; y� � = function in integral solution for arbitrary
loads

 = flexibility of internal springs or external elastic
supports

= x; y; xi� � = polynomial function in integral solu-
tion for arbitrary loads

= sets of indexes i corresponding to discontinuity
locations xi

Subscripts and superscripts
� j � = jth-order primitive of a function
M = bending moment
S = shear force* Accepted 19 February 2009.
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u = deflection
V = roller support
� = deflection discontinuity
� = rotation discontinuity
' = rotation

INTRODUCTION

THE BASIC CONCEPTS of the Euler±
Bernoulli (EB) beam bending problem are gener-
ally introduced to the students by reference to a
uniform beam under continuous loads, the case in
which the solution is defined over the whole beam
length and is given in terms of four integration
constants, to be computed by enforcing the bound-
ary conditions (BC). In many applications,
however, beams are discontinuous. This happens
whenever the loads do not span the whole beam
length, or discontinuities must be accounted for in
the response variables such as: shear-force and
bending-moment discontinuities due to external
point loads or external supports; deflection and
rotation discontinuities, either inelastic or due to
internal springs; curvature discontinuities due to
abrupt changes in the material properties and/or
the cross-section geometry, in the so-called stepped
beams. In particular, internal springs and stepwise
reductions of flexural stiffness are frequent in
engineering applications, to model the effects of
damage [1, 2]. Stepped beams are also frequently
used in bridge engineering to reduce weight and
optimize strength [3, 4].

In regular courses in mechanics, the solution to
the bending problem of discontinuous beams is
generally constructed based on classical functions,
by splitting the beam into N+1 uniform segments
(if N is the total number of discontinuity locations)
and integrating the equilibrium fourth-order
differential equation for each segment. As a
result, 4(N+1) unknown constants are to be
computed by enforcing appropriate internal
compatibility and continuity conditions at the
discontinuity locations, along with the BC. This
approach then leads to a numerical solution
achieved by solving a system of 4(N+1) coupled
algebraic equations.

The classical solution based on a beam decom-
position into uniform segments is not the only
solution referred to in textbooks of mechanics. In
the literature, in fact, there has been a considerable
effort to develop alternative and more efficient
solutions. In general, they have been sought
based on the theory of generalized functions. In
this context Macaulay [5±7] was the first to show
that a point force may be taken to be continuous
by a pertinent generalized function, i.e. the well-
known Dirac delta. In this way, by using simple
integration rules for generalized functions, he
showed that a solution to uniform beams under
point forces may be built by enforcing the BC only,
thus eliminating the need to enforce internal condi-
tions at the location of the applied force [7]. An

interesting review on Macaulay's method may be
found in [8], where the author has also discussed its
generalization to beams with along-axis
constraints and presented a simple and effective
methodology to introduce undergraduate students
to the use of generalized functions for discontin-
uous beams.

Solutions based on generalized functions have
been developed not only by Macaulay but also by
Brungraber [9], Kanwal [10], Yavari et al. [11],
Biondi and Caddemi [12], Failla and Santini [13].
They showed that a discontinuity in any response
variable may be reverted to a pertinent generalized
loading function in the beam equilibrium fourth-
order differential equation. To a different extent,
however, solutions in [9±13] all involve computing
a number of unknowns by enforcing some internal
conditions along with the BC, or the BC only [12].
That is, they are still numerical solutions. Also,
some of these methods involve quite lengthy deri-
vations that may be hardly illustrated to under-
graduate students in regular courses in mechanics.

The aim of this paper is to show that a few basic
concepts of the theory of generalized functions
may be used, in a simple yet effective manner, to
build closed-form solutions for discontinuous
beams. The paper focuses specifically on stepped
beams with internal springs acted upon by arbi-
trary loads. It will be shown that, based on simple
rules of integration for generalized functions, the
response variables may all be derived as closed-
form functions of the discontinuity parameters, for
any set of BCs. For this the Green's functions due
to a point force will be first derived.

The paper develops as follows. After introducing
the basic notation in the next section, the Green's
functions are derived and the response to arbitrary
loads is found; the material is presented with the
aim of providing teachers and students with tools
that are ready to use for applications. In the last
sections the potential impact of the proposed
method on teaching and learning is discussed and
examples are given. A brief summary of the
concepts of the theory of generalized functions
required in the paper is outlined in the Appendix.

PROBLEM STATEMENT AND NOTATION

Consider the stepped beam with internal springs
in Fig. 1. Be L the length and xi the discontinuity
locations, 0 < :::: < xiÿ1 < xi < ::: < L, for i 2 ,
� i : i � 1; 2; . . . ;Nf g, to which N � 1 segments

correspond over the beam length. Denote by EI1 the
flexural stiffness of the first segment, taken as
reference flexural stiffness, i.e., EI1 � EI , and by
EIi � EI 1ÿ 
i� � the flexural stiffness of the i-th
segment, where 
i < 1 for i � 2; . . . ;N� 1. Let
�1 � 
2= 1ÿ 
2� � and �i � 
i�1= 1ÿ 
i�1� � ÿ 
i=
1ÿ 
i� �, for i 2 . That is, �i � 0 if the flexural

stiffness does not vary through x � xi; �i < 0 if the
flexural stiffness increases through x � xi while
�i > 0 if it decreases. Further, let  �

i and  �
i be the
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flexibilities of the internal rotational and transla-
tional springs. For generality, each discontinuity
location is represented in Fig. 1 as a multi-disconti-
nuity location where a flexural-stiffness step and
internal springs occur simultaneously. However any
discontinuity pattern may be built at a location xi by
proper selection of the discontinuity parameters: for
instance, at a location xi where only a rotational
spring occurs �i � 0 and  �

i � 0 shall be obviously
set.

Let u x� � be the deflection, ' x� � the rotation,
M x� � the bending-moment and S x� � the shear-
force response variables. Positive sign conventions
are set in Fig. 2.

STATIC GREEN'S FUNCTIONS OF
DISCONTINUOUS BEAMS

Consider the stepped beam with internal springs
shown in Fig. 1, acted on only by a point force P at

x � y, 0 < y < L. For the consistency of sub-
sequent developments, it shall be assumed that
no deflection discontinuity occurs at x � y; a
curvature and a rotation discontinuity are both
allowed, however, at x � y.

According to the sign convention in Fig. 2, the
differential equations governing the response vari-
ables may be written as

�dS x� �
dx

� ÿP� xÿ y� � �1�

�dM x� �
dx

� S x� � �2�

�d' x� �
dx

�ÿM x� �
EI

1�
X
i2

�iH xÿ xi� �
" #

ÿ
X
i2

M xi� � �
i � xÿ xi� � �3�

Fig. 1. Stepped beam with internal springs under static loads; the BC are arbitrary.

Fig. 2. Sign conventions for response variables of a discontinuous beam.
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�du x� �
dx

� ' x� � �
X
i2

S xi� � �
i � xÿ xi� � �4�

where ' x�i
ÿ �ÿ ' xÿi

ÿ � � ÿM xi� � �
i and u x�i

ÿ �ÿ
u xÿi
ÿ � � S xi� � �

i , for i 2 .
As explained in [8±13], the Dirac delta P� xÿ y� �

in Equation (1) results from the point force applied
at x � y. Similarly, in Equation (3) the unit-step
functions M x� �=EI � �iH xÿ xi� � and the Dirac
deltas M xi� � �

i � xÿ xi� � reflect, respectively, the
curvature discontinuities due to the flexural-stiff-
ness steps and the rotation discontinuities due to
the rotational springs at x � xi, for i 2 . Further,
in Equation (4) the Dirac deltas S xi� � �

i � xÿ xi� �
reflect the deflection discontinuities due to the
translational springs at x � xi, for i 2 . All the
derivatives in the l.h.s. of Equation (1) through
Equation (4) are generalized derivatives (denoted
by the bar over the differentiation symbol), due to
the generalized functions in the corresponding r.h.s.

Equation (1) through Equation (4) may be
integrated based on the integration rules reported
in the Appendix. It yields

S x� � � ÿH xÿ y� � � c1 �5�

M x� � � ÿR1 xÿ y� � � c1x� c2 �6�

' x� � � ÿ q 1� � x� �
EI

ÿ
X
i2

M xi� � �
i H xÿ xi� � � c3

�7�

u x� � � ÿ q 2� � x� �
EI

ÿ
X
i2

M xi� � �
i R1 xÿ xi� �

�
X
i2

S xi� � �
i H xÿ xi� � � c3x� c4 �8�

where the cj's are integration constants. Also, q 1� � x� �
and q 2� � x� � are the first- and second-order primi-
tives:

q 1� � x� � �M 1� � x� � �
X
i2

�iH xÿ xi� �

M 1� � x� � ÿM 1� � xi� �
h i

�9�

q 2� � x� � �M 2� � x� � �
X
i2

�iH xÿ xi� �

M 2� � x� � ÿM 2� � xi� � ÿM 1� � xi� �R1 xÿ xi� �
h i

�10�

where M 1� � x� � � ÿR2 xÿ y� � � c1x2
�

2� c2x and
M 2� � x� � � ÿR3 xÿ y� � � c1x3

�
6� c2x2

�
2, that is,

respectively, a first and second-order primitive of
the bending-moment function (6). Note that Equa-
tion (5) is derived from Equation (A.7) and Equa-
tion (6) from Equation (A.11) for n=1. Equation
(7) and Equation (8) are derived by applying
Equation (A.14) for f x� � �M x� � and
f x� � �M 1� � x� �, respectively.

For P � 1, the response variables in Equation
(5) through (8) represent the so-called influence
coefficients of the discontinuous beam, also
referred to in the literature as Force Green's
Functions (FGFs). Here they will be denoted
(with the obvious meaning of the subscripts) as

g x; y� � � gu x; y� � g' x; y� � gM x; y� � gS x; y� �� �T
�11�

where explicit dependence on the location of the
applied force, x � y, is introduced. To derive
g x; y� �, replace Equation (9) and Equation (10)
for q j� � x� � and perform simple manipulations to
single out the terms that multiply each integration
constant cj and P in Equation (5) through Equa-
tion (8); then, if P=1 is set, the following general
form is obtained

g x; y� � � G x� �c y� � � g P� � x; y� � �12�
where c � c1 c2 c3 c4� �T and

G �

gu1 x� � gu2 x� � x 1

g'1 x� � g'2 x� � 1 0

x 1 0 0

1 0 0 0

266664
377775 �13�

g P� � �

g
P� �

u x; y� �
g P� �
' x; y� �

ÿR1 xÿ y� �
ÿH xÿ y� �

266664
377775 �14�

Elements of the matrix G, of the vectors g P� � and c
are given in the following as functions of the
discontinuity parameters; c depends, as is obvious,
on the BC.

Elements of matrix G
For the displacement u x� �, functions gu1 x� � and

gu2 x� � in matrix G x� � are given as:

gu1 x� � � ÿ 1

6EI

�
x3 �

X
i2

2�i x� 2xi� �R2 xÿ xi� �
�

ÿ
X
i2

 �
i xiR1 xÿ xi� �

�
X
i2

 �
i H�xÿ xi� �15�

gu2 x� � � ÿ 1

2EI

�
x2 �

X
i2

2�iR2 xÿ xi� �
�

ÿ
X
i2

 �
i R1 xÿ xi� � �16�

Further, for the rotation ' x� � functions g'1 x� � and
g'2 x� � are given as:
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g'1 x� � � ÿ 1

2EI

�
x2 �

X
i2

�i x� xi� �R1 xÿ xi� �
�

ÿ
X
i2

 �
i xiH xÿ xi� � �17�

g'2 x� � � ÿ 1

EI
x�

X
i2

�iR1 xÿ xi� �
#"

ÿ
X
i2

 �
i H xÿ xi� � �18�

Elements of vector g P� � x; y� �
For the displacement u x� �, function g

P� �
u x; y� � in

vector g P� � x; y� � is given as:

g P� �
u x; y� � � R3 xÿ y� �

EI
� 1

6EI

X
i2

�iH xÿ xi� �
�
6R3 xÿ y� � � 2 y� 2xi ÿ 3x� �R2 xi ÿ y� ���
�
X
i2

 �
i R1 xÿ xi� �R1 xi ÿ y� �

ÿ
X
i2 I

 �
i H xÿ xi� �H xi ÿ y� � �19�

Also, for the rotation ' x� � function g P� �
' x; y� � is

given as:

g P� �
' x; y� � � R2 xÿ y� �

EI
� 1

EI

X
i2

�iH xÿ xi� �
�
R2 xÿ y� � ÿ R2 xi ÿ y� ��
�
X
i2

 �
i R1 xi ÿ y� �H xÿ xi� � �20�

Vector of integration constants c
First consider a clamped±clamped (CC) beam.

Enforcing the BC leads to the matrix equation:

Ac � v �21�
where A and v are a 4� 4 matrix and a 4� 1 vector
given as:

A �
0 0 0 1
0 0 1 0

a31 a32 L 1
a41 a42 1 0

2664
3775 v �

0
0
v3

v4

2664
3775 �22�; �23�

The elements of A and v are listed below

a31 �ÿ
1

6EI
L3 �

X
i2

�i Lÿ xi� �2 L� 2xi� �
" #

ÿ
X
i2

 �
i xi Lÿ xi� � �

X
i2

 �
i �24�

a32 �ÿ
1

2EI
L2 �

X
i2

�i Lÿ xi� �2
" #

ÿ
X
i2

 �
i Lÿ xi� � �25�

a41 �ÿ
1

2EI
L2 �

X
i2

�i L2 ÿ x2
i

ÿ �" #
ÿ
X
i2

 �
i xi �26�

a42 � ÿ
1

EI
L�

X
i2

�i Lÿ xi� �
" #

ÿ
X
i2

 �
i �27�

v3 y� � � 1

6EI

�
ÿ Lÿ y� �3�

X
i2

�i ÿ Lÿ y� �3
h

� 2 3Lÿ yÿ 2xi� �R2 xi ÿ y� �
i�
�

ÿ
X
i2

 �
i Lÿ xi� �R1 xi ÿ y� �

�
X
i2 I

 �
i H xi ÿ y� � �28�

v4 y� � � ÿ 1

2EI

�
Lÿ y� �2�

X
i2

�i Lÿ y� �2
h

ÿ 2R2 xi ÿ y� �
i�
ÿ
X
i2

 �
i R1 xi ÿ y� � �29�

The matrix A is invertible and solutions for c are
given as:

c1 � a32v4 ÿ a42v3

a32a41 ÿ a31a42

c2 � a41v3 ÿ a31v4

a32a41 ÿ a31a42

c3 � c4 � 0 �30�
The same reasoning can be followed to derive the
vector of integration constants c for any set of BC.
For most recurrent BC, the closed-form expres-
sions of c are summarized in Table 1, where a31,
a32, a41, a42, v3 y� � and v4 y� � are still given by
Equations (24) through (29).

Based on Equations (15) through (29) it may be
seen that the FGFs (12) yielding the deflection
response are symmetric, i.e., gu x; y� � � gu y; x� �, as
long as no deflection discontinuity occurs at x. It is
also worth noting that the FGFs (12) also apply to a
beam with end elastic restraints. For instance, for a
clamped-clamped (CC) beam it may be verified that
the response variables obtained for non-homoge-
neous BCs due to end elastic restraints of flexibilities
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 �
O,  �

L ,  �
O and  �

L are identical to the FGFs (12),
when the latter are computed for homogeneous BCs
(i.e., u 0� � � ' 0� � � u L� � � ' L� � � 0 for a CC
beam) and internal springs located at x � 0� and
x � Lÿ, with flexibilities  �

1 �  �
O,  �

1 �  �
O,

 �
N �  �

L and  �
N �  �

L .
The FGFs (12) will be now used to build the

beam response to arbitrary loads.

SOLUTIONS FOR DISCONTINUOUS
BEAMS UNDER STATIC LOADS

For generality, consider a piecewise-continuous
loading function

p x� � � �p x� � H xÿ a� � ÿH xÿ b� �� �
for

0 � a < b � L �31�
where p(x) is positive if downward (consistently
with sign conventions in Fig. 2). The symbol �p x� �
in Equation (31) denotes an arbitrary continuous
function for a which a fourth-order primitive is
assumed to exist, as generally encountered in en-
gineering applications [11, 12].

If p(x) is applied to the beam in Fig. 1, based on
the FGFs (12) the response variables can be
written as

r x� � � u x� �' x� �M x� �S x� �� �T�

�
Z L

0

g x; y� �p y� �dy � G x� �
Z b

a

c y� ��p y� �dy

�
Z b

a

g P� � x; y� ��p y� �dy

�32�

Solutions to the integrals in Equation (32) may be
found based on the integration rules discussed in
the Appendix, along with standard rules of inte-
gration by parts for classical functions.

To elucidate this concept, consider first the
second integral in the r.h.s. of Equation (32). In
view of g P� � x; y� � given by Equation (14), it

involves integrals in the two general forms

(i)

Z b

a

Rn xÿ y� ��p y� �dy, for n � 0; 1; :::; 3 (33)

(ii)

Z b

a

= x; y; xi� �H xi ÿ y� ��p y� �dy �Z x
sup
i

xinf
i

= x; y; xi� ��p y� �dy (34)

where = x; y; xi� � is a polynomial function of x, y
and xi of the third order at most, xinf

i � min xi; af g
and x

sup
i � min xi; bf g, for i 2 (i.e., if xi � a < b,

the integral vanishes). On the other hand, in view
of c y� � given by Equation (30) and in Table 1, the
first integral in the r.h.s. of Equation (32) involves
only integrals in the form (ii).

Solutions to integrals in the form (i)±(ii) are easy
to find, as explained as follows.

Solution to integrals in form (i)
Equation (33) may be rewritten asZ b

a

Rn xÿ y� ��p y� �dy �
Z b

a

� x; y� �H xÿ y� �dy

�35�
where � x; y� � � xÿy� �n

n!
�p y� �. Based on Equation

(A.15) it yieldsZ b

a

� x; y� �H xÿ y� �dy

� ��1� x; y� � ÿ ��1� x; x� �
h i

H xÿ y� �
n ob

a
�36�

In Equation (36) the symbol ��1� x; y� � denotes the
first order primitive

��1� x; y� � �
Z

xÿ y� �n
n!

�p y� �dy

� 1

n!

Xn�1

j�1

ÿ1� �jÿ1�p j� � y� � d
jÿ1 xÿ y� �n

dy jÿ1
�37�

Table 1. Vector of integration constants c in terms of the beam discontinuity parameters. SSÐsimply-supported;
CPÐclamped-pinned; CSRÐclamped-shear released; PSRÐpinned-shear released; CFÐclamped-free

BC c1 c2 c3 c4 v3 v4

SS
v4

L
0

v3 Lÿ a31v4

L2
0 Equation (28) Lÿ y

CP
a32 v4 ÿ v3

a32 Lÿ a31

v3 Lÿ a31v4

a32Lÿ a31
0 0 Equation (28) Lÿ y

CSR v3
v4 ÿ a41

a42
0 0 1 Equation (29)

PSR v3 0 v4 ÿ a41 0 1 Equation (29)

CF v3 ÿv3 L� v4 0 0 1 Lÿ y
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where �p j� � y� � denotes the jth order primitive of �p y� �
in Equation (31). Note that Equation (37) is
obtained by integration by parts for classical
functions, where �p y� � is repetitively integrated
and xÿ y� �n is repeatedly differentiated until the
last derivative vanishes.

Solutions to integrals in form (ii)
For Equation (34) the same rules of integration

by parts used in Equation (37) obviously apply,
being differentiable the polynomial functions
= x; y; xi� �. Formulas are not repeated for brevity.

EDUCATIONAL DATA

The proposed method should be presented in a
two-hour lecture. Further, one-to-two review
hours are suggested as needed to discuss a few
applications. The basic concepts of the continuous
beam bending problem are assumed to be known.

The first hour of lecture should be limited to
introducing only the few concepts of generalized
calculus summarized in the Appendix. The basic
concepts of Dirac delta, unit-step and ramp func-
tions should first be presented. Since they are also
part of regular courses such as Structural
Dynamics (e.g., to model impulsive and ramp
loads, see for instance [14] ), in this context em-
phasis should also be placed on the interdisciplin-
ary use of generalized functions and their
importance in mechanics. Then, the generalized
integral (A.13) and corresponding derivative
(A.14) should be introduced. Note that both
Equations may easily be explained based on the
definitions of Dirac delta, unit-step function and
the derivative of a product according to classical
calculus. It appears therefore that the proposed
method does not require an advanced knowledge
of the theory of generalized calculus and this is
deemed important for a positive impact on teach-
ing and learning.

The second hour of the lecture should develop in
the following steps:

1. As a first step, the differential equations gov-
erning the response variables, Equations (1)
through (4), should be written down. This can
be done based on the concepts of generalized
functions illustrated in the first hour of the
lecture. In this context attention should be
drawn to the fact that the generalized differen-
tial Equations (1) through (4) account inher-
ently for those compatibility and continuity
conditions that, instead, should be individually
set at each discontinuity location when building
a classical solution based on a beam decom-
position into uniform segments. This is a con-
siderable simplification involved by using
generalized functions and should be presented
to the students.

2. As a second step, the integration rules illus-
trated in the first hour of the lecture should be

recalled to explain how to derive the general
form (12) for the FGFs. Equations (13) and (14)
may then be given to the students as formulas
ready to use for applications. In this context the
expressions for the integration constants cj

should be also given. That is, Equations (30)
for a CC beam and the results in Table 1 for
various BCs.

3. As a third step, the criteria to build the beam
response to arbitrary loads should be explained.
This may be done based on the generalized
integral (A.15) and standard rules of integra-
tion by parts for classical functions. Study cases
should subsequently be developed by the stu-
dents during the review hours.

The students could run the applications using
symbolic software packages such as Mathematica
or Matlab, which allow a straightforward imple-
mentation of the formulas given above. There are
several potential applications of the proposed
method that could be suggested to the students.
The FGFs (12), in fact, are the influence coefficients
of discontinuous beams. As explained in classic
mechanics texts, they may be then be used to
build solutions for statically redundant structures;
to study the effects of moving loads on bridges; and
to formulate the eigen problem of distributed-para-
meters structures [15].

For any of these applications, the students
should be encouraged to perform a sensitivity
analysis on the results; that is, they should build
and compare various solutions for different
discontinuity parameters. In the authors' opinion,
this is an important step in gaining a better physi-
cal insight into the mechanical behavior of discon-
tinuous beams, for which the formulas given in this
paper appear particularly suitable, since they can
be readily updated for any change in the disconti-
nuity pattern (flexibilities of the internal springs,
amplitudes of the flexural-stiffness step, location of
the discontinuities along the beam axis that may
also change their relative position). In this context
it is also worth remarking that, if this task was
pursued by building a classical numerical solution
based on a beam domain decomposition, the
students should update the set of solving equations
as soon as the discontinuities pattern changes, at
the expense of rather tedious manipulations, which
may hardly be carried out during a lecture.

Finally, further potential applications of the
proposed method may concern optimal design. As
sensitivity analysis, in fact, optimal design requires
building a relevant number of solutions for chan-
ging beam parameters and, in this case, a closed-
form solution is highly desirable compared with
the numerical solutions that are available to date.

EXAMPLES

Consider the cantilever beam in Fig. 3. A flex-
ural-stiffness step occurs at x � x1 and a rotational
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spring at x � x2. In Fig. 3 x1 < x2, but it may be
also x1 � x2, since the formulas in the sections
above hold for any discontinuity pattern. Assume
that the deflection response is sought for the
following study cases: (i) beam subjected to a
point force P = 1 at an arbitrary location x � y
(Fig. 3(a)); (ii) beam subjected to the trapezoidal
load �p x� � � �p0 2Lÿ x� �=L, �p0 � cost, distributed
over an arbitrary interval [a, b] (Fig. 3(b)); (iii)
beam subjected to the trapezoidal load in Fig. 3(c)
and supported by a roller of flexibility  V at an
arbitrary location x � xV .

The study cases (i), (ii) and (iii) may all be solved
based on the FGFs (12), where the vector of
integration constants c pertinent to a cantilever
beam are reported in Table 1.

Based on Equation (12) and c1 y� � � 1:0,
c2 y� � � ÿy, c3 � c4 � 0 (see Table 1), the deflec-
tion response to a point load P = 1 is given by

gu x; y� � � gu1 x� �c1 y� � � gu2 x� �c2 y� �
� xc3 y� � � c4 y� � � g P� �

u x; y� �
� gu1 x� � ÿ gu2 x� �y� g P� �

u x; y� �
�38�

where

gu1 x� � � ÿ 1

6EI

�
x3 � 2�1 x� 2x1� �R2 xÿ x1� �

�
ÿ �

2 x2R1 xÿ x2� � �39�

Fig. 3(a). Stepped cantilever beam with a rotational spring under a unit point force.

Fig. 3(b). Stepped cantilever beam with a rotational spring under a trapezoidal load.

Fig. 3(c). Stepped cantilever beam with a rotational spring and a roller support, under a trapezoidal load.
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gu2 x� � � ÿ 1

2EI

�
x2 � 2�1R2 xÿ x1� �

�
ÿ �

2 R1 xÿ x2� � �40�
and

g P� �
u x; y� � � R3 xÿ y� �

EI
�

� �1H xÿ x1� �
6EI

�6R3 xÿ y� �

� 2 y� 2x1 ÿ 3x� �R2 x1 ÿ y� ��
�  �

2 R1 xÿ x2� �R1 x2 ÿ y� �

�41�

Study case (ii)
In this case, the deflection response is given as

u x� � �
Z b

a

gu x; y� ��p y� �dy �

� gu1 x� �
Z b

a

�p y� �dyÿ gu2 x� �
Z b

a

y�p y� �dy

�
Z b

a

g P� �
u x; y� ��p y� �dy

�42�
The first two integrals in Equation (42) are trivial.
It is also seen thatZ b

a

g P� �
u x; y� ��p y� �dy � I1 x� � � I2 x� � � I3 x� � �43�

where I1, I2 and I3 are the closed-form integrals
given as:

� I1 x� � � 1� �1H xÿ x1� �
EI

Z b

a

R3 xÿ y� ��p y� �dy �

� ÿ��1� x; x� � � ��1� x; b� �
h i

H xÿ b� �

� ��1� x; x� � ÿ ��1� x; a� �
h i

H xÿ a� � �44�
where

��1� x; y� � �
Z

xÿ y� �3
3!

�p y� �dy

� 1

3!

X4

j�1

ÿ1� �jÿ1�p j� � y� � d
jÿ1 xÿ y� �3

dyjÿ1
�45�

for

�p j� � y� � � �p0

2L
ÿ1� �j 2Lÿ y� �j�1

j � 1� �! j � 1; 2::: �46�

Also,

� I2�x� � �1H xÿ x1� �
6EI

Z x
sup

1

xinf
1

= x; y; x1� ��p y� �dy

�
X4

j�1

ÿ1� �jÿ1�p� j� y� � d
jÿ1=

dy jÿ1

� �x
sup

1

xinf
1

�47�

where = x; y; x1� � � y� 2x1 ÿ 3x� � x1 ÿ y� �2 and,
therefore,

d=
dy
� 3 yÿ x1� � y� x1 ÿ 2x� �

d2=
dy2
� 6 yÿ x� � �48; 49�

Finally,

� I3�x� �  �
2 R1 xÿ x2� �

Z x
sup

2

xinf
2

x2 ÿ y� ��p y� �dy

�
X2

j�1

ÿ1� � jÿ1�p� j� y� � d
jÿ1 x2 ÿ y� �

dy jÿ1

� �x
sup

2

xinf
2

�50�

It is interesting to remark that, if x2 � a < b, the
integral I3 vanishes. That is, in this case the quote
part of deflection response due to the spring
located at x � x2 is given only by the first two
integrals in the r.h.s. of Equation (42), which yield

 �
2 R1 xÿ x2� �

Z b

a

yÿ x2� ��p y� �dy �51�

Recognize in Equation (51) the deflection response
(zero for x � x2, linearly-varying for x > x2) due
to the rotation of the spring located at x � x2 and
acted upon by the internal bending moment

M x2� � �
Z b

a

yÿ x2� ��p y� �dy �52�

The latter is due to �p y� � distributed over the
interval [a, b], to the right of x � x2.

Study case (iii)
In this case, the beam response may be expressed

as follows

u x� � �
Z b

a

gu x; y� ��p y� �dy� V � gu x; xV� � �53�

where V is the unknown reaction of the roller
support at x � xV . It can be computed by setting
the compatibility condition at x � xV

u xV� � �
Z b

a

gu xV ; y� ��p y� �dy� V � gu xV ; xV� �

� ÿV �  V �54�
which yields

V � ÿ  V � gu xV ; xV� �� �ÿ1
Z b

a

gu xV ; y� ��p y� �dy

�55�
Upon replacing Equation (55) for V in Equation
(53), the deflection response u�x� is given as

u x� � �
Z b

a

gu x; y� ��p y� �dyÿ gu x; xV� �

 V � gu xV ; xV� �� �ÿ1
Z b

a

gu xV ; y� ��p y� �dy�56�
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It is now worth remarking that Equations (38),
(42) and (56) are closed-form solutions given in
terms of the full set of beam parameters. The
students may then implement these equations in
a symbolic package and use it for different
purposes. For instance, they could perform a
sensitivity analysis where the influence of a given
parameter (location and flexibility of the internal
spring; location and flexibility of the external roller
support; amplitude of the load interval a; b� � . . .) is
assessed on the deflection response at a given
location. Other applications may be suggested, as
already discussed.

CONCLUDING REMARKS

EB stepped beams with internal springs,
subjected to static loads, have been given a
closed-form solution based on pertinent Green's
functions of the discontinuous beam. For these few

relatively simple concepts the theory of generalized
functions has been used. Solutions apply for arbi-
trary discontinuity patterns and arbitrary loads.
Detailed expressions have been given for various
sets of BC. The proposed solutions involve advan-
tages with respect to competing methods in the
literature, the most efficient of which involves
enforcing at least four BCs [12].

It is believed that the proposed solutions may
have a positive impact on teaching and learning. In
fact no advanced knowledge of the theory of
generalized functions is required and, at the
expense of relatively hard mathematical deriva-
tions, engineering students are given a straightfor-
ward tool to tackle the bending problem of
discontinuous beams, which play a key role in
many engineering applications. It is also hoped
that this paper may stimulate the interest of en-
gineering students into the many potential applica-
tions of generalized calculus in mechanics.
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APPENDIX

Dirac delta and generalized functions
Among the generalized functions, the most used is the so-called Dirac delta function or impulse function,

defined by Z 1
ÿ1

� xÿ x0� �dx � 1 �A:1�

The above definition is generally explained by interpreting the Dirac delta in the following limit sense

� xÿ x0� � � lim
�!0

�
xÿ x0

�

� �
�A:2�
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where � �xÿ x0�=�� � is a unit-area rectangle function given as

�
xÿ x0

�

� �
�

0 x < x0 ÿ �
2

�ÿ1 x0 ÿ �
2
< x < x0 � �

2

0 x > x0 � �
2

�A:3�

In the light of Equation (A.3) any differential or integral operation applied on the Dirac delta function may
be thought of as the limit, for � ! 0, of the same operation applied on the rectangle function � �xÿ x0�=�� �
[8]. Equation (A.3) also explains the following properties of the Dirac delta, generally given as a
complement to definition (A.1) [8]

� xÿ x0� � � 0;x 6� x0;

Z 1
ÿ1

� xÿ x0� �' x� �dx � ' x0� � �A:4a; b�

The Dirac delta plays a crucial role in modeling several phenomena in mechanics like, for instance,
impulsive forces in dynamics.

In the theory of the generalized functions, the relationship between the Dirac delta function and the
Heaviside function or unit-step function is fundamental; it is defined as

H xÿ x0� � � 0 x < x0

1 x > x0
�A:5�

Specifically, bearing in mind Equation (A.3) it may be stated thatZ x

ÿ1
� sÿ x0� �ds � H xÿ x0� � �A:6�

and, in inverse form,

d

dx
H xÿ x0� � � H;1 xÿ x0� � � � xÿ x0� � �A:7�

Based on Equation (A.6) and Equation (A.7) the Heaviside function may be taken as the generalized
integral of the Dirac delta and, conversely, the Dirac delta may be taken as generalized derivative of the
Heaviside function (for this, the bar over the differentiation symbol is introduced). This will be always
interpreted in the light of Equation (A.2). Recognize in fact that the limit

lim
�x!0

H x��xÿ x0� � ÿH xÿ x0� �
�x

� lim
�x!0

H xÿ x0 ÿ�x� �� � ÿH xÿ x0� �
�x

�A:8�

is indeed the limit of a unit-area rectangle function of height �xÿ1 spanning the interval x0 ÿ�x; x0� �. That
is, exactly the definition (A.2) of Dirac delta.

Several other generalized functions may be introduced as generalized integrals of the Heaviside function.
Among these the n-th order ramp function

Rn xÿ x0� � �
0 x < x0

xÿ x0� �n
n!

x > x0

�A:9�

for n = 1,2. . . . , may be given as

Rn xÿ x0� � �
Z x

ÿ1
Rnÿ1 sÿ x0� �ds �

Z x

ÿ1
. . .

Z x

ÿ1
H sÿ x0� �ds|���������������������{z���������������������}

nÿtimes

�A:10�

where R0 xÿ x0� � � H xÿ x0� �. Equation (A.10) may be also cast in the inverse form

�d

dx
Rn xÿ x0� � � Rn;1 xÿ x0� � � Rnÿ1 xÿ x0� �; for n � 1; 2 �A:11�

For later convenience, the following generalized integrals are also of interest in this paper:Z x

ÿ1
f s� �� sÿ x0� �ds � f x0� �H xÿ x0� � �A:12�
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which derives directly from Equation (A.6), andZ x

ÿ1
f s� �H sÿ x0� �ds � H xÿ x0� � f 1� � x� � ÿ f 1� � x0� �

h i
�A:13�

where f x� � is a function for which a first-order primitive f 1� � x� � exists. To prove Equation (A.13) compute
the generalized derivative of the r.h.s., that is [16]

�d

dx
H xÿ x0� � f 1� � x� � ÿ f 1� � x0� �

h i
�

� � xÿ x0� � f 1� � x� � ÿ f 1� � x0� �
h i

� f x� �H xÿ x0� � � f x� �H xÿ x0� �
�A:14�

Based on the same reasoning, it yieldsZ x

ÿ1
f s� �H x0 ÿ s� �ds � H x0 ÿ x� � f 1� � x� � ÿ f 1� � x0� �

h i
�A:15�

and

�d

dx
H x0 ÿ x� � f 1� � x� � ÿ f 1� � x0� �

h i
� f x� �H x0 ÿ x� � �A:16�
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