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In e-learning initiatives, sequencing problem concern the arranging of a particular learning unit's
set in a suitable order for a particular learner. Sequencing is usually performed by instructors who
create a general-public ordered series rather than learner personalized sequences. This paper
proposes an innovative intelligent technique for learning object automated sequencing using particle
swarms. E-Learning standards are upheld in order to ensure interoperability. Competencies are
used to define relations between learning objects within a sequence, so that the sequencing problem
turns into a permutation problem and artificial intelligent techniques can be used to solve it.
Particle Swarm Optimization (PSO) is one such technique and it has proved to perform well for
solving a wide variety of problems. An implementation of PSO for the learning object sequencing
problem is presented and its performance in a real scenario is discussed.
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INTRODUCTION

BRUSILOVSKY envisaged Web-based adap-
tive courses and systems as being able to achieve
some important features including the ability to act
as a substitute for teachers' and other students'
support, and the ability to adapt to (and so be used
in) different environments by different users (lear-
ners). These systems may use a wide variety of
techniques and methods. Among them, curriculum
sequencing technology serves `to provide the
student with the most suitable individually planned
sequence of knowledge units to learn and sequence
of learning tasks [ . . .] to work with' [1]. Curricu-
lum sequencing has its origins in the field of
intelligent tutoring systems where it has been
extensively studied. Its techniques have later been
adopted by the adaptive hypermedia researchers in
their broader approach to building personalized (e-
learning) systems. So current methods are derived
from the adaptive hypermedia field [2] and they
rely on complex conceptual models, usually driven
by sequencing rules [3, 4]. E-learning traditional
approaches and paradigms, which promote reusa-
bility and interoperability, are generally ignored,
thus resulting in (adaptive) proprietary systems
(such as AHA! [5] ) and non-portable courseware.

On the other hand, traditional approaches
promote standards' usage to ensure interoperabil-
ity but they lack flexibility, which is in increasing
demand. `In offering flexible [e-learning]

programmes, providers essentially rule out the
possibility of having instructional designers set
fixed paths through the curriculum' [6]. However,
offering personalized paths to each learner will
impose prohibitive costs to these providers,
because the sequencing process is usually
performed by instructors. So, `it is critical to
automate the instructor's role in online training,
in order to reduce the cost of high quality learning'
[7] and, among these roles, sequencing seems to be
a priority.

In this paper, an innovative sequencing tech-
nique that automates the teacher's role is
proposed. E-Learning standards and the learning
object paradigm are used in order to promote and
ensure interoperability. The learning units'
sequences are defined in terms of competencies in
such a way that the sequencing problem can be
modelled like a classical Constraint Satisfaction
Problem (CSP) and Artificial Intelligence (AI)
approaches could be used to solve it. Particle
Swarm Optimization (PSO) is an AI technique
and it has proved to perform well for solving a
wide variety of problems. So, PSO is used to find a
suitable sequence within the solution space respect-
ing the constraints. In the next, the conceptual
model for competency-based learning object
sequencing is presented. The PSO approach for
solving the problem is then described. The next
section presents the results obtained from intelli-
gent algorithm implementation and testing in a
real world situation (course sequencing in an
online Master in Engineering program), a compar-
ison with other techniques and a discussion* Accepted 24 February 2009.
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concerning scalability issues. And, finally, the
conclusions are summarized.

COMPETENCY-BASED SEQUENCING

Within e-learning, the learning object paradigm
drives almost all initiatives. This paradigm
encourages the creation of small reusable learning
units called Learning Objects (LOs). These LOs are
then assembled and/or aggregated in order to
create larger units of instruction (lessons, courses,
etc) [8].

LOs must be arranged in a suitable sequence
before being delivered to learners. Currently,
sequencing is performed by instructors who do
not create a personalized sequence for each lear-
ner, but instead they create generic courses, which
are targeted to generic learner profiles. Then, these
sequences are coded using a standard specification
to ensure interoperability. The most commonly
used specification is SCORM [9]. Courseware
that conforms to SCORM's Content Aggregation
Model [10] is virtually portable between a wide
variety of Learning Management Systems (LMSs).
However, SCORM usage hinders the automatic
LO sequencing due to its system-centred view.
Other metadata-driven approaches offer better
possibilities, i.e. just LO metadata will enable
automatic sequencing process to be performed,
and the appropriate combination of metadata
and competencies will allow personalized and
automatic content sequencing. This section
describes how to overcome these problems by
defining a conceptual data model for learning
object sequencing through competencies.

Competency definition
As for many other terms, there are a wide

variety of definitions that try to catch the essence
of the word competency in the e-learning environ-
ment. The confusion has even been increased by
the work developed, often independently, in the
three main fields that are currently primarily
concerned with competencies, namely, pedagogy,
human resources management and computer
science. Anyway, we consider competencies to be
`multidimensional, comprising knowledge, skills
and psychological factors that are brought
together in complex behavioural responses to
environmental cues' [11]. This definition emphas-
izes that competencies are not only knowledge but
a set of factors and that competencies are
employed (brought together) in real or simulated

contexts (or environments). Conceptual models for
competency definitions are also used to consider
this multidimensionality. As an example, RDCEO
specification [12] describes a competency as a four-
dimensional element (Fig. 1).

The competency `Definition' is the record that
contains general information about the compe-
tency. Each competency can be exhibited in one
or more different `Contexts'. And a set of factual
data must be used to `Evidence' that an individual
has or has not acquired a particular competency.
Finally, `Dimensions' are used to relate each
context with its particular evidence and to store
relation information such as the proficiency level.

Some e-learning trends (RDCEO have just been
mentioned) are trying to formalize competency
definitions. It is worth quoting the following
specifications:

. IMS `Reusable Definition of Competency or
Educational Objective' (RDCEO) specification
[13];

. IEEE Learning Technology Standards Commit-
tee (LTSC) `Standard for Learning Technol-
ogyÐData Model for Reusable Competency
Definitions' specification [14];

. HR-XML Consortium `Competencies (Measur-
able Characteristics) Recommendation' [15];

. CEN/ISSS `A European Model for Learner
Competencies' workshop agreement [16].

All these specifications offer their own understand-
ing of what a competency is (i.e. the definition of
competency) plus a formal way to define compe-
tencies (i.e. competency definitions) so that they
can be interchanged and processed by machines. A
deeper analysis of these recommendations shows
that, although they do not present great differences
in their own definitions of competency, great
dissimilarities arise when the information that
must conform to a competency definition are
examined. In this way, it could be said that IMS
and IEEE specifications are minimalist recommen-
dations that define a small set of fields that the
competency definitions should contain (in fact,
only an identifier and a name are required for a
conformant record). Deeper definitions of some
dimensions that concern competencies (namely
evidence and context) are left without specification
or are left free to the developers' interpretation. On
the other hand, HR-XML specification provides
competency users with a huge set of entities, fields
and relations that they must fulfil in order to get
conformant competency records (although many
of them are also optional).

For the purpose of our study we just need a
universal way to define, identify and obtain access
to competency definitions and that is exactly what
the RDCEO specification offers. Moreover,
RDCEO is also the oldest specification and is
therefore the most used (and the most criticized).
These factors lead us to employ RDCEO records
for our competency definitions. Code fragment in

Fig 1. RDCEO competency conceptual model (from [12] ).
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Fig. 2 shows a sample RDCEO competency
record.

Competencies for Interoperable Learning Object
Sequencing

According to RDCEO and IEEE nomenclature,
a competency record is called a `Reusable Compe-
tency Definition' (or RCD). RCDs can be attached
to LOs in order to define their prerequisites and
learning outcomes. We have used this approach to
model LO sequences. By defining a competency (or
a set of competencies) as an LO outcome, and by
identifying the same competency as the prerequi-
site for another LO (Fig. 3), a constraint between
the two LOs is established so that the first LO must
precede the second one in a valid sequence.

Meta-Data (MD) definitions are attached to
LOs, and, within those definitions, references to

competencies (prerequisites and learning
outcomes) are included. LOM [17] records have
been used for specifying LO Meta-Data. LOM
element 9, `Classification', is used to include
competency references as recommended in [12,
18]. So, LOM element 9.1, `Purpose', is set to
`prerequisite' or `educational objective', chosen
from the permitted vocabulary for this element;
and LOM element 9.2 `Taxon Path', including its
sub-elements, is used to reference to the compe-
tency. Note that more than one Classification
element can be included in one single LO in
order to specify more than one prerequisite and/
or learning outcome. In code fragment 2 (Fig. 4) is
shown a sample LO metadata record that holds
two competency references: a prerequisite relation
and a learning outcome relation. Competency
references are showed in bold.

Fig. 2. Code 1. Sample competency record.
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Fig. 3. LO sequencing through competencies.

Fig. 4. Code 2. Sample LO metadata record containing competency references.
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Simple metadata (i.e. LOM records) are enough
to model the LOs' sequences in a similar way.
Then, why use competencies? Competency usage
is encouraged, in addition to its usefulness for
modelling prerequisites and learning outcomes,
the competencies are also useful for modelling
learners' current knowledge as well as the expected
outcomes of the learning initiatives (future learner
knowledge).We are proposing a wider framework
(Fig. 5) in which learner (user) modelling is done in
terms of competencies, which are also used to
define the expected learning outcomes from a
learning program. Both sets of competencies
constitute the input for a gap analysis process.
This process performs a search in local and/or
distributed remote repositories in order to identify
the set of learning objects that fill the gap between
the learner's current knowledge and the learning
objectives. The gap analysis process returns a set of
unordered LOs that must be assembled and struc-
tured in a comprehensive way, so that basic units
(LOs) are presented to the learner previous to the
advanced lessons. These actions will be performed
by the LO sequencing process depicted in Fig. 5.

COMPETENCY-BASED INTELLIGENT
SEQUENCING

Given a random LOs' sequence modelled as
described above (with competencies representing
LOs' prerequisites and learning outcomes), the
question of finding a correct sequence can be
envisaged as a classical Constraint Satisfaction

Problem (CSP). In this way, the solution space
comprises all possible sequences (n! will be its size,
total number of states, for n LOs), and a (feasible)
solution is a sequence that satisfies all established
constraints. The LO permutations inside the
sequence are the operations that define transitions
between states. So we face a permutation problem,
which is a special kind of CSP. PSO is a stochastic
population-based computing technique that can be
used to solve CSP problems (among other kind of
problems). This section presents a mathematical
characterization of the learning object sequencing
problem so that a PSO implementation can be
formally specified. This PSO implementation is
then presented and some modifications of the
original algorithm are proposed.

Mathematical characterization
According to Tsang [19] a CSP is triple (X, D, C)

where X � {x0, x1, . . . , xn±1} is a finite set of
variables, D is a function that maps each variable
to its corresponding domain D(X), and C i,j�Di 6
Dj is a set of constraints for each pair of values (i, j)
with 0 � i < j < n. To solve the CSP is to assign all
variables xi in X a value from its domain D, such
that all constraints are satisfied. A constraint is
satisfied when (xi, xj)2Ci, j, and (xi, xj) is said to be
a valid assignment. If (xi, xj) 62Ci, j then the assign-
ment (xi, xj) violates the constraint.

If all solutions from a CSP are permutations of a
given tuple then it is said that the problem is a
permutation CSP or PermutCSP. A PermutCSP is
defined by a quadruple (X, D, C, P) where (X, D,
C) is a CSP and P � <v0, v1, . . . , vn±1> is a tuple of
|X| � n values. A solution S of a PermutCSP must
be a solution of (X,D,C) and a complete permuta-
tion of P.

The learning object sequencing problem could
be modelled as a PermutCSP. For example,
considering five learning objects titled 1, 2, 3, 4
and 5, the PermutCSP which only solution is the
set S � {1, 2, 3, 4, 5} (all learning objects must be
ordered) can be defined as:

X � {x1, x2, x3, x4, x5}
D (Xi) � {1, 2, 3, 4, 5} 8 xi2X
C � {xi+1 ±xi > 0: xi2X , I2 {1, 2, 3, 4}}
P � <1, 2, 3, 4, 5>

As it will be demonstrated later, a good definition
of the constraint set C critically affects the solving
algorithm performance and even its completeness.

Particle Swarm Optimization
Particle Swarm Optimization (PSO) is an evolu-

tionary computing optimization algorithm. PSO
mimics the behaviour of social insects like bees. A
randomly initialized particle population (states)
flies through the solution space sharing the infor-
mation they gather. Particles use this information
to adjust dynamically their velocity and cooperate
towards finding a solution. Best solution found: (1)
by a particle is called pbest, (2) within a set of
neighbour particles is called nbest, (3) and within

Fig. 5. Competency-driven content generation model.
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the whole swarm is called gbest. gbest is used
instead of nbest when a particle takes the whole
population as its topological neighbours. The
goodness of each solution is calculated using a
function called the fitness function. A basic PSO
procedure, adapted from [20], is showed in code
fragment 3 (Fig. 6). PSO has been used to solve a
wide variety of problems [21].

�X represents the value of the particle that is
currently being computed. �Ppbest and �Pnbest are
pbest and nbest values respectively. They are
computed for each particle and they are repre-
sented as vectors, along with �X , because they
usually encode a string of positions (array of
values) that represent a multidimensional space.
�Vnew is a temporary variable used to compute the
new velocity vector. It is an array with the same
length of �X because a velocity value must be
computed for each dimension. w, c1 and c2 are
the algorithm parameters, and they are all used to
compute the new velocity. w is known as the
`inertial weight' and it is a number (from 0.0 to
1.0) that determines to what extent the particle is
moved toward the new velocity or remains along
its previous course. c1 and c2 are known as the
`learning rates' and they determine the relative pull
of pbest and nbest in the velocity computation.
Parameter values (w, c1 and c2) should be careful
selected for each problem. fitnessValue() is a
function that returns the fitness function value
for one particle. It is called just once per iteration
because it usually requires a long computation
time. And, finally, rand() is a function that returns
a random number between 0 and 1. Each instance
of rand() in the algorithm represents a new call to
the function, i.e. a new random number is
computed and returned.

Original PSO [22, 23] is intended to work on
continuous spaces, and velocity is computed for
each dimension xi 2 �x. The particles' initial posi-
tion and initial velocity are randomly assigned
when the population (swarm) is initialized. A
discrete binary version of the PSO was presented
in [24]. This version uses the concept of velocity as

a probability of changing a bit state from zero to
one or vice versa. A version that deals with
permutation problems was introduced in [20]. In
this latter version, velocity is computed for each
element in the sequence, and this velocity is also
used as a probability of changing the element but,
in this case, the element is swapped, establishing its
value to the value in the same position in nbest.
The velocity is updated using the same formula for
each variable in the permutation set (xi 2 X), but it
is also normalized to the range 0 to 1 by dividing
each xi by the maximum range of the particle (i.e.
maximum value of all xi 2 X). The mutation
concept is also introduced in this permutation
PSO version; after updating each particle's velo-
city: if the current particle is equal to nbest then
two randomly selected positions from the particle
sequence are swapped. In [20] it is also demon-
strated that permutation PSO outperforms genetic
algorithms for the N-Queens problem. So we
decided to try PSO, before any other technique,
for LO sequencing problem.

Each particle shares its information with a,
usually fixed, number of neighbour particles to
determine the nbest value. Determining the
number of neighbour particles (the neighbour
size) and how the neighbourhood is implemented
has been a subject of in-depth research in an area
that has been called sociometry. Topologies define
structures that determine neighbourhood relations,
and several of them (ring, four cluster, pyramid,
square and all topologies) have been studied. It has
been proved that fully informed approaches
outperform all other methods [25]. The fully
informed approach prompts using `all' topology
and a neighbourhood size that is equal to the total
number of particles in the swarm. This means that
every particle is connected to all other particles
when nbest values are calculated, hence gbest is
always equal to nbest. So, for this case (a fully-
informed approach), nbest is not longer computed
because gbest replaces it and only one copy of the
gbest value is shared by all the particles in the
swarm.

Fig. 6. Code 3. PSO procedure pseudo-code.
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PSO for learning object sequencing
A discrete fully-informed version of the PSO was

implemented in order to test its performance for
solving the LO sequencing problem. Code frag-
ment 4 (Fig. 7) shows the basic procedure for LO
sequencing pseudo code. Several other issues
concerning design and implementation have to be
decided. In the rest of this section each of these
issues is discussed and the selection criteria are
explained.

Fitness function. It is critical that one chooses a
function that accurately represents the goodness of
a solution [26]. In PSO, as in other evolutionary
technique algorithms and meta-heuristics search
procedures, there is usually no objective function
to be maximized. A commonly used fitness func-
tion when dealing with CSP problems is a standard
penalty function [27]:

f �X � �
X

0� i< j< n

Vi; j�xi; xj�; �1�

where Vi,j : Di 6 Dj {0,1} is the violation function

Vi;j�xi; xj� 0 if�xi; xj� 2 Ci; j

1 otherwise

�
: �2�

The standard penalty function returns the number
of constraints violated, so the PSO objective is to
minimize that function (sentence if (new fitness >
pBest) was changed to if (new fitness < pBest) ).
When a particle returns a fitness value of 0, a
sequence that satisfies all constraints has been
found and the algorithm processing is finished.

This fitness function works well if the constraint
set C for the PermutCSP has been accurately
defined. In the example presented in the section

`Mathematical Characterization', which represents
a 5 LO sequence with only one feasible solution,
the restriction set was defined as C � {xi+1 ± xi >
0: xi 2 X, i 2 {1, 2, 3, 4}}. A more accurate
definition will be C � {xi ± xj > 0: xi 2 X, xj 2
{x1, . . . , xi}} . If we consider the sequence {2, 3, 4,
5, 1} the standard penalty function will return 1 if
the first definition of C is used, while the returned
value will be 4 if the second definition is used. The
second definition is more accurate because it
returns a better representation of the number of
swaps required to turn the permutation into the
valid solution. Moreover, the first definition of C
has additional disadvantages because some really
different sequences (in terms of its distance to the
solution) return the same fitness value. For ex-
ample sequences {2, 3, 4, 5, 1}, {1, 3, 4, 5, 2}, {1, 2,
4, 5, 3} and {1, 2, 3, 5, 4} will return a fitness value
of 1. Fortunately, the accurate constraint defini-
tion problem could be solved programmatically. A
function that recursively processes all restrictions
and calculates the most precise set of restrictions
violated by a given sequence was developed and
called over the input PSO sequence. The user
(instructor, content provider, . . .) will usually
define the minimum necessary number of
constraints and the system will compute `real'
constraints in order to ensure algorithm conver-
gence, so user obligations are lightened simulta-
neously.

PSO parameters. One important PSO advantage is
that it uses a relatively small number of parameters
compared with other techniques such as genetic
algorithms. However, much has been written in the
literature on the subject of the PSO parameter. Hu
et al. (2003) established the set of parameters in

Fig. 7. Code 4. PSO procedure for LO sequencing.
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such a way that PSO works properly for solving
permutation problems. So we decided to follow
their recommendations, and the parameters were
set as follows: Learning rates (c1, c2) are set to
1.49445 and the inertial weight (w) is computed
according to the following equation:

w � 0:5� �rand��=2�; �3�
where rand() represents a call to a function that
returns a random number between 0 and 1. The
population size was set to 20 particles. As the fully
informed approach was used, it was not necessary
to make any consideration concerning the neigh-
bourhood size.

Initialization. The algorithm receives an initial
sequence I as an input. This input is used to
initialize the first particle. All other particles are
initialized randomly by permuting I. The initial
velocity for each particle is also randomly initi-
alized as follows: Each vi 2 V is randomly assigned
a random value in the range {0,|I |}, where |I | is the
total number of learning objects in the sequence.

Termination criteria. Agent processing stops when
a fitness evaluation of a particle returns 0 or when
a fixed maximum number of iterations is reached.
So the number of iterations was also defined as an
input parameter. It was used as a measurement of
the number of calls to the fitness function that were
allowed to find a solution. It should be noted that
some problems may not have a solution, so setting
the number of iterations can avoid infinite comput-
ing.

Proposed modifications. During the initial agent
development we found that in some situations
the algorithm got stuck in a local minimum, and
it was unable to find a feasible solution. For that
reason, two modifications were envisaged in order
to try to improve the algorithm performance for
LO sequencing. The first change was to decide
randomly whether the permutation of a particle's
position was performed from gbest or from pbest
(p � 0.5). In the original version all permutations
were done regarding gbest. The second modifica-
tion consisted of changing pbest and gbest values
when an equal or best fitness value was found by a
particle. In other words all the particle's compar-
isons concerning pbest and gbest against the actual
state were set to less or equal (<�) because the
fitness function is to be minimized. The original
algorithm determines that pbest and gbest only
change if a better state is found (comparisons
strictly <). Code fragment 5 (Fig. 8) presents the
final sequencing algorithm pseudo code that
includes these modifications. Changes with respect
to the basic procedure are showed underscored.

The underlying idea is to increase the particles'
mobility and to avoid a quick convergence to local
minimums. Three elements are involved in the new
velocity computation: the particle's current inertia,
pbest position and gbest position. And the parti-
cle's actual movement (which is indeed a permuta-
tion) is determined based on the gbest current
position. If the final permutation is, instead, some-
times performed towards pbest we can have parti-
cles exploring different regions of the solution
space. Otherwise (if all the permutations are

Fig. 8. Code 5. Modifications to PSO procedure.
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performed towards gbest), all the particles could
end up exploring the same basin, which could
finally take the swarm to a local minimum,
which is not a feasible solution. This was the
purpose of the first modification. As for the
second modification, the proposal prompts a
change in the values of pbest and gbest as many
times as possible in order to guide the particles
towards new directions (these values are used in
the new velocity computation). It should also be
noted that we are facing a discrete optimization
scenario. This means that we can have many states
that return the same fitness value. If pbest and
(especially) gbest does not change for a long time
the swarm can stagnate and continue exploring
one region that does not contain a feasible solu-
tion. If pbest and gbest values are updated every
time that an equal or better fitness value is found,
we are constantly forcing the particles' movement
into new directions and enlarging the search
region. All these modifications were tested later
in the results phase.

EXPERIMENTAL RESULTS AND
DISCUSSION

Problem statement
The PSO algorithm for LOs sequencing

described above was designed and implemented
using the object-oriented paradigm. We wanted
to test its performance in a real scenario, so a
problem concerning course sequencing for a
Master in Engineering (M.Eng.) programme in

our institution, the Computer Science School
from the University of AlcalaÂ in Madrid (Spain),
was chosen for the test. The Web Engineering
M.Eng, program (Fig. 9) comprises 24 courses
(subjects) grouped into the following:

. Basic courses (7) that must be taken before any
other (kind of course). There may be restrictions
between two basic courses, for example the
`HTML' course must precede the Javascript
course,

. `Itinerary' courses (5) that must be taken in a
fixed ordered sequence.

. Compulsory courses (5). There may be restric-
tions between two compulsory courses.

. Elective courses (7). Additional constraints with
respect to any other course may be set.

All courses have an expected learning time that
ranges from 30 to 50 hours. They are delivered
online using a LMS, namely EDVI LMS [28], and
every course has its metadata record. Competency
records were created to specify the LOs' restric-
tions, and LOM metadata records were updated
to reflect prerequisite and learning outcome
competencies as detailed in the Competency-
based Sequencing section. A feasible sequence
must have 23 LOs satisfying all constraints.
Please note that the student must choose just
one learning path (Java or .NET) and take all
the courses on that path. Students must choose six
out of the seven elective courses presented in Fig.
9. The five courses of the non-selected path are
also eligible as elective subjects. 56 constraints
have been defined among different courses. Just

Fig 9. Web Engineering Master Program.
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to offer an idea, there are four constraints between
basic courses, four constraints between compul-
sory courses, four constraints between itinerary
courses and just one constraint in the elective
courses. Most of the constraints appear in the
relations that take place between courses belong-
ing to different groups: 14 constraints from
compulsory courses to basic courses, 7 constraints
from itinerary courses to basic courses, 21
constraints from elective courses to basic courses,
and one constraint from one elective course to one
compulsory course. The graph showing all LOs
and constraints is very complex. Figure 9 just
represents the constraints between groups of
courses. If should be noted that relations between
specific courses are not shown in order to avoid
confusion in the figure that would make it difficult
to read. It is also difficult to calculate the exact
number of feasible solutions. Just an estimation
has been used; we have estimated that the relation
among feasible solutions and total solutions is in
the order of 8.9 6 1012. This number reflects the
number of states (non-feasible solutions) for each
feasible solution. This means that the chance of a
random sequencer selecting a feasible sequence is
1/8.9 6 1012, which is quite a reduced probability.

PSO sequencer testing
Once the problem was established, PSO agent

parameters were set to test four different config-
urations that reflect all the possibilities concerning
proposed modifications introduced in the Compe-
tency-based Intelligent Sequencing section. These
configurations are:

. Configuration 1. Permutation of the particle
position is randomly selected from gbest or
from pbest. Comparison for changing particle
pbest and gbest values is set to less or equal
(<�).

. Configuration 2. Permutations from gbest/pbest.
Comparison set to strictly less (<).

. Configuration 3. All permutations are per-
formed from gbest. Comparison set to less or
equal (<�).

. Configuration 4. Permutations from gbest.
Comparison set to strictly less (<).

Figure 10 shows the results. Each configuration
was run 1000 times allowing 20, 30, 40, 50, 75, 100,
150, 200, 300 and 500 iterations, and the success
ratio was observed. From the results, it can be seen
that all the configurations converge to a feasible
solution, but configuration 4 (original settings)
outperform all the others.

Figure 10 also shows that the original settings
need less iterations (and so less fitness evaluations)
to converge to a feasible solution. This argument is
supported by the results in Table 1, which shows
the mean number of evaluation function calls
required for each configuration to find a solution
(1000 runs) if the number of iterations parameter is
set to a high enough number (i.e. a number of
iterations that ensures a success ratio of 1 for each
configuration). Mean times required for each
configuration are also presented so that it is pos-
sible to get an idea of how long it takes to plan the
curriculum for each configuration. We must state
that the one objective of our development is to
make the curriculum sequencer as scalable as
possible (see below) so it is important to consider
any difference in performance, even smaller ones,
because small differences in performance may turn
into large ones if the agent is faced with larger or
more difficult scenarios. All the tests were run on a

Fig 10. PSO configurations comparison.

Table 1. Number of fitness evaluations

Fitness evaluations Time (seconds)

Configuration 1 1412 14.697
Configuration 2 1817 18.913
Configuration 3 1237 12.875
Configuration 4 1158 12.053
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computer with a Pentium 4 2.0 GHz processor and
2 GB RAM.

An example of the PSO sequencing agent execu-
tion for the test case is shown in Fig. 11. The input
is a random sequence of learning objects and the
output is a valid sequence (i.e. a sequence that
satisfies all restrictions). In the output sequence:
(1) all basic courses are placed in the initial
positions of the sequence, (2) itinerary courses
are properly ordered, and (3) compulsory, itinerary
and elective courses are intercalated respecting all
constraints. We have supposed that the user takes
the .NET path (from Fig. 9) and we have chosen
the elective subjects randomly. We plan to control
these options later in the user interface. Output is
also complemented by the number of fitness func-
tion calls required to find the solution.

Comparison with other methods
So far it has just been shown that the algorithm

manages to find a solution, however it is question-
able whether it performs better or worse than other
approaches. A theoretical analysis to compare the
PSO sequencer with a random sequencer and with a
hill climbing sequencer is presented here to show
what the improvement will be over other AI and
non-AI techniques. As stated above, the probability
of a random solution to be a feasible solution is 1/8.9
6 1012. For these kind of approaches, those that
employ a heuristic evaluation, the more important
consumption of computational resources (time) is
related to the fitness evaluation function. We have
computed the time that one call to the fitness
function consumes and the measure is 10.41 ms
(mean time for 65 000 calls was taken). An optimis-

tic evaluation of a random picker will require
4.45 6 1012 evaluations if we estimate that it is
necessary to visit half solutions to find one feasible
solution (p � 0.5). This will represent 4.63 6 1010

seconds, which means that the algorithm will need
around 1468 years to find a solution. We are also
supposing that no solution is evaluated twice, so a
memory to store of at least 4.456 1012 solutions will
be required and the time required to check that no
solution is revaluated must also be computed. This
demonstrates that huge solutions spaces cannot be
approached in this way if we want to build a
computationally feasible solution.

Hill climbing is an optimization technique that
belongs to the family of local search techniques. In
hill climbing all the neighbours of the current state
are evaluated and the best solution is selected as
the next value. Then the process is repeated until a
feasible solution is found. A random solution is
selected to initialize the algorithm. The complete-
ness (ability of the algorithm to find a solution if
one exists) of hill climbing is highly dependent on
the solution space because the operation stops
when the current solution does not find a neigh-
bour with a better fitness value. Solution spaces
with ridges (local minima regions) and plateaus
(flat parts of the search space in which all the states
return the same fitness value) can present a lot of
difficulties. Hill climbing works really well when
these geographical features are not present in the
solution space and it is frequently used in conjunc-
tion with other techniques that are specially
designed to find the region where a global maxi-
mum exist, avoiding local minima. Among its
advantages it must be mentioned that it is easy to

Fig. 11. PSO agent execution example.
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implement, but only if the neighbourhood relation
between solutions is clearly stated. Hill climbing is
only applicable if every state has a discrete number
of neighbours.

Now we need to make a few assumptions to
estimate the performance of the hill climber
sequencer when planning the curriculum. The
first assumption will be that our problem does
not contain ridges and plateaus. This is a very
important assumption considering that every state
will have many potential neighbours. We are also
going to suppose that the initial position returns a
mean fitness, and that in each iteration of the hill
climber is found a new current solution that
represents an improvement of two over the fitness
value of the previous state. We think that the
second assumption is reasonable for this problem
because at the beginning of the process the incre-
ments will be of more than one unit, but at the final
iterations increments of 1 will be more usual. We
consider that 2 will be a mean value. For the
master program sequencing problem every state
has 506 neighbours (23 6 22) because 23 positions
can be chosen for swapping and each position can
swap its value with any one of the 22 remaining
values. The initial fitness will be 28, 56 are all the
constraints and we are considering that one half is
the number of them that will be violated. So the
hill climber will need 27/2 6 506 � 6831 fitness
evaluation calls to find a feasible solution. As it has
been said that every call to the fitness function
requires 10.41 ms it will take approximately 1
minute and 10 seconds for this theoretical hill
climber to find a solution. This is 6 time longer
than the best PSO sequencer and it will hinder the
building of a user interface for the sequencer
because response times to the user will be longer.

Scalability issues
The tested scenario may seem to have many

feasible solutions so that it is questionable whether
PSO would still achieve a good performance in
`challenging' scenarios, so PSO agent was tested in
`more' difficult situations. Test sequences contain-

ing 5, 10, 20, 30, 40, 50, 60, 75 and 100 learning
objects with only one feasible solution in the
solution space were designed. Configuration 4
was used because it showed the best performance
for the above test case and unlimited iterations
were allowed to find the solution. Fitness evalua-
tion means were observed for 100 runs (Fig. 12)
and the mean times required to find the feasible
sequence were also calculated (Table 2).

Although fitness evaluations do not increase
linearly with the number of learning objects, it
should be noted that the learning objects increment
entails an exponential explosion of solution space
size (remember that solution space size for n
learning objects will be n!). For example, the
solution space with 100 learning objects will be
1048 times larger than the solution space with 75
learning objects, but the time required for finding a
solution is only about double. In other words, the
x-axis could also be interpreted as being the solu-
tion space size expressed in a logarithmic scale.
Therefore, the intelligent agent also handles
reasonably the combinatorial explosion inherent
in many AI problems.

CONCLUSIONS

A new method for curriculum sequencing taking
standards into account has been presented. The
new system is centred on the competency concept.

Fig. 12. Number of fitness evaluations required for different number of LOs.

Table 2. Computation times required for different number of
LOs

No. of learning objects Time (mm:ss)

5 0 : 00.707
10 0 : 04.330
20 0 : 23.846
30 1 : 02.859
40 2 : 02.398
50 3 : 29.167
60 5 : 23.780
75 8 : 35.035

100 17 : 33.438
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We note that competencies can be used for model-
ling user current knowledge as well as learning
actions' expected outcomes. These two elements
can be the input of a process that automatically
creates standard-compliant learning paths that can
be used in actual LMSs.

The same (standardized) competency records are
used to define constraints between learning
objects, so that a sequence of LOs is represented
by relations between LOs and competencies. New
sequences can then be derived if permutation
operations are allowed between LOs in the
sequence. Hence the sequencing problem is
turned into a permutation problem, and the aim
is to find a sequence that satisfies all restrictions
expressed in the original model. The PSO for a
permutation problem has been extended to an LO
sequencing problem. Two envisaged modifications
were also tested. Results show that: (1) PSO
succeeds as a sequencing method, and (2) the
original configuration is the best one. Theoretical
comparisons with a random sequencer and with a
hill climber approach demonstrate that the PSO
sequencer performs better than other AI and non-
AI approaches. Finally, some concerns regarding
the sequencer scalability have been considered.
Different test cases in which the sequencer was
faced with the worst possible configurations were

run. Results help us to identify what the limit of
our approach is and to fine-tune the method to any
particular problem.

Further implications arise from the model
proposal and from the study conclusions: (1) E-
learning standards are promoted. XML records
and bindings are used, so elements can be easily
interchanged and processed by compliant systems.
(2) The Instructor's role is automated, so reducing
costs. Sequencing processes work even in complex
scenarios where humans face difficulties. Instruc-
tors could spend the time saved in performing
other activities within the learning process. (3)
The model is intended to build domain indepen-
dent personalized e-learning experiences. We have
focused on a Web Engineering master programme
but the method will work on any domain if the
competency records are defined and the LOs are
properly tagged.
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