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Visual reasoning is an essential skill for many disciplines in engineering, architecture, and design.
The underlying cognitive processes of visual reasoning form a basis in various problem-solving
processes. We describe an intelligent tutoring system for visual reasoning that uses the missing view
problem. This system, called Intelligent Visual Reasoning Tutor (IVRT), can adaptively support
different learners' needs, track learners' progress, and provide active critiquing. IVRT uses a two-
level reasoning architecture, combining geometric reasoning and semantic technologies, which
enables the development of ITS for 3D geometry domains. We discuss IVRT's system architecture
and implementation, which includes a learning contents model based on skills, lessons, and
problems, and a learner model that measures domain competence as a set of skills. Learning
contents and pedagogical teaching strategy rules are stored in standard OWL ontologies, which can
be customized by the teacher.
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VISUAL REASONING

THE ABILITY TO VISUALIZE and reason
about geometric aspects of 3D objects is critical for
success in engineering, architecture and design. A
recent experimental study on design creativity
using engineering, design, and social science
students identified that visual reasoning capability
is an underlying cognitive element of design crea-
tivity [1].

A traditional exercise for visual reasoning
instruction is the missing view problem [2], in
which two consistent, principal orthographic
projections are given, as shown in Fig. 1. The
learner's objective is to give a third orthographic
projection such that these three views correspond
to a valid 3-D solid object. The actual cognitive
task involved is a 2D-to-3D visualization process,
in which the learner mentally constructs a 3D solid
that is consistent with both given views in 2D. This
type of problem requires interactions of visual
analysis, visual synthesis, and modeling, which
builds the foundations of the visual reasoning
processes.

Note that visual analysis, synthesis, and model-
ing respectively coincide with seeing, imagining,
and drawing of the design ideation model of
McKim [3]. In fact, the visual reasoning process
forms a basis for the problem-solving process.
When a person or a group, in design and in
engineering, seeks a solution to a new problem,

iterations of the following technical and cognitive
processes are performed to achieve that aim. First,
careful analysis is made of the nature of the
problem and the problem-solving environment,
including the entity's capability. Second, partial
solutions are gradually synthesized. Using proper
representations of these and the given problem, the
solutions are reanalyzed considering the problem
context, and an improved solution is synthesized.
Thus, the visual reasoning process composed of
iterations of visual analysis, synthesis and model-
ing serves the basic role in the problem-solving
process. Also, visual reasoning tasks could be used
in training such processes in a more structured way
than typical problem-solving tasks.

The instruction of such visual reasoning skills
has presented numerous challenges for traditional
classroom methods. Most instruction methods rely
on 2D representations, e.g. textbooks, slides, and
learners' own drawings and writings, which do not

* Accepted 24 February 2009. Fig. 1. Example of a missing view problem.
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adequately prepare learners to visualize and
manipulate 3D data. While all learners exhibit
some ability to visualize simple shapes in 3D, this
is quickly overtaken by the complexity of missing
view problems, so the solutions are not so trivial
that they can be visualized entirely in the learners'
heads. Also, learners show a wide range of capabil-
ities in visual reasoning, so that individualized
support for learning is inevitably needed to reflect
personal diversities. Hence, we see an ongoing
need for intelligent instructional tools that can
provide specialized assistance to learners in the
development of these skills.

An intelligent tutoring system (ITS) is an
instructional software system, typically composed
of a domain model, learner model, and pedagogi-
cal knowledge [4], which is able to adapt its
instruction based on the learner's current state.
ITSs have been shown to be effective tools for
instructional support. This paper describes an
intelligent tutoring system called Intelligent
Visual Reasoning Tutor (IVRT), which uses the
missing view problem to develop visual reasoning
skills. IVRT provides a learning system with which
a learner can develop visualization and spatial
reasoning capabilities in a self-paced series of
exercises. IVRT can adaptively support different
learners' needs, track learners' progress, and
provide active critiquing.

IVRT uses a two-level architecture for reasoning
in complex domains. Within the scope of a single
problem instance, it uses 3D geometric reasoning
for provable, algorithmic reasoning about 3D
geometric entities and relations, which enables it
to provide guidance and adaptive critiquing in
visual reasoning domains. On a broader scale
across multiple learners and problems, it uses
knowledge-based reasoning for pedagogical deci-
sion-making, which is similar to other ITSs. By
maintaining a deliberate separation of reasoning
techniques, we can obtain results more reliably,
more meaningfully, and more efficiently, for this
problem domain, which provides better adaptive
support to the learner. This two-level reasoning
architecture has enabled us to extend the ITS
framework into the domain of visual reasoning
using 3D geometry, which has received almost no
consideration in previous ITS research.

INTELLIGENT TUTORING SYSTEMS

ITS approaches and implementations
ITSs have proven difficult to implement primar-

ily due to the demands of the domain model.
Successful ITS implementations have generally
corresponded to learning domains that exhibit
certain characteristics.

. Model-tracing ITSs exist for programming [5],
algebra [6][7], 2D geometry proofs [8], and phy-
sics [9], with widespread usage primarily at the
high school level. This approach mostly requires

that expert problem-solving knowledge for the
domain is known, is fully represented in the
domain knowledge, and is executable by a
solver module. This implies that candidate solu-
tions in these domains can be evaluated exactly
via algorithms.

. Constraint-based ITSs have been developed for
SQL [10] and database entity-relationship mod-
eling [11][12] at the undergraduate level, and
English punctuation [13]. Solutions in these
domains have a formal structure of elements
and relationships that must satisfy a set of
constraints, which are essentially syntactic pat-
terns of domain elements. This approach works
well for domains in which most knowledge is at
the syntactic level.

. Some ITSs use natural language processing
techniques to assess brief essays [14], which can
support domain knowledge at a higher semantic
level.

. Relatively few ITSs have considered visual
domains. An early ITS for medical diagnosis
[15] considered a representation of 2D medical
images, annotated with qualitative labels of the
sizes of image features as clues for diagnosis.
However, it avoided the issue of managing a
general representation of 2D image data.

Semantic technologies
Recent research into semantic technologies has

provided new capabilities for ITSs. Standard onto-
logical representations such as Web Ontology
Language (OWL) permit a more structured organ-
ization of knowledge, which supports classifica-
tion-based reasoning using Description Logic (DL)
reasoners. Rule-based reasoning has been
enhanced by the emergence of rule language stan-
dards, including Semantic Web Rule Language
(SWRL), and rule engines such as Jess. While
previous ITSs have generally used precursors of
these technologies in ad hoc schemes, recent ITSs
are incorporating them directly, with expected
benefits in knowledge sharing and reuse.

Ontologies and ontology-aware authoring tools
have been developed to manage the authoring
process of instructional systems [16][17]. Recently,
a comprehensive ontology of learning, instruction,
and instructional design has been devised that
relates teaching strategies to educational learning
theories, with its own authoring support tool
[18][19].

SYSTEM ARCHITECTURE OF IVRT

Intelligent Visual Reasoning Tutor (IVRT) is an
ITS for visual reasoning in a 3D geometric en-
vironment. It was originally designed in conjunc-
tion with an undergraduate-level course in
engineering graphics, as an intelligent instructional
tool to assist learners in solving missing view
problems, and it has since been integrated success-
fully into that course.
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The system architecture of IVRT is shown in
Fig. 2. The Visual Reasoning Tutor (VRT) module
provides a 3D viewing and modeling environment,
allowing interactive selection and sweeping opera-
tions of 2D faces in 3D space, with transparency
graphics and sound effects to assist visualization.
IVRT's premise is that the solution to a missing
view problem is a 3D solid which may be
constructed one face at a time, in a systematic
and incremental manner, using 3D face-sweeping
operations; and furthermore, that this approach is
generally useful for all missing view problems, i.e.
it represents a portion of human expert knowledge.

IVRT directly addresses the issue of explicit
representation of 3D geometry. Its VRT module
implements a partial boundary representation (B-
rep) [20], which is a robust and mathematically
correct representation of the learner's 3D solution
state. On top of this, it implements geometric
reasoning algorithms, which compute rigorous
and exact results using 3D geometry. Through
judicious use of geometric reasoning, IVRT
provides intelligent critiquing and hint generation,
without needing to define a traditional domain
knowledge base of operations or constraints.
Instead, it is the case that 3D geometry, although
somewhat more complex in its details, is still a
rigorous and well-researched domain, for which
exact representations and algorithms are known.
In essence, this enables us to encode much of the
domain knowledge implicitly through geometric
reasoning, without resorting to laborious enumera-
tion of specific knowledge elements.

VISUAL REASONING TUTOR

We have previously developed an instructional
software system called Visual Reasoning Tutor
(VRT) [21][22], shown in Fig. 3. Two main compo-
nents of the VRT system have been integrated into

the current IVRT system: the Visual Sweeper
module, which provides geometric and graphics
operations for constructing solution solids from
orthographic projections, and the Visual Teacher
module, which provides adaptive evaluation and
critiquing.

VRT is implemented in Visual C++ and
OpenGL on Windows, with Hummingbird
Exceed for X Windows emulation. When the
learner selects a problem, IVRT invokes a stand-
alone instance of VRT to manage that problem-
solving session, which persists until the learner
exits it.

Visual Sweeper
The Visual Sweeper module, shown in Fig. 3 on

the right, implements a boundary representation
that can represent a partially constructed solid in
terms of its topology, including vertices, edges, and
faces, and its geometry, including vertex coordi-
nates and face normal vectors. By convention, the
normal vectors of a solid's faces are defined to
point toward the outside of the solid; hence, face
orientations are significant.

Visual Sweeper provides interactive sweeping
operations [23], which are the inverse operation

Fig. 2. System architecture of IVRT.

Fig. 3. Visual Reasoning Tutor.
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of orthographic projection as applied to each face.
Sweeping operations are an intuitive, visually-
oriented operation to construct 3D solids from
orthographic projections. The learner selects a
sequence of edges in one orthographic view to
form a loop, as shown in Fig. 4(a). Visual Sweeper
constructs a 2D face whose boundary is this loop,
and highlights it in a transparent green color,
shown in Fig. 4(b). This face is then swept inter-
actively by moving the mouse. Throughout each
sweeping operation, the projection of the swept
face always remains consistent with its originating
orthographic view, as shown in Fig. 4(c). By
visually comparing the projection of the swept
face to the other orthographic view, the learner
interactively positions the swept face to satisfy
both views. In this way, the learner incrementally
constructs a solution solid through a sequence of
sweeping operations.

Three kinds of sweeping operations are imple-
mented: face sweep, in which all vertices and edges
are swept; edge sweep, where one selected vertex
remains fixed, and one selected edge is swept
(which implies that the face `̀ stretches'' as neces-
sary to remain consistent with the originating
view), and vertex sweep, in which one selected
edge remains fixed, and a selected vertex is
swept. The edge and vertex sweep operations
allow the construction of slanted faces that are
not orthogonal to one or both orthographic views.

Three additional face-manipulation operations
are implemented. The flip operation negates the
normal vector of a selected face. The construct
command creates a face from an existing loop of
edges in the partially completed solid. This is
needed to create faces that are projected as edges
in both given views, since such faces cannot be
created by sweeping from either given view. The
destruct command deletes an existing face.

Visual Teacher
The Visual Teacher module captures and

critiques the learner's current solution state. It
provides the following services: evaluation of a
partial solution solid, hinting for the next face to
be manipulated, display of the nearest solution

solid (a given problem could have multiple valid
solutions), and calculation of the learner's score.

. The Teacher window, shown in the upper left of
Fig. 3, provides on-demand evaluation of a
learner's solution solid. It applies a geometric
matching procedure, using geometric reasoning,
between the faces of the learner's solid and the
faces of each solution solid, using a weighted
match function that considers faces' distances
and relative angles [24]. This determines the
closest solution solid, and the best matching
between pairs of faces in the learner's solid and
that solution solid. The Teacher window dis-
plays the evaluation using face colors: correct
(green) for paired faces with perfect match
scores, partially correct (yellow) for paired
faces with non-perfect match scores, and incor-
rect (orange) for unpaired faces in the learner's
solid only. A partially correct face is one that
could be made correct with additional opera-
tions.

. The Teacher window can also display a visual
hint for the next face to be created, by showing
that face in blue color, as in Fig. 3, upper left.
We have obtained missing view problem-solving
knowledge from human domain experts for
determining the best next face to manipulate,
given the learner's current solid and the nearest
solution solid. This problem-solving knowledge
is implemented as rules in an embedded instance
of CLIPS [24]. We arrange these rules into a
deterministic procedure for missing view prob-
lem solving, as shown in Table 1. Hint genera-
tion proceeds by checking this procedure from
top down until it identifies a face that is not yet
classified as being correct. Subsequent studies
have shown that some students abuse the hint
mechanism, so we have added a password to
restrict access to it.

. The Solution window, shown in the lower left of
Fig. 3, displays the solution solid that is closest
to the learner's current solid. For each problem,
we pre-compute all possible solution solids off-
line by applying an exhaustive geometric reason-
ing algorithm, and store the set of solutions as
part of the problem data.

(a) (b) (c)

Fig. 4. Face sweep operation in Visual Sweeper.
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. The Teacher module calculates the learner's
score for a problem from the ratio of number
of correct faces to total number of faces of the
closest solution solid, minus penalties for using
commands that indicate a non-ideal solution
sequence, especially the destruct command, or
excessive use of next face hint generation. The
learner can ask for the current score at any time.
When the learner finishes the problem, VRT
calls the Teacher module to calculate the lear-
ner's final score, and returns it to IVRT.

INTELLIGENT VISUAL REASONING
TUTOR

IVRT is a successor system that embeds the
Visual Reasoning Tutor module within an intelli-
gent tutoring system framework [25]. Hence,
results of our earlier studies conducted with
previous versions of the VRT module are carried
over to IVRT itself.

Learning contents and learner model
IVRT defines a set of learning contents consist-

ing of skills, lessons, and problems, and a learner
model that records learners' skill scores and activ-
ity history.

. A lesson is a text or multimedia resource that
presents the core concepts for missing view
visual reasoning, including the orthographic
projection of a solid onto viewing planes, and
the inverse operation of converting the ortho-
graphic projections back to 3D solid faces.

. A problem is an instance of a missing view
problem, consisting of two orthogonal views.
The learner's objective is to create a valid 3D
object that is consistent with both views, using
the Visual Sweeper module.

. A skill is a domain concept or problem-solving
process, which has been identified a priori by the
teacher or domain expert as having significant
pedagogical value, requiring explicit instruction
and assessable expertise. We have identified a set
of 15 skills for the missing view visual reasoning
domain, as shown in Table 2.

A learner's domain competence is measured by the
learner's skill levels, as a set of scores in the interval
[0, 100], plus additional data reflecting the learner's
command history within the Visual Sweeper
module. A new learner begins at 0 score in every
skill. As the learner solves problems, the learner
earns skill points. This causes more advanced
lessons and problems to become available for selec-
tion. The learner's objective is to increase every skill
score to 100, which completes the tutorial.

Table 1. Hint-generating rules for missing view problem solving

Selection rules 1. Create visible faces first (top and front faces).
2. Create hidden faces next (bottom and back faces).
3. Create faces using the construct command last (right faces, then left faces).

Sorting rules 4. Prefer the face that is adjacent to the most correct faces.
5. Prefer the face with most incident edges.
6. Prefer the face whose normal vector contains the most zero components.

The rationale behind rule 6 could be described as: prefer the face with the simplest creation
process. A face whose 3D normal vector contains 2 zero components must be parallel to one of
the orthographic views. Thus, it can be created using face sweep or construct, optionally followed
by flip, which is considered to be the simplest process. If a face's normal vector has only one
zero component, then it is a slanted face, which requires a face sweep + edge sweep (+ optionally
flip). If a face's normal vector has no zero components, then it requires a face sweep + vertex
sweep (+ optionally flip), which is the most challenging process.

Table 2. Skills in Intelligent Visual Reasoning Tutor

# Skill Name Description

1 Simple Loop Handling orthographic views with simple (single) loops only.
2 Multiple Loop Handling orthographic views with multiple loops.
3 Convex Face Identifying and creating convex faces.
4 Non-convex Face Identifying and creating non-convex faces.
5 Parallel Face Creating faces that are perpendicular to two orthographic views.
6 Slanted Face Creating faces that are perpendicular to only one orthographic view.
7 Skew Face Creating faces that are not perpendicular to any orthographic view.
8 Hidden Line Handling orthographic views with hidden (dashed) lines.
9 Face Sweep Skill in applying the face sweep operation.

10 Edge Sweep Skill in applying the edge sweep operation.
11 Vertex Sweep Skill in applying the vertex sweep operation.
12 Flip Skill in applying the flip operation to reverse a face's normal vector.
13 Construct Skill in applying the construct operation to create a face whose projection in both orthographic

views is an edge.
14 Symmetry Handling problems in which the front and top views are the same.
15 Decomposability Skill in applying a divide-and-conquer strategy.
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Learner's Interface
The Learner's Interface provides skill level

display as a set of skill bars, and interactive
selection of lessons and problems based on the
learner's current skill scores, shown in Fig. 5.

When the learner requests the current set of
lessons, a comprehensive list of all lessons is
presented, as shown at the bottom of Fig. 5(a).
Within this list, lessons are color-coded to indicate
the learner's mastery. Green dots indicate relevant
lessons based on the learner's current skill scores,
gray dots indicate lessons that the learner has
already mastered, and white dots represent
advanced lessons whose requirements the learner

has not yet fulfilled. For convenience, the compre-
hensive list of all lessons is always shown, which
allows learners to consult earlier lessons at any
time.

The problem selection window, in Fig. 5(b),
shows the subset of available problems based on
the learner's current skill scores. The learner may
choose any problem within this subset, which
invokes the VRT module.

IVRT's user interface (including VRT's interface
during each problem session) provides a learner-
initiated activity mode only. Furthermore, all
remediation within each VRT problem session is
generated via geometric reasoning, is displayed

(a) Lesson selection and display

(b) Problem selection

Fig. 5. Learner's Interface with skill bars, lesson guidance, and problem selection.
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graphically instead of through text, and is
provided on request only. Hence, IVRT's learning
contents does not need to include a library of text
messages for remediation.

CUSTOMIZATION OF
LEARNING CONTENTS

At a high level of abstraction, learning contents
are composed of a set of elements, organized into a
graph structure that encodes various pedagogical
orderings over these elements. We have formalized
IVRT's learning contents and learner model as
ontologies, using the ontology-based framework
shown in Fig. 6. The teacher or domain expert can
customize the learning contents by editing the
ontology files, using standard ontology tools
including ProteÂgeÂ and OWL.

We briefly describe the major portions of the
learning contents ontology. First, we define a
Node base class to represent a generic learning
element, with three subclasses Skill, Lesson, and
Problem. We enumerate the 15 skills shown in
Table 2 as 15 individuals of the Skill class. Each
Lesson and Problem individual is defined by
several string properties: title string, internal
symbol, and the names of their associated multi-
media or problem-data files.

Next, we define an Edge base class to represent
one edge of the learning contents graph between
two elements. As we must annotate these edges
with various attribute data to encode pedagogical
knowledge, we cannot represent them using OWL
properties, so we have reified them as classes. We
define three subclasses of Edge:

. LessonSkillEdge associates one lesson to one
skill, with one attribute, which is a numeric
interval of scores in that skill. More generally,
each lesson shall provide instruction in 1 or more
skills, as decided by the domain expert, and we
encode these relations as a set of LessonSkil-

lEdges individuals. The domain expert can
define many lessons that cover a given skill, to
give the learner multiple opportunities to acquire
that knowledge. A single lesson can also be used
to describe several skills. The score interval attri-
bute encodes a notion of the complexity level of
the lesson: a low interval indicates a lesson suit-
able for beginners, while a high interval restricts a
lesson to learners at higher levels of mastery.

. ProblemSkillEdge associates one problem to one
skill, with two attributes: a score interval, as for
LessonSkillEdge, and a numeric reward, which a
learner shall earn in this skill by solving this
problem correctly. More generally, each problem
requires the use of 1 or more skills to be solved
successfully, and the domain expert encodes these
as a set of ProblemSkillEdge individuals for each
problem.

. SkillSkillEdge defines a prerequisite relationship
from one skill A to another skill B, with one
attribute, which is a score threshold. If the
learner's score in skill A is greater than or
equal to this threshold, then this prerequisite
relation is satisfied; when all prerequisites to
skill B are satisfied, then skill B is `̀ activated''.

Using this ontology, the domain expert organizes
the learning contents as a lattice structure of
elements, by which the expert can impose a partial
ordering over the possible sequences of instruction.
However, each learner is free to pursue an indivi-
dualized path through the learning contents. In
principle, learners could gravitate toward different
subsets of lessons and problems according to their
individual preferences, receive problem-solving
opportunities involving different subsets of skills,
and thereby earn points in those different skills,
which advances them into different regions of the
learning contents lattice.

IVRT uses a simple learner model consisting of
15 skill scores, a Boolean flag per lesson indicating
whether it has been viewed or not, and a score per
problem indicating the outcome of the learner's

Fig. 6. Framework for ontology-based intelligent tutoring system.
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most recent attempt at solving that problem in
VRT. We also record various other low-level data,
e.g. VRT operations and error counts, and VRT
problem score histories, and these could be incor-
porated into future versions of IVRT's teaching
strategy.

PEDAGOGICAL RULES IN IVRT

The pedagogical teaching strategy determines
the presentation sequence of lessons and problems
based on a learner's skill scores and other history
data. IVRT implements one teaching strategy,
which shows a subset of lessons and problems
based on the learner's current skill scores. Items
that the learner has already mastered, and items
for which the learner is not yet ready, are not
shown. As the learner reads lessons, solves
problems, and earns increases in skill scores, new
lessons and problems will be `̀ activated'', while old
lessons and problems may be considered to be
`̀ mastered'', and are suppressed. In this way, the
domain expert can define a default order for the
presentation of the course material, while still
allowing an adaptive response based on each
learner's actual progress.

We implement this pedagogical strategy using
inference rules. Selected rules are shown in Table 3,
in natural language. Terms used in these rules
represent run-time data fields associated with
learning content elements for the current learner.
This presents an intriguing problem in data

management using ontologies, namely whether
such data fields should be defined within the
learning contents ontology, or within the learner
model. We will explore this issue more thoroughly
in future work.

. A skill has an activeness property, which is true
or false, and zero or more required skills, which
are specified by the SkillSkillEdge individuals.

. A lesson or problem has a visibility property,
which is either true (the lesson or problem is
shown to the learner) or false (hidden). It also
has one or more associated skills, as given by the
LessonSkillEdge and ProblemSkillEdge indivi-
duals described previously.

. A global property of skill satisfaction is defined
by a system predicate, which takes a skill
(including its score) and returns true or false.
The default test compares the score to a numeric
threshold. Each teacher can customize this test.

We have implemented these high-level rules as a
set of approximately 40 detailed rules in our
customized version of Semantic Web Rule
Language (SWRL). Rules are edited using the
ProteÂgeÂ SWRLTab rule editor, shown in Fig. 7,
and are saved in a standard ProteÂgeÂ OWL ontol-
ogy file. We have developed an automatic conver-
sion from our customized SWRL with extension
keywords in ProteÂgeÂ format [26][27] to the Jess rule
engine. The teacher can customize IVRT's teach-
ing strategy by editing this ontology file and
reapplying the conversion (even while IVRT is
running).

Table 3. Selected teaching strategy rules for IVRT

# Description

Rules to Activate Skills 1 For each skill: if it has no required skills, activate this skill.
2a For each skill: if any required skill is not satisfied, deactivate this skill.
2b For each skill: if all required skills are satisfied, activate this skill.

Rules to Show and Hide
Lessons

3a (Default strategy) For each lesson: if all associated skills are active, show it.
3b (Default strategy) For each lesson: if any associated skill is inactive, hide it.
4 (Special strategy) For each lesson: if any associated skill is active and within its score interval,

show it.
Rules to Show and Hide
Problems

5a For each problem: if all associated skills are active and within their score intervals, show it.
5b For each problem: if any associated skill is inactive or outside its score interval, hide it.

Fig. 7. Editing of teaching strategy rules in ProteÂgeÂ SWRLTab.

Y. S. Kim & E. Wang708



The complete IVRT application consists of three
concurrent processes. The Learner's Interface is a
stand-alone application in Visual C++. On start-
up, it executes Jess as a child process, with bidirec-
tional synchronous (blocking) communication
using sockets, and instructs Jess to load the learn-
ing contents ontology and teaching strategy rules
(including any customizations) for missing view
visual reasoning, which bootstraps the teaching
strategies engine. All pedagogical decision-
making is thereafter executed in Jess.

When a learner logs into IVRT, the Learner's
Interface loads the learner's record from XML
data files, displays its skill scores in the skill bars,
and sends the learner's state data to Jess, which
applies the teaching strategy rules to compute the
learner's available lessons and problems. When the
learner requests a list of lessons (problems), the
Learner's Interface queries the Jess module for the
current list, then displays them. When the learner
selects a problem, the Learner's Interface invokes
the VRT module, and blocks until the learner
finishes that problem session and closes the VRT
module. The learner's score from the VRT session
is sent to the Jess module, which updates the
learner's skill scores, lessons, and problems, and
these are written to the learner's XML record.

CONCLUSION AND FUTURE WORK

IVRT is an intelligent tutoring system for visual
reasoning, suitable for use at the undergraduate
level. We have previously conducted several
studies indicating that the VRT module within
IVRT measurably improves learners' visual
reasoning skills for missing view problems [22],
and insofar as VRT is similar across both versions,
we expect that these results are carried over to
IVRT.

As visual reasoning involves cognitive processes
essential in problem solving, learner adaptive and
structured supports of IVRT in developing such
underlying reasoning skills would contribute in
engineering education. It would be desirable that
learner adaptive and structured learning support
for the underlying skills are provided using compu-
ter-based learning systems like IVRT, while many
prototyping activities dealing with physical objects
in real 3D space are also provided to help engin-
eering students develop required visual reasoning
skills.

Advantages of the two-level reasoning architecture
A novel aspect of IVRT is its explicit use of a

two-level reasoning architecture, combining
geometric reasoning and semantic technologies,
while at the same time deliberately maintaining a
separation between them. We see this as a promis-
ing and necessary development to extend ITSs into
domains that are ``complex'', yet are still tractable.
In particular, 3D geometry is a mature and well-
understood branch of mathematics, for which

rigorous and highly optimized representations
and reasoning methods have already been devel-
oped. In contrast, intelligent tutoring is a younger
field that emphasizes adaptiveness, flexibility, and
customizability, and here the state of the art lies
toward knowledge engineering-based approaches
using semantic technologies for learning.

In developing an ITS involving 3D geometry, we
combine the best of both fields of study by using
both reasoning approaches in a hybrid manner,
where each kind of reasoning is applied where it is
most suitable. It would be a disservice to rely on
semantic technologies to implement a geometric
reasoning engine, and thus we see no drawback in
simply maintaining two separate reasoning
modules. We obtain a significant benefit from
this, as can be seen from IVRT's Visual Teacher
module. The specialized power of geometric
reasoning allows us to generate assessments and
guidance hints with essentially no domain know-
ledge base, and only a tiny set of rules, which
stands in sharp contrast to other ITSs. On the
other hand, teaching strategies and learning
contents navigation are best handled using seman-
tic technologies, which exploits the proven techni-
ques from ITS research.

Future enhancements
We plan to enhance numerous aspects of IVRT.

Foremostly, we will expand IVRT's use of seman-
tic technologies.

. IVRT's teaching strategy rules currently imple-
ment a single high-level teaching strategy. We
will implement additional teaching strategies
through an integration with an emerging stand-
ard ontology of learning, which defines many
standard teaching strategies [18]. We will also
add a layer of meta-strategy rules to choose
between multiple teaching strategies.

. Similarly, IVRT's learning contents ontology is
perhaps overly optimized in defining precisely
the set of properties needed to support the
current rule set. We will expand the richness of
the learning contents model to support new fine-
grained reasoning capabilities.

. When we consider IVRT at the grain size of
individual problems, IVRT's guidance and
adaptive support are adequately provided by
geometric reasoning. However, the current
level of feedback is based strictly on the learner's
solution state only, and is not adaptive to the
learner's preferences or other state information.
A plausible approach to overcome this is to
expand VRT's data-logging capabilities, obtain
the learner's fine-grained actions, and relate
these to the eight components of our visual
reasoning model, which are: perception, analy-
sis, interpretation, generation, transformation,
maintenance, internal representation, and exter-
nal representation [28].

. At a higher grain size, we face an issue of
combining the guidance and adaptive support
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across multiple problems, e.g. to implement
scaffolding, fading, and other established teach-
ing strategies in which guidance given in pre-
vious problems influences the generation of
guidance for future ones. We plan to address
these issues through application of semantic
technologies, e.g. by modeling guidance events

explicitly as new elements of our learning con-
tents ontology.

We will also explore ways to diagnose the learner's
preferences and learning styles through their user
interface behavior [29], which also entails an
enhancement of VRT's data-logging facilities.
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