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A simple teaching example of optimization in fluid mechanics is given, where use is made of
Computational Fluid Dynamics (CFD). This was carried out on the basis of the assumption that
students are trained at a basic level in CFD. In the future, automatic optimization procedures will
become very important in design problems. However, it must be emphasized that optimization in
fluid mechanics is mostly not trivial. With automatic optimization, the problem formulation must
be kept within its applicability range. Moreover, with geometric parameter variation, the
(automatic) grid generation and refinement must be appropriate to obtain accurate results.
Furthermore, the accuracy of the applied models in the equations must be in general better than
the gain in optimization function. In order to illustrate these issues to students, an exercise is
compiled using the modeling of double glass windows. The analysis (student assignment) is
performed with the aid of COMSOL 3.4 with MATLAB.
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INTRODUCTION

WITHIN THE FIELD of fluid mechanics, auto-
matic optimization of design using CFD is not very
widespread. Indeed up to present, very often
models had to be tuned to get solutions that are
in line with experiments. Therefore many CFD
solutions were not predictive at all. Thus, the
solutions obtained by means of CFD were used
in two ways, i) to investigate trends when varying a
parameter, without the need to be accurate and ii)
to see what actually can happen in a flow system,
thus to get insight and on the basis of this changing
the design. With the advance of models, numerical
methods and last but not least computing capacity,
a large range of problems can be solved with good
accuracy. Especially in 2-dimensional cases with
low forcing, the accuracy is generally no issue
anymore if one is prepared to invest sufficient
computer capacity. It is still much more difficult
for 3-dimensional problems, and with higher
forcing leading to more non-linear behaviour.
This increase in forcing also implies that one
enters non-stationary solutions and with a further
increase in turbulent conditions. This generally
results in multi-scale problems. Since relatively
simple flow problems can be solved with
sufficient accuracy, we are at the edge of a para-
digm shift in application of CFD, where it can
actually be used for more or less automatic design

purposes. It is important to confront students
already with this shift since they will be the
designers and users of CFD tomorrow. Especially
for multi-physics problems at low forcing, good
packages are available to perform calculations.
COMSOL Multiphysics is such a package that
will be used in demonstrating optimization
problems. This class of problems is also an impor-
tant class since in technology there are many
attempts to miniaturize systems in which some
kind of transfer and/or conversion takes place,
e.g. lab on a chip.

Besides the dynamics of the flow problem, and
therefore i) the dimensionality, ii) temporal and iii)
spatial resolution, also the validity of the applied
governing equations are subject to limitations
within the optimization procedure. For example,
in case of optimization of a fluids velocity of a
compressible medium in some kind of a setup,
constrained to e.g. pressure and viscous losses
together with an additional transfer process (other-
wise trivial solutions arise). In this case, the incom-
pressible Navier±Stokes equations hold, whereas
at higher velocities the compressible version must
be applied. For the latter case, the governing
equations are of a fundamental different mathe-
matical nature, and thus not only the equations
have to be changed but also the solution strategy in
a CFD environment is fundamentally different.
However, it is well known that for Mach numbers
lower than 0.3, flows can be treated as incompres-
sible. This since the Mach number appears in
quadratic form in the dimensionless equations.* Accepted 12 August 2009.
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This means that a 10% error is taken for granted.
This may not be allowed for optimization of
transport systems in which a 1% drag reduction
is a significant gain. In the present example of
natural convection, the validity of the Boussinesq
approach to buoyancy has a similar effect.

Because of the limitations to CFD solutions,
automatic optimization methods have to be
applied with great care and a very critical attitude.
However, optimization methods will become
increasingly more important in the near future.
Thus, the message of the student assignment that is
proposed in the present paper is only partly
about the skills in applying the technique but
for the larger part on interpreting and critical
assessment of the methods and the results. Since
students are intelligent people, teachers probably
need to tell them what to think about, rather then
what to think (agenda setting). This is also much
more effective and an important paradigm in
political sciences related to the influence of mass
media [1], now with a much more positive conno-
tation.

Because of the complexity of CFD and optimi-
zation, a relatively low amount of really relevant
publications can be found in literature. A general
overview is given by Mohammadi and Pironneau
[2], although this is of a more mathematical nature
with respect to optimization, less focusing on
relevant physical applications. A nice and relevant
application concerning mixing, which directly
becomes quite complex, is given by Hertzog et al.
[3]. Focussing on the technique of optimization in
CFD, there is the study of Slawig [4], using
COMSOL as in the present case (COMSOL was
formerly called Femlab). To the author's know-
ledge, there are no classical examples or test
problems for the present context and hence the
present paper is regarded as a contribution to this
issue. For a recent article on teaching basic CFD,
see Fraser et al. [5].

The problem that is put forward for optimiza-
tion studies is the thermal isolation of a window
system, consisting of double glass. These systems
are widely used nowadays and they are very
important in the minimization of energy consump-
tion for buildings and therefore very relevant to
study. There is a long tradition in modeling and
optimization of these systems, but there are many
(especially older) studies that do justice to the
critical assessment as proposed in the beginning
of this introduction. A recent publication with
simulation and the proposition of an alternative
physical design is given in Ismail et al. [6].

In the next sections, a description is given of the
basic problem, the geometry, basic assumptions,
the optimization parameters, and hypotheses
about what will happen and how to setup the
calculations in COMSOL [7]. Then, some
results of basic simulations will be shown and the
assignment to be tackled by students will be
formulated. The paper ends with some conclu-
sions.

PROBLEM DESCRIPTION

Setup and equations
The very basic physical problem is a very simple

description of a double glass window system.
Students should notice that this is already a first
set of assumptions which might falsify the entire
study at the end so that more research is required.
Therefore, also the importance of dimensionless
numbers as frequently used in fluid mechanics
should be a very prominent aspect in teaching. It
is assumed that there are two glass sheets of certain
thicknesses, d1,d2, separated with a gap of some
size, L, containing a fluid. Of course there should
be a certain width, W , and a certain height, H, of
the system of which the first one is ignored on the
basis of the assumption of 2-dimensionality of the
problem and the second one is a parameter that is
subject of investigation. The implicit assumption is
that a system of large lateral extent at relatively
low forcing is considered. Then the flow will be
laminar, steady and 2-dimensional for low forcing.
It is known from theory and observations that for
gradually higher forcing, the first unsteadiness will
still be a solution in the 2-dimensional plane. In the
2-dimensional problem, a hot (inside) and a cold
side (outside) is considered. In the basic form, only
conduction will be considered in the glass sheets
and both convection and conduction will be trea-
ted in the gap space. Boundary conditions are all
no-slip and isothermal at the hot and cold side and
adiabatic everywhere else. At the internal bound-
aries between glass sheets and the gap, continuity
of the heat flux is supposed. A result showing the
basic form of the solution is given in `Results of the
reference problem' section.

It must be noted that the isothermal conditions
are not very representative. Convection heat trans-
fer both at the outside and at the inside must be
taken into account. However, this is a good exer-
cise for students as well in the final assignment. Of
course, the convection cannot be handled in detail
(describing the transport of all instantaneous struc-
tures at the outside and inside). Here, statistical
modeling with an effective heat transfer coefficient
is often used. In that case, the heat flux at the hot
and cold wall is described as a function of the room
and outside temperatures. Of course, for a (statis-
tically) steady state the heat flux at all cross
sections should be equal. This is a property that
will be used later in the estimation of the accuracy
of results or validity of the steady state assumption.
Also radiation is very important and very
frequently coatings are used to obtain a desired
behaviour, not only minimizing the heat flux to the
outside but also maximizing the irradiative trans-
port inside. This is very interesting from a technical
viewpoint but beyond the scope of the present
goals. An example of radiation modeling is
discussed in Ismail and Carlos Salinas [8].

Thus, for the physical description, the Boussi-
nesq approximation will be used, and thus, using
the summation convention, the system of equa-
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tions is given by, mass, momentum and energy
conservation, respectively as:
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with xi and ui the position and velocity vector
respectively, t is the time (but most calculations
will be performed using the assumption that the
solution is stationary, so the terms involving
time will be dropped), p is the pressure, g the
acceleration of gravity, � the density, �ij the Kro-
necker delta (here indicating that buoyancy only
works in the 2nd dimension) and � is the kinematic
viscosity. The thermal diffusivity of heat is given
by �,

� � �

�cp
;

with �, the conduction coefficient and cp the heat
capacity at constant pressure.

The buoyancy force and analysis
Since any system of equations must be used with

care and often assume some constraints, here,
some detail about the final version of the
frequently applied system is presented. In the
present situation, all physical properties are impli-
citly taken at a reference state given at the refer-
ence temperature, T0, except for the density, which
has a local value in the Boussinesq approximation.
Therefore, in the buoyant forcing of the momen-
tum equation, the local density and the reference
value both appear. For small temperature devia-
tions, (T ÿ T0), this can be expressed in terms of
the volumetric expansion coefficient, �*, by:

ÿ �

�0
� ��T ÿ T0� ÿ 1;

based on the ideal gas assumption and constant
(thermodynamic) pressure (hence more specifically
Charles's law that �T � C). However, the defini-
tion of � also allows for descriptions of liquids.
Specifically for gases, the volumetric expansion
coefficient is equal to � � 1=T0. From this exercise
it is clear that T0 can be taken at an arbitrary
reference, but that for best accuracy of the Boussi-
nesq approximation, a representative value for the
final solution is required. By taking out the hydro-
static situation (with zero velocity and constant

density, �0) of the momentum equation, an equa-
tion for the deviatoric pressure p 0 � pÿ ph is
obtained. The solution for the hydrostatic pressure
yields: ph � ps ÿ �0gx2, in which the subscript s
denotes values at the assumed free surface and x2

of which the origin is taken at the surface and with
positive direction opposite to the direction of g.
This results in a momentum equation formulated
as,
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Note here that for consistency, T0 should be
defined at the surface as well, or that the pressure
has to be redefined again!

Now to get some idea about the governing
parameters in the problem, it is important to
non-dimensionalize the problem, to see what
processes are important and how to influence
these. Therefore, one needs to identify dimension-
less quantities, which can be defined quite arbitra-
rily. Here, a balance between convection and
conduction in the energy equation is taken, to
define a velocity scale,

U � �

L
:

This gives a timescale as well, � � L=U � L2=�,
and by using dimensionless quantities indicated by
a superscript asterisk, the following can be written
down: u � Uu�, x � Lx� t � �t�, T ÿ T0 � �TT�
and p0 � �0U2p�, in which a characteristic
temperature difference �T , is assumed, imposed
by the boundary conditions. In this way, the
system of equations becomes,
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with the Prandtl and Rayleigh numbers which are
the two important parameters of the system,

Pr � �

�
;

Ra � g��TL3

��
:

This system can be solved alternatively as well,
with the correct adjustments on the definition of
the length scales and boundary conditions. This is
ideal for systems in which all dimensions change
with the characteristic dimension L. Then, there is
similarity of the solution: if for two systems Pr and
Ra are the same and the geometry is similar then
the solution can be scaled back from the dimen-
sionless solution. However, as will be seen, only a

* The formal definition of the volumetric expansion coeffi-
cient �, which is used, is:
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single length scale will be changed, then one cannot
make use of similarity.

Optimization, hypotheses and procedure
The design of a double glass window system can

be subject to many goals. Besides minimization of
the outgoing heat flux and maximization of the
ingoing heat flux, one might think of minimization
of acoustic energy transfer, maximization of the
mechanical strength and resistance to impact. This
is all under the constraint of minimization of the
associated costs. Here, minimization of the heat
flux will be looked at, either inward or outward,
which depends on the phase during the day and
season and the local climate conditions. So, in
principal, all these conditions have to be consid-
ered. Here, a base case will be taken and variations
of certain parameters are studied. The gap size, L,
is a good object of study and this parameter will be
investigated with respect to the heat flux.

Before starting with CFD calculations and in
order for them to be efficient, it is very useful to
think about the outcome first. Therefore, the study
is started with a short analysis of the problem. In
the basic configuration, air is taken as the medium
in the gap between the glass sheets. Now, one can
argue that having a larger gap size leads to a larger
insulation. However, this is under the condition
that the gas is stagnant. For a non-stagnant flow
there are two important parameters, the Rayleigh
number and the Prandtl number of which the latter
is fixed for a certain medium. Since air is taken as

the medium, only the influence of the Rayleigh
number appears. The Rayleigh number determines
the strength of the flow that is induced by the
buoyancy. Therefore, it also determines the heat
transfer at the glass walls. Now, the length scale
that is incorporated in the Rayleigh number has a
quite strong effect, since it goes with a 3rd power.
So probably the heat transfer decreases with the
gap size al lower values and increases with larger
values. Then, probably, there is an optimal value.

In order to study the optimal situation, the system
can be implemented in COMSOL. For later opti-
mization, it is convenient to use the combination
COMSOL with MATLAB. In the present study,
version 3.4 was used. To that end, a basic setup is
considered with a height of 0.1 m, thicknesses of the
glass windows of 2 mm and gap size of 1 cm and
defined properties for the windows and the fluid.
These properties are given in Table 1, and the
geometry and boundary conditions are shown in
Fig. 1, together with results in the chapter on Basic
results and optimization. To set up the problem in
COMSOL, it is easiest to first use a geometry with
certain dimensions, export it to MATLAB [9] and
then change everything later in MATLAB.

In order to construct the case, COMSOL with
MATLAB has to be started. For the models, one
has to choose both the application modes of
``Incompressible Navier-Stokes'' and ``Convection
and Conduction'' for heat transfer. The best is to
choose the transient versions because these can be
applied at steady state as well. The latter one can
check for unsteadiness by changing the solver
parameters. Then, first the geometry has to be
specified, consisting of 3 rectangles. Boundary
conditions and physical properties have to be
specified in the Physics section. A mesh has to be
initialized in the standard COMSOL way and in
the Solver section, adaptive mesh refinement must
be enabled. Here, 2 refinements are used in a
default way. Furthermore, in constructing the
case, it is important to fix the pressure to a certain
value at a single point. The value itself is not
important for the solution of velocities and
temperature since the governing equations only
contain a pressure gradient. It is just to prevent
ill-conditioning of the system. The resulting basic
MATLAB file is given in appendix A. This file can
be run both in MATLAB and in COMSOL. The
latter can be convenient for making additional
changes in the setup, analyses of the result etc.

First, this test case has to be run to check
whether a converged solution is obtained with a
certain accuracy. Then a parameter variation can

Table 1. Properties of air, glass and problem properties. The hot and cold side have temperatures T0 � dT and T0 ÿ dT respectively

Media properties � kg/m 3 � � �� Pa s cp W/kg K � W/mK
Fluid 1.2 1.7 � 10±5 1006 0.025
Solid 2500 840 1.1

Problem properties g m/s 2 T0 K dT K � � 1=T0 K ±1

9.81 300 20 0.0033

Fig. 1. Basic setup (left) and solution (right) of the temperature
distribution in the window gap (indicated by pseudocolors) and
velocity distribution with vectors. The maximal vector length is

6.2 cm/s.
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be carried out to study the influence of this
parameter with respect to the optimization func-
tion (heat transfer). Each time it must be checked
whether there is an accurate result over the entire
parameter space. To that end, the accuracy is
defined by having a very low value of the error,
", defined as:

" � 2
q1 � q2j j
q2 ÿ q1

;

which is the mean absolute relative difference of
the left (1) and right (2) heat fluxes, q, expressed in
W/m, relative to the mean heat flux,
qm � �q2 ÿ q1�=2*. With the hot side at the left,
the heat flux is from left to right, and therefore, it is
positive. However, the boundary integration in
COMSOL employs a flux normal to the wall
(outside direction). Therefore, at the hot side, the
heat flux is negative, and at the cold side, it is
positive. These integrals can be recognized in the
script in appendix A, as I1 and I2. Note that the
default convergence of COMSOL is used which is
equal to 10±6. In the script in the appendix A it can
be seen that a basic mesh is constructed, with 2
automatic refinements, applying the default refine-
ment method of COMSOL.

BASIC RESULTS AND OPTIMIZATION

Results of the reference problem
For the base case, the stationary solution is

given in Fig. 1. It can be observed that a large
recirculation zone appears in the cavity. A mean
heat flux of qm � 12.5 W/m is found with an
error of " � 5 � 10±5, which seems sufficiently accu-
rate. For a single grid refinement, the heat flux
does not change significantly and the error is only
one order of magnitude higher, which is allowable.
For the basic calculation, the two grid refinements
is on the safe side. Also, application of a method to
calculate unsteady behaviour does not show any
change with time. Of course there would have been
a transient solution, when the system is initialized
with an arbitrary temperature and velocity
field, e.g. �u1�x1; x2; t � 0�; u2 �x1; x2; t � 0�,
T�x1; x2; t � 0�� � �0; 0;T0�. From this basic
calculation, it can be easily seen that with the
conductivity, density and heat capacity of a typical
glass it does not matter what the thickness of it is.
Therefore, only the air layer is responsible for the
heat transfer. This observation supports the
hypothesis that the size of the gap is a parameter
which is of importance in optimizing the system,
the glass thickness is of course of importance for
the mechanical strength and the cost of the system.

A very important aspect of CFD is validation
and verification. The first one involves the compar-
ison with some sort of truth, obtained from a real
physical experiment or other simulations that are
validated themselves. The verification consists of
checking whether a solution is obtained that is
correct for the governing system of equations and
the problem definition. This generally requires a
check of the numerical algorithms and the coding.
Sometimes good results can be obtained for the
wrong reason! This is beyond the scope of the
present paper, and it is considered to be sufficient
with the observation that smooth solutions are
obtained which give heat flux results that are in
the range of values that are observed experimen-
tally as well, although there is the fact that not all
physics is taken into account.

The optimization assignment
Depending on the prior knowledge of the

students, the assignment can include the setting
up of the basic problem, or the MATLAB
dgbasic.m file as in the appendix can be provided.
Also, the formulation of the optimization, con-
straints and the critical assessment of the results
can be the subject of an assignment formulated for
students. At the author's institution, an introduc-
tory course on CFD with COMSOL is requested.
This course comprises first some discretization
exercises for one-dimensional convection-diffusion
problems in MATLAB. Here, Taylor series in
space and time are introduced to arrive at discrete
numerical schemes. The Euler forward, Euler
backward and Crank-Nicholson methods are trea-
ted to discuss the issues of accuracy and stability.
The same problem is then treated in COMSOL,
after which setups of fluid mechanic basic
problems are treated. To be specific i) stationary
entrance flow in a channel and in a pipe, ii)
unsteady von KaÂrmaÂn street behind a cylinder,
iii) turbulent mixing of two passive markers in a
T-junction with different angles of connection (this
is based on turbulence modeling using the standard
k-� turbulence model), iv) compressible Euler flow
over a wing as function of the angle of attack and
v) natural convection flow in a differentially
heated cavity. In this sense, setting up of the
present problem is a smooth continuation of
what they learned.

The paper continues with the optimization of
the gap size and the solutions that will be encoun-
tered. The richness in the results will provide
enough space for a critical assessment and ways
of continuing the investigation. This can, there-
fore, also be left to the imagination of the students.

In the MATLAB script for COMSOL (appendix
A), one can easily add a loop in which the gap size
is varied. Then, results can be stored as function of
the gap size and investigated afterwards. In this
way, a very important result like the heat flux and
accuracy as function of gap size can be evaluated.
Such a result is displayed in Fig. 2, where the gap
size is varied from 1 to 2 mm with a step size of 1

* Note that the heat flux dimension is per meter in the third
direction. It would be even more convenient to define the mean
heat flux over the height as well, if one wants to study the effect
of the window height on the performance, which would be an
important investigation in the present example.
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mm. It can be observed clearly that the heat flux
decreases with the gap size. However, starting at a
gap size of 10 mm, the decrease is levelled of and
there is almost no gain anymore. Also, it can be
observed that there are some irregularities, speci-
fically at 13, 14, 15, 17, 18 and 19 mm. At these
values, also the error is relatively high and it was
observed that no convergence was reported by
MATLAB. So, these solutions are not valid.
Looking a little closer to Fig. 2, it seems that a
minimum is present at around 10±11 mm. Now,
one can try to find the optimal situation by
refining the step size and start at a gap size
below the optimal value. Also one might want to
know what is happening at the unconverged
points. How does the unconverged solution look
like? Should the grid be more refined in these

points? Or is there an unsteady solution at these
points, which would be remarkable, since there is a
stable accurate solution at a gap of 16 mm?

One might want to have a look at the gap size at
which the error is largest, L � 15 mm. It is found
that for this situation, the initial mesh is too coarse
to find a first solution. Therefore, COMSOL can
not perform the subsequent grid refinements. This
is the case for all the cases in which no convergence
could be found. Therefore, the outcomes in Fig. 2
for these cases are outcomes defined at the initial
coarse grid. In principle, one would like to have a
less strict convergence requirement for the coarse
grid, and with the adaptive refinement of the grid
also this requirement should decrease. In order to
find a solution, a calculation was started at a
refined grid and performed only a single grid
refinement to obtain results that can be compared
to the reference case and all other converged
solutions. For this situation, the counterpart of
Fig. 1 is displayed in Fig. 3, for the unconverged
coarse grid case, the converged refined grid case
and the (regularly) converged L � 16 mm case.
Here, it can be observed that a solution with
marginal differences can be obtained for cases
with marginal changes in gap size, as is expected.

An additional analysis can be performed with
respect to the hypotheses of `Optimization,
hypotheses and procedure' section. The question
was whether the heat loss as function of the gap
size would behave linear or at another rate due to
the increasing degree of freedom with gap size and
the associated Rayleigh number which scales with
the gap size to the third power. To investigate this
issue, a plot was made on a log-log scale to identify
the behaviour. This is given in Fig. 4. From this
figure, it can be clearly seen that at low gap sizes,
there is a linear decrease of the heat flux as
supported by the correlation with the line that is
drawn. Indeed for small gap size, L � 8 mm, the
velocities go down and asymptotically a stagnant
air layer is approached. For larger gap size, the
decrease levels of very quickly and a small increase
can be observed. As stated before, an optimal
value of the gap size is at about 10 mm.

Fig. 2. Heat flux (o) and error (x) as function of the gap size.

Fig. 3. Results for gap size of 15 (left two figures) and 16 mm
(right), left unconverged coarse grid solution, (heat flux is 10.4

W/m, max. velocity is 13.1 cm/s, error is 0.0042), middle
converged solution at comparable grid (heat flux is 13.2 W/m,
max. velocity is 10.0 cm/s, error is 2�10±5), right: 16 mm case
(heat flux is 10.2 W/m, max velocity is 10.2 cm/s and error is

1.6�10±4). Colorbar as in Fig. 1.
Fig. 4. Comparison of the heat flux found with COMSOL (o)

with a qm � cLÿ1 behaviour (solid line, c � 0:1 W).
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Possible extensions
The analysis, as started here, could be extended

much further. The height could be varied as well as
the material properties of the glass and the fluid.
As an exercise, a suggestion would be to see what
improvements can be expected when using argon
or water (the latter for the sake of argument) as a
fluid. See for properties Table 2. Moreover, more
realistic temperature differences could be applied.
This all potentially leads to different Rayleigh and
Prandtl numbers, eventually leading to unsteady
behaviour. Especially for low Prandtl numbers,
higher mesh resolutions are required. Also, the
scaling properties and related to that the accuracy
could be studied by solving the dimensionless
system of equations.

When progressing to more advanced methods,
one could make more extensive use of optimization
theory, although even more care has to be taken
with the interpretation of results then was the case
up to here. For that matter, the optimization
toolbox of MATLAB can be used. For finding
the minimum of a constrained nonlinear multi-

variable function, as what is presently the case, the
tool fmincon might be a very interesting option for
further investigations.

CONCLUSIONS

In the present paper, optimization is considered
for problems in fluid dynamics from a perspective of
teaching students. A non-trivial example involving
the isolation of a double glass window system, that
can be used in an educational environment, is partly
worked out. The example approaches the level of
contemporary research in the associated field.

It is concluded that optimization will become a
very important tool in modern optimal design
technology. However, at all levels of the design
analysis, care has to be taken about the assump-
tions and methods that are used as function of the
parameters that are changed. This ranges from the
validity of the physical modeling to the numerical
implementation in all their aspects.
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APPENDIX A: OUTPUT OF BASIC COMSOL FILE TO MATLAB

% COMSOL Multiphysics Model M-file dgbas.m
% Generated by COMSOL 3.4 (COMSOL 3.4.0.248, $Date: 2007/10/10 16:07:51 $)

flclear fem

% COMSOL version
clear vrsn
vrsn.name = `COMSOL 3.4';
vrsn.ext = `';
vrsn.major = 0;

Table 2. Properties of argon and water

Media properties � kg/m3 � � �� Pa s cp W/kg K � W/mK � K ±1

Argon 1.45 2:3 � 10ÿ5 520 0.018 0.0033
Water 996 8:94 � 10ÿ4 4179 0.58 2:8 � 10ÿ4
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vrsn.build = 248;
vrsn.rcs = `$Name: $';
vrsn.date = `$Date: 2007/10/10 16:07:51 $';
fem.version = vrsn;

% Geometry
g1=rect2(0.0020,0.1,'base','corner','pos',[0,0]);
[g2]=geomcopy({g1});
g2=move(g2,[0.012,0]);
g3=rect2(0.01,0.1,'base','corner','pos',[0.0020,0]);

% Analyzed geometry
clear s
s.objs={g1,g2,g3};
s.name={'R1','R2','R3'};
s.tags={'g1','g2','g3'};

fem.draw=struct('s',s);
fem.geom=geomcsg(fem);

% Constants
fem.const = {'rhoflu','1.2','kflu','0.025','cpflu','1006','etaflu','1.7e-5', ...
`rhosol','2500','ksol','1.1','cpsol','840','g','9.81','T0','300', ...
`dT','20','beta','1/T0'};

% Initialize mesh
fem.mesh=meshinit(fem,'hauto',5);

% (Default values are not included)

% Application mode 1
clear appl
appl.mode.class = `FlNavierStokes';
appl.gporder = {4,2};
appl.cporder = {2,1};
appl.assignsuffix = `_ns';
clear prop
prop.analysis='static';
appl.prop = prop;
clear pnt
pnt.pnton = {0,1};
pnt.ind = [1,1,2,1,1,1,1,1];
appl.pnt = pnt;
clear bnd
bnd.type = {'int','walltype'};
bnd.ind = [1,1,1,2,2,2,2,1,1,1];
appl.bnd = bnd;
clear equ
equ.cporder = {{1;1;2}};
equ.eta = {1,'etaflu'};
equ.gporder = {{1;1;2}};
equ.usage = {0,1};
equ.F_y = {0,'g*beta*(T-T0)'};
equ.rho = {1,'rhoflu'};
equ.ind = [1,2,1];
appl.equ = equ;
fem.appl{1} = appl;

% Application mode 2
clear appl
appl.mode.class = `FlConvCond';
appl.assignsuffix = `_cc';
clear prop
prop.analysis='static';
clear weakconstr
weakconstr.value = `off';
weakconstr.dim = {'lm4'};
prop.weakconstr = weakconstr;
appl.prop = prop;
clear bnd
bnd.type = {'T','q0','cont','T'};
bnd.T0 = {'T0+dT',0,0,'T0-dT'};
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bnd.ind = [1,2,2,3,2,2,3,2,2,4];
appl.bnd = bnd;
clear equ
equ.C = {'cpsol','cpflu'};
equ.rho = {'rhosol','rhoflu'};
equ.k = {'ksol','kflu'};
equ.v = {0,'v'};
equ.u = {0,'u'};
equ.ind = [1,2,1];
appl.equ = equ;
fem.appl{2} = appl;
fem.frame = {'ref'};
fem.border = 1;
clear units;
units.basesystem = `SI';
fem.units = units;

% ODE Settings
clear ode
clear units;
units.basesystem = `SI';
ode.units = units;
fem.ode = ode;
% Multiphysics
fem = multiphysics(fem);

% Extend mesh
fem.xmesh = meshextend(fem);

% Solve problem
fem = adaption(fem,'blocksize',1000,'solcomp',{'v','T','u','p'},...
'outcomp',{'v','T','u','p'},'hnlin','on','solver','stationary', ...
`l2scale',[1],'l2staborder',[2],'eigselect',[1], ...
`maxt',10000000,'ngen',2,'resorder',[0],'rmethod','longest', ...
`tppar',1.7,'linsolver','pardiso','uscale','none', ...
`geomnum',1);

% Save current fem structure for restart purposes
fem0=fem;

% Plot solution
postplot(fem,'tridata',{'T','cont','internal','unit','K'},'trimap','jet(1024)',

...
`arrowdata',{'u','v'},'arrowxspacing',15,'arrowyspacing',50, ...
`arrowtype','arrow','arrowstyle','proportional','arrowcolor',[0.0,0.0,0.0], ...
`title','Surface: Temperature [K] Arrow: Velocity field');

% Integrate
I1=postint(fem,'ntflux_T_cc','unit','W/m','dl',[1],'edim',1)

% Integrate
I2=postint(fem,'ntflux_T_cc','unit','W/m','dl',[10],'edim',1)
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