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A course in computational fluid dynamics (CFD) at the senior or first-year-graduate levels has
traditionally emphasized an understanding of the numerical techniques involved, i.e., finite
difference, finite volume, or finite elements, followed by a project in which the student writes his
or her own Navier±Stokes solver for a simple flow geometry. The educational pedagogy of this
format is that the only way one could truly learn and appreciate CFD was to work through the
underlying nuts-and-bolts of these respective methods. The evolution of CFD software over the last
twenty years has brought us to the point where a challenge to this traditional pedagogy is in order.
In this paper, a CFD course given during the Spring 2007 term at the Georgia Institute of
Technology will be described. The course was based on the idea that a tool to successfully solve the
Navier±Stokes and continuity equations is available, called COMSOL Multiphysics. The course
involved the exploration of a number of fluid flows with the aim of developing a deep understanding
of the underlying fluid mechanical mechanisms involved in the flow. Along the way, the student
learned about the finite-element method used in the software, how to properly pose the underlying
mathematical model for the fluid flow, and about the limitations of the modeling process itself.
Specific examples from the course that illustrate these ideas are presented and discussed.
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INTRODUCTION

THE HISTORY OF HUMANKIND is full of
examples in which technology produces a new
way of performing a task that saves time, effort,
or money or all of these. The old way is forgotten
or just ignored by most people. For example, 150
years ago farmers would plow their fields using a
horse-drawn plow. This was back-breaking work
for the farmer, as well as the horse, and it took
many hours to plow even a small field. When
tractors fitted with plowing tools and internal
combustion engines were designed for this task, it
was easy to see the benefit of this new technology.
Today, these tools are a universally accepted part
of farming life.

Technological progress has also been made in the
area of mathematics. The recording and manipula-
tion of numbers has gone through many stages,
from counting fingers and toes to making marks on
clay tablets, the abacus, mechanical adding
machines, and finally electronic computers.
Today, computers are used to automate many
routine mathematical computations without much
thought by the user. We call this type of activity
computer-assisted mathematics (CAM). For ex-
ample, consider the following MATLAB [1]
command to plot the sine function for four periods:

>> fplot(@sin, [0 8*pi -2 2]);

The result, shown in Fig. 1, allows one to easily
visualize the sine function and thus to note some its
well-known characteristics.

In another example, consider the problem of
finding the length of rope needed to run from the
top of a tree a distance H above the ground out to
a point on the ground such that the rope makes an
angle � with the horizontal as shown in Fig. 2.

Any student of trigonometry knows that the
solution is given by the formula

L � H= sin���
So, if H � 15 m and � � 208, most people today
would pull out a calculator and compute the rope
length to be 43.86 m.

The point of these two examples is to recognize
that the computation of the sine function is done
by a computer using an algorithm that you trust to
be accurate. At first you may construct tests for
your computer to make sure you are getting
correct answers. However, later on, when you
have developed confidence in this tool, you
concentrate on the more immediate problem,
such as how much rope should you purchase?
This is computer-assisted mathematics.

Moving up a level, consider the engineering
problem of finding the temperature distribution
along a pin fin 10 cm in length whose base is held
at a temperature of 1200 K and that radiates to an
enclosure with a temperature of 300 K. This
conduction/radiation heat transfer problem is* Accepted 24 August 2009.
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governed by the following nonlinear differential
equation and boundary conditions

Here, T, L, P, Ac, k, and � are the pin tempera-
ture, length, perimeter, cross-sectional area, ther-
mal conductivity, and emisivity, � is the Stefan±
Boltzmann constant, and Tamb is the temperature
of the enclosure.

ÿ�kTx�x �
P

Ac
���T4 ÿ T4

amb� � 0;

T�0� � 1200 K; ÿkTx�L� � ���T4 ÿ T4
amb�;

Tamb � 300 K:

The solution to this problem is easily given by the
following MATLAB command [2],

>> sol � bvp4c(@radpinode, @radpinbc,
solinit);

where radpinode and radpinbc are MATLAB

functions that define the ordinary differential
equation and boundary conditions and solinit
is a structure containing the initial guess for the
solution. For a silicon pin 5 mm in diameter with
an emissivity of one, the solution is plotted in
Fig. 3.

An engineer given this problem would make sure
that he or she understands how to use the
MATLAB function bvp4c [2], how to generate
the three arguments to the function, and that the
arguments are constructed correctly. After a few
checks to make sure this is the case, she would
concentrate on the solution and do the studies
necessary to inform the radiator design under
consideration. The engineer has done CAM.

One concept involved in CAM is known as
abstraction. This is an important concept in
computer science and it is defined as hiding the
lower-level details of an algorithm in order to
emphasize the algorithm's higher-level structure.
The lower-level details are not forgotten, but they
are not needed to understand the algorithm at the
higher level. This is exactly what is going on in
CAM. It is not that the computational details of
the ordinary differential equation in the above
example are not important. Rather, they are not
needed in order to appreciate the behavior of the
system modeled by the differential equation. The
engineer needs to acquire knowledge about the

Fig. 3. The temperature distribution of a pin-fin radiator

Fig. 1. A MATLAB plot of the sine function.

Fig. 2. The rope problem.
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heat transfer behavior of the system in order to
address his design problem. Detailed knowledge
about how the differential equation was solved is
not necessary for this task.

Abstraction is often confused with the concept
of a black box. A black box is a process (possibly
unknown) that produces an output based on a
given input. It is not a good thing when an
engineer is described as ` . . . using a computer
like a black box . . .' Typically, this implies that the
computer output was accepted without question.
This may be a sign of incompetence or at least of
laziness or negligence. With abstraction, you
concentrate on the details of the work that are
most important. For example, in the pin-fin prob-
lem it is important to ask whether the base
temperature of the fin is truly fixed or whether
radiation is the major or only mechanism of heat
transfer. With the exception of accuracy, the ques-
tion of how the first or second derivative of the
temperature is computed will not produce any
knowledge leading to a better understanding of
the physics or to an improved design.

It seems fair to say that for systems of linear
and/or nonlinear algebraic equations or for
systems of ordinary differential equations compu-
ter-assisted mathematics is here. Once the system is
defined, software like MATLAB [1] or Mathema-
tica [3] can solve the system to a given accuracy
using very sophisticated built-in algorithms that
are executed with a single command. For systems
of partial differential equations, CAM is close.
Systems of two-dimensional PDEs are easily
solved and visualized. Time-dependent and three-
dimensional PDEs are still a challenge, although
this seems to be mostly an issue of execution time
rather than algorithm development.

A senior-level elective course in computational
fluid dynamics (CFD) was given in the School of
Mechanical Engineering at Georgia Tech in Spring
1998. The prevailing educational pedagogy during
the development of this course was that the only
way to really learn how to do CFD was to write the
code yourself. If you didn't, you were just using
someone else's code as a black box and your results
would be viewed with the suspicion of being
inaccurate or completely untrustworthy. Because
of this view, part of this CFD course concentrated
on the finite volume numerical technique. Lectures
were devoted to describing the basic method, ways
of meshing the domain, pressure±velocity coupling
issues, various kinds of finite differencing, artificial
diffusion, etc. Students were given the task of
writing parts of a finite-volume Navier±Stokes
solver in order to thoroughly learn this numerical
method. Afterwards, the students used the
commercial finite-volume code FLUENT [4] to
solve some simple fluid mechanics problems.

By spring 2007, the field of computational fluid
dynamics had matured significantly and computer
processing speeds were more than thirty times
faster. Using the ideas of CAM and abstraction,
the mechanical engineering CFD course was rede-

veloped to abstract some of the numerical issues
involved with the computations and to use the time
saved to explore and understand fluid flows in
more complex geometries and with more complex
physics than those seen in elementary fluid
dynamics courses. One of the primary reasons for
the success of this new version of the course was
the use of the software developed by COMSOL
Multiphysics [5]. This integrated software made
the generation, solution, and visualization of
systems of coupled PDEs so easy that the student
could easily concentrate on the flow rather than
the numerical methods.

The remainder of this paper is organized as
follows. In the next section, the Georgia Tech
CFD course is described in detail. The core of
the course is seven teaching labs performed indi-
vidually by the students. Examples of these labs
are presented and discussed in the next five
sections. Students also did individual CFD
projects and a few examples of these projects are
described in the next section. In the final section,
the CFD course is summarized from the perspec-
tives of the student and the professor. Suggestions
for future course development are also given.

COURSE DESCRIPTION

The course ME 4342 Computational Fluid
Dynamics [6] at Georgia Tech's School of Mechan-
ical Engineering is a senior- or first-year graduate-
level elective. An integral part of the course is the
use of the Comsol Multiphysics software for the
solution of the governing partial differential equa-
tions of fluid mechanics. The integrated nature and
ease of use of this software allowed the course
development to abstract the algorithmic details of
the numerical solution and to concentrate instead
on the use of the software to explore the behavior
and physics of the underlying fluid dynamics.
CAM was employed as much as possible, but its
limits were explored. It also became possible with
this approach to explore the differences between
results from model problems and real-world beha-
vior. This was an interesting part of the course for
the students because it allowed them to see the
differences between various modeling assump-
tions. Thus, disagreement between numerical and
experimental results could be partially explained
without resorting to unsupported statements about
numerical or experimental error. One final goal of
the course was to instill an appreciation that even
with numerical abstraction the software could not
be treated as a black box. The underlying equa-
tions are nonlinear and multiple solutions are
possible. Students were able to see this kind of
behavior directly from their own solutions.

The course was designed as a three-credit-hour
one-semester course. Each week had either two
classroom lectures and one hour in the computer
laboratory working with the software or one
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lecture and two lab hours. Students first worked
on a COMSOL tutorial and then on seven CFD
labs each lasting from one to two weeks. There was
also a month-long student project and about two
weeks of lectures on the fundamentals of the finite-
element method. Students were expected to work
an additional ten to fifteen hours a week on the
CFD labs or their project.

The seven CFD labs are the core of the course.
They are described briefly in the following list.
More detailed discussions of five of these labs are
located in the five sections below.

Lab 0: COMSOL Multiphysics Minicourse [7]
Length: 1 week
This is the standard COMSOL Multiphy-
sics tutorial used with permission by
COMSOL. The geometry is an aluminum
film deposited on a silicon substrate. The
simulated phenomena are steady state
electrical conduction currents with heat
generation and heat conduction in both
substances. The model investigates the
temperature in the device after the current
is applied. Students learn to create the
geometry in COMSOL, to apply the
proper PDEs and boundary conditions
for the physics involved, and then to
mesh, solve, and visualize the results.

Lab 1: Channel Entrance Length
Length: 2 weeks
Students formulate and solve for the
entrance flow of an incompressible fluid
in a two-dimensional channel. The accu-
racy of the solution is examined and the
fully developed flow profile is compared
with the exact result [8]. A parametric
study is done in which the entrance
length is determined as a function of the
various flow parameters, such as channel
thickness, fluid properties, and fluid flow
rate. The student then compares his or her
results to an accepted experimental/
numerical correlation [9].

Lab 2: Boundary Layer Development on a Flat
Plate
Length: 1 week
This lab is an examination of the flow
development along a sharp-edged flat
plate. Students examine the flow far
from the leading edge of the plate and
compare their results with the Blasius
boundary-layer solution [10]. The pressure
singularity that forms near the sharp lead-
ing edge is also explored. One of its
consequences is a small overshoot in the
horizontal velocity in the boundary layer
near the leading edge of the plate.
Students explore whether the velocity
overshoot is real or an artifact of the
modeling process and whether or not it
could be seen in a laboratory experiment.

Lab 3: Flow in Microchannels
Length: 1.5 weeks
Students build and solve a three-dimen-
sional flow model for two distinct sections
of a long serpentine channel in a biosensor
application: a straight section and a
section with a 1808 bend. The flow fields
are examined at two different flow rates.
At the higher flow rate, spiraling second-
ary flows occur. Students are challenged
to explain their observations of this flow
using fundamental physical mechanisms
from fluid mechanics.

Lab 4: Two-Dimensional Flow Past a Circular
Cylinder
Length: 1 week
In this lab, students consider two-dimen-
sional, steady and unsteady flows over a
circular cylinder. The development of
bound vortices in the wake and the onset
of the von KaÂrmaÂn vortex street [11, 12]
are examined. In the last part of the lab,
the student spins the cylinder about its
centerline and sees what happens.

Lab 5: Potential Flow
Length: 2 weeks
This lab is an exploration of various
inviscid potential flows. Simple potential
flow solutions are visualized and super-
position is used to produce more compli-
cated flows, including the potential flow
past a spinning cylinder. The velocity and
pressure fields are visualized and exam-
ined. The last model considered is the flow
in a two-dimensional venturi, which is
solved numerically (not using superposi-
tion). The results are compared with a
one-dimensional theory [13] and the
student is challenged to discover the
source of the discrepancy between the two.

Lab 6: Thermal Convection
Length: 1.5 weeks
This is the first multiphysics fluid flow
problem of the course. Students combine
the Navier±Stokes equations, continuity,
and the conduction±convection heat
transfer equation with temperature-
dependent material properties to examine
the flow in a two-dimensional cavity
heated from the side and the flow in a
liquid layer heated from below. The
physics behind thermal convection is
explored in the side-heating geometry.
Multiple solutions due to thermal instabil-
ities are explored in the liquid-layer
geometry heated from below [14, 15].

Lab 7: Turbulent Flow
Length: 2 weeks
Students examine turbulent pipe flow and
the use of a high-speed impinging jet for
cooling a heated surface. These problems
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use the k±� turbulence equations to solve
for the axisymmetric, time-averaged velo-
city, pressure, and temperature fields. This
lab shows students the difficulties involved
in solving these equations and also their
limitations in predicting real turbulent
flows.

A laboratory guide was prepared for each of the
seven CFD labs. Each guide introduced its parti-
cular fluid flow problem, helped the student build
and solve the numerical model, directed the
exploration of the flow field, and asked questions
about the flow that were answered in the student's
lab report. The lab guides followed the same
format and style as the COMSOL Multiphysics
Minicourse [7] that the students used in the first
week of the course. Generally, there were three
sections in a lab guide. First, there was a brief
introduction that discussed the basic problem and
hinted at what kind of flow physics would be
learned.

The second section was a discussion of the flow
problem and the numerical model that would be
used to explore and understand the flow. First, the
background and history of the flow problem was
discussed. This gave the student a better idea of
how the problem fitted in within the field of
engineering and why it was important to under-
stand the physics that was involved. Then the
geometry for the flow model was presented. Any
assumptions used to simplify the geometry were
clearly identified. The fluid domains and the
appropriate boundary conditions were presented.
Anything that would need to be checked, like the
extent of the far field domain for external flows,
was highlighted. The last part of this section was a
presentation of the flow equations that were to be
solved. For the first few labs, the equations were
presented and solved in dimensional form. After
that, non-dimensional equations were used. In
these later cases, the guide showed the student
how the equations were scaled and normalized
and derived the appropriate dimensionless groups.

The last section of a lab guide used a tutorial
style that led the student step by step through the
process of model building, solution, and explora-
tion. In the first part of this section, the guide
instructed the student how to choose the appro-
priate COMSOL application mode for the physics
of the problem, create the geometry for the flow
model, set the material properties for flow domains
and solid domains (if present), and set the appro-
priate boundary conditions on the geometry. This
is a critical section for two reasons. On a pragmatic
level, if the student made a mistake somewhere in
this part, subsequent steps or instructions may not
work or even make sense. Even if the model-
building process was completed, a mistake in the
model may cause failure of convergence to a
solution or certain features in the model referenced
in post-processing may not be available. This
section had to be carefully written and checked

beforehand by the instructor. It was very helpful to
include images of the geometry as it was being
created and images of the dialog boxes from the
COMSOL interface showing the proper settings
that were used. On a more conceptual level, this
part of the lab is where the correspondence of the
model problem to the real-world system is speci-
fied. Simplifications and assumptions about the
geometry, the physics, coupling between different
physical processes, and appropriate boundary
conditions are all presented here. Even if the
numerical model is solved to machine accuracy
everywhere in the domain with every flow feature
fully resolved, the results may be useless if the
model built in this section is flawed.

Once the model is built, the guide led the student
through the process of meshing the domains,
selecting solver parameters, if needed, and then
solving the numerical problem. The proper mesh is
important for obtaining an accurate solution of the
model. The student was usually instructed to build
a mesh with enough spatial density to get an initial
converged solution. The steps needed to ensure an
accurate solution were done in the last part of this
section. The solver parameters used in these labs
were almost always the default parameters. These
worked well for most of the labs. However, in a
few situations a different solver needed to be used
because of computer memory limits or the auto-
matic scaling of the equations needed to be modi-
fied in order to get a converged solution. The
reasons for these problems when they arose were
carefully explained. This section is where most of
the abstraction of the mathematics was done. One
can envisage a time when solution algorithms have
evolved to where accurate and fully resolved solu-
tions of the model problem are always found, if
present. When this time occurs, this entire section
could be replaced by a single button marked Solve.

The last part of the third section of the lab is the
heart of the course. Students are asked to visualize
and post-process the numerical solution. The first
thing that was done in every lab was to verify the
quality of the solution. Mesh studies were done to
ensure mesh independence of the result, the
domain was extended (for external flows) to
ensure that this does not alter the solution, and
sometimes different boundary conditions were
used to see how these influenced the flow. The
students were asked in several labs to verify that
simple control volume balances of mass, momen-
tum, and energy were satisfied by their model or to
compare their results to published data, especially
to experimental results if available.

Once the student has performed all of the checks
needed to ensure the accuracy and quality of their
numerical solution, the guide directed the student
to explore the flow. Sometimes the directions were
explicit. For example, in the first lab on channel
flow the student was asked to plot the longitudinal
velocity profile at several locations along the
channel and to compare the results to show the
evolution of the flow to fully developed conditions.
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At other times the directions were deliberately
vague. In the microfluidics lab, the student is
only asked to examine the flow in the 1808 bend
in the microchannel at two different flow rates and
to describe any qualitative differences. A bit later,
they are asked to describe the physical mechanisms
for any flow characteristics that are found, espe-
cially if they are unusual. Such vague instructions
encourage the student to explore the flow using
their own insights and skills with the software
tools. When they are truly interested in finding
some way to visualize a particular flow feature,
they are often more motivated to learn new tools
for this purpose or to find more creative ways to
use the tools they do know. By the end of the
course, the students had experience using almost
all of the available flow-visualization tools. This
includes the generation of time-based or para-
meter-based movies using the transient or para-
metric solver.

When a more organized path of exploration is
needed, the lab guide described where and what to
look for so that the student could see the flow
features of interest and examine them to the
desired level of detail. For example, in the lab for
the flow past a circular cylinder the free stream
velocity was set to specific values so that the
student could examine a low Reynolds number
flow, the appearance of bound vortices in the
wake of the cylinder, the growth of the bound
vortices, and finally the instability of this
symmetric flow to time-dependent vortex shed-
ding.

As the student progressed through the course,
the level of detail in the lab guides was reduced.
Whenever a new feature or tool in COMSOL was
used to perform some task, the guide described
how to perform the task with complete step-by-
step instructions. The next time the same feature or
tool was used to perform a similar task, most of
the detailed instructions about the tool or feature
were omitted and only the specifics of the task were
described. This made the process of writing the
guide less tedious and also made following the
guide easier for the student. Easier, this is, if they
remembered how to use that particular software
feature or tool.

It is important that someone who is very famil-
iar with the COMSOL software, either the instruc-
tor or a competent teaching assistant, is present in
the computer lab during the times when the
students work on the lab. Students have many
questions related to the use of the software
during this time. The errors that occur are tremen-
dously varied, but most can be traced to not
following the lab guide well enough. However,
uncovering the source of such errors is very
difficult, as any computer-support person can tell
you. If the student gets stuck and frustrated during
the lab, particularly if the error is traced back to an
error in the lab guide, they are not happy and they
waste too much time with the software rather than
exploring the flow.

To conclude the lab, each student was required
to write a report. The format was much like a
research paper for publication. The report
included an introduction of the flow problem and
a short discussion of the basic flow equations and
boundary conditions. Then the data collected to
verify the quality of their solution were presented.
The bulk of the report included the answers to the
questions posed in the lab guide. At the end, each
student was asked to include any suggestions for
improvement and to state how much time they
spent on the lab. This information was very valu-
able in structuring subsequent labs. These reports
were time consuming for the student to write and
the instructor to grade, but it gave the students
important practice in communicating the observed
fluid physics in meaningful engineering terms.

The class lectures that accompanied each CFD
lab were straightforward. At the beginning of the
lab, the flow problem was discussed and modeling
issues that would become important for that
particular lab were identified. When this discussion
was completed, students were released to the
computer lab to start work. Near the end of the
time allocated for each CFD lab there was a lecture
and class discussion on the fluid mechanics that
was being investigated. If an exact solution for the
problem was available, as in a channel flow [8] or
the Blasius boundary layer [10], it was presented
and discussed. Any experimental or numerical
results from the literature that were used for
comparison were discussed, such as the channel
entry length correlation [9], the von KaÂrmaÂn
vortex street [11], or the instability of a liquid
layer heated from below [14, 15]. And, of course,
the flow physics being examined was discussed.
Students asked a lot of questions during this
lecture and discussion.

The final component of the course was about
two weeks of lectures on the fundamentals of the
finite-element method. There were two main
reasons for these lectures. First, proper mesh
resolution is still an important aspect of finding
high quality solutions of the governing partial
differential equations. Designing a good mesh
means knowing how the mesh interacts with the
underlying finite-element approximations of the
solution. Secondly, the weak form of the finite-
element solution is a concept that is used exten-
sively in the COMSOL software. Some knowledge
of the weak solution is needed to make use of
several advanced features in COMSOL and to
enable the coupling of different physics into a
model using weak-form application modes.

The finite-element lectures followed a standard
introductory approach to the method based on
Reddy [16]. A general second-order ordinary
differential equation was used as a model equation.
The method of finding an approximate solution of
the differential equation with a finite series and the
method of weighted residuals was discussed in
both the strong and weak forms. The advantages
and disadvantages of the weak form were part of
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this discussion. The extension of the method of
weighted residuals to a finite-element mesh was
then presented. The weak form of the differential
equation on each element was derived and the
properties of linear and quadratic approximation
functions on the element were presented. From
here, the assembly of the element equations to
form the set of linear equations for the global
problem and the basic solution technique for the
global problem were described. The depth of these
lectures gave the student a basic understanding of
the finite-element method and an understanding of
what the underlying finite-element mesh was
supposed to accomplish. In addition, it familiar-
ized the student with elementary terminology used
in discussing the finite-element method and which
appears frequently in the COMSOL documenta-
tion.

Since fluid exploration was the main purpose of
this course, each CFD lab had specific flow
structures that were studied. The next six sections
of this paper highlight and discuss some of the
more interesting flow structures from five of the
labs. A few examples of the month-long student
projects are also presented.

TWO-DIMENSIONAL CHANNEL FLOW

The first fluid dynamics lab was steady flow in a
two-dimensional channel. The flow geometry was
a rectangular domain with no-slip boundary
conditions on the top and bottom, a uniform
inlet velocity profile on the left side, and a zero
pressure outlet boundary condition on the right
side. A typical surface plot of the velocity magni-
tude is shown in Fig. 4.

This was an excellent first flow lab for the
students because they had all studied this flow to
some degree in their introductory fluid mechanics
class, which was a prerequisite for this course.
Students examined the fully developed velocity
profile and compared their numerical results with
the exact parabolic solution [8]. They plotted the
developing boundary layer flow along the solid
walls and saw how the boundary layers merge and
the flow evolve to become fully developed.

The students were also asked to determine the
entrance length LE of the flow for different flow
rates and to compare their results with an accepted
correlation [9]

LE

h
� �0:631�1:6 � �0:0442 Re�1:6
h i1=1:6

;

Re � �U0h

�
; �1�

where Re is the Reynolds number based on the
channel height h and the average velocity U0. This
exercise was challenging to the student because
they had to decide for themselves when the flow
became fully developed. Should this point be based
on when the centerline velocity became constant,
when the pressure gradient became constant, or
when the inviscid core flow [17] disappeared? Once
these questions were explored, the most careful
students got results that agreed quite well with the
entrance-length correlation in Equation (1). The
length of the inviscid core flow was determined by
plotting the constant from Bernoulli's equation
along the center streamline from the entrance to
the end of the channel, as shown in Fig. 5. The
result should be constant in the inviscid region and
then decrease when viscous effects become impor-
tant. In Fig. 5, the plot is nearly constant until
about x = 0.8 m and then it decreases significantly.
For this particular value of the inlet velocity, the
entrance length was near x � 2 m. This result was
surprising to the students because many under-
graduate textbooks show the merging of the
boundary layers in the channel and the end of
the inviscid core as being coincident with the
entrance length of the channel, e.g., Munson,
Young, Okiishi, and Huebsch [17] and CË engel
and Cimbala [18].

Another interesting feature of this lab was the
presence of a pressure singularity on the top and
bottom rigid walls at the channel entrance. The
students explored this flow feature and noted that
the singularity could not be resolved by any mesh
refinement. They were led to realize that the effect
was caused by the way the constant velocity profile

Fig. 4. Grayscale surface plot of the velocity magnitude in a
two-dimensional channel flow. Velocity magnitude is zero for

white to a maximum for dark gray.
Fig. 5. A plot of Bernoulli's equation along the center stream-

line of the channel.

Computational Fluid Exploration as an Engineering Teaching Tool 1135



was implemented on the inlet surface where it met
the no-slip surfaces at the top and bottom walls.
This is an obvious numerical artifact and so it was
not explored further in this lab.

The pressure singularity was seen again in the
next lab on boundary layer flow over a sharp-
edged flat plate. A surface plot of the singularity at
the leading edge of the flat plate is shown in Fig. 6.
In this lab, the students explored how the singu-
larity could be removed by better modeling of the
inlet velocity or resolved by a more accurate model
of the leading edge of the flat plate.

FLOW IN A MICROCHANNEL

Microfluidic devices have the potential to
improve or accelerate all sorts of different chemical
and biological processes used in technological
devices and systems. The students of today are
well aware of this and are very excited to study the
relevant flows. Such flows are ideally suited to
CFD because they are almost always laminar
flows due to the small dimensions of the flow
geometry. The microfluidics flow lab gave the

students an opportunity to simulate such a flow
and to see some unexpected phenomena.

The flow lab considered two different three-
dimensional geometries: a length of straight chan-
nel and a channel with a 1808 bend. These two
geometries were the only three-dimensional
geometries considered in the course. Students saw
why this was the case immediately because they
were expected to create the geometries themselves.
Thus, they learned many of the software tools
needed to create, manipulate, and view the 3-D
geometry. They experienced the process of mesh-
ing these geometry using both structured and
unstructured meshes. Solving these systems
showed them that even a simple flow can take a
large amount of computational resources (memory
and time). And finally, they learned that even if
you have a good solution, examining the flow,
determining how to use the tools needed to view
specific flow structures, and then understanding
the flows is not an easy task.

The 1808 bend geometry had a channel cross-
section of 300 mm by 150 mm with two straight
sections that were 1000 mm long. The fluid was
water and flows with two different maximum
velocities were simulated: 0.007 m/s and 0.7 m/s
corresponding to a Reynolds number of 0.94 and
94 respectively. The students were challenged to
describe the differences between the two flows.
Typical results are shown in Fig. 7 where the
inlet is on the left leg of the geometry.

The major problem with this lab was determin-
ing how to examine the flows. The lab guide
showed how to make slice and boundary plots,
but other visualization tools were needed to fully
appreciate the flow structures, especially in the
higher Reynolds number case. For a small
Reynolds number (Fig. 7(a) ), the flow is dom-
inated by viscous stresses and the velocity profile
as the flow travels along the bend is symmetric
about a center plane that passes between the two
legs of the geometry. This is seen in Fig. 7(a)
because the velocity maximum occurs near the
inside of the bend just before and after the bend.

Fig. 6. The pressure singularity near the leading edge of the
flow over a flat plate.

Fig. 7. Cross-section plots of the velocity magnitude in a microchannel with a maximum velocity at the inlet of (a) 0.007 m/s, and (b)
0.7 m/s.
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This symmetry is in contrast to the larger
Reynolds number case shown in Figs 7(b) and 8.
Here, the velocity maximum is located near the
inside of the bend on the left leg and near the
outside of the bend on the right leg. The students
learned that the reason for this is inertial effects
that cause the pressure to increase towards the
outside of the bend, which in turn produces a
secondary vortex flow in the bend. They were
asked to explore the various visualization tools in
the software and find a way to visualize this flow.
The best result used the particle-tracing tool based
on the fluid velocity projected on a plane at the
middle of the bend as shown in Fig. 8. The
resulting closed flow lines with the velocity in the
middle of the cross-section directed to the outside
of the bend show the secondary flow in the bend
very clearly.

In the lecture part of this lab, the classic tea-cup
experiment [19] was performed in which a few
loose tea leaves were placed in a cup of water,
which was then stirred. The tea leaves were heavy
enough to sink to the bottom, but large enough to
be moved by the flow. The result was a demonstra-
tion of the same type of secondary flow seen in the
microfluidics lab, i.e., the tea leaves resting on the
bottom of the cup migrated toward the center. The
mechanics of the flow was completely described in
qualitative terms and discussed with the students.
They were then asked to use this same mechanism
to explain the secondary flow seen in the flow lab

and to write the explanation in their own words as
part of their lab report. Their report provided a
powerful re-enforcement and a demonstration of
the depth of their understanding of this flow
phenomenon.

FLOW PAST A CYLINDER

Not many flows are more accessible to the
student than the flow past a cylinder. It is only
examined in a simple way in an introductory fluid
mechanics course because of time constraints and
because the flow solution has to be done numeri-
cally. This flow can be both dramatic and expen-
sive, as shown by the satellite image of a similar
flow past Jan Mayen Island in the North Atlantic
Ocean [20] (Fig. 9) and the collapse of the Tacoma
Narrows Bridge [21] by a twisting structural self-
excitation with a time-dependent vortex shedding
flow. With these motivations, the students were
very excited to examine the flow for themselves.
The geometry creation was very easy and students
studied the flow for increasing velocities measured
by a Reynolds number based on the diameter of
the cylinder from 1.37 to 137.

Students learned one thing very quickly in this
lab; adequate mesh size and spatial resolution is
very important to accurately resolve the flow
structures seen for small and large Reynolds
numbers. When the upstream flow speed is small
so that the Reynolds number is 1.37, the flow is
dominated by viscous effects and the flow field
around the cylinder extends many cylinder
diameters in all directions. Figure 10(a) shows a
surface plot of the velocity magnitude for such a
flow. The small white circle is the cylinder and the
large extent of the flow domain is easily seen.
When the students explored this flow, they were
surprised to find that there was no recirculation
region or wake behind the cylinder. This kind of a
wake is an inertial effect that appears at a specific
Reynolds number. Figure 10(b) shows an example
of this kind of a wake. The two recirculating
regions are called bound vortices and they were
visualized using the particle-tracing tool. During
the lab, students ran the simulation for a range of
different upstream flow speeds to find the critical

Fig. 8. Projected path lines on a central plane from the particle
tracing tool show the secondary flow in the bend for a Reynolds

number of 94.

Fig. 9. Satellite image of a von KaÂrmaÂn vortex street behind Jan Mayen Island in the North Atlantic Ocean on June 6 2001 [20].
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Reynolds number at which the bound vortices first
appear in the flow. Then, as they increased the
Reynolds number, they determined the length of
the vortices and compared their results with analy-
tical results from the literature [22].

For the largest upstream flow speed, the
Reynolds number is 137. The simulation of the
steady flow at this Reynolds number was challen-
ging for the students because it usually did not
converge on their first try due to inadequate mesh
resolution. After careful examination of the flows
at smaller Reynolds numbers and repeated
attempts at refining the mesh most students were
successful at computing the flow as shown by the
surface plot of velocity magnitude in Fig. 11. This
flow is exactly what the student expected: symme-
try about the midplane, a high-pressure region at
the front of the cylinder, and an extended wake
behind. The next portion of the lab taught a lesson
that every student of fluid mechanics needs to
know. The lab guide instructed the student to
switch to the time-dependent solver and to solve
for the flow using an initial guess that was a
uniform horizontal velocity. The resulting data
were displayed as a movie and showed how the
flow field settled down to the steady flow
computed previously. The initial guess for the
flow was then changed to a uniform velocity

directed 208 to the horizontal. The resulting
movie of the time-dependent flow showed the
development of vortices that were shed off alter-
nating sides of the cylinder to produce the well
known von KaÂrmaÂn vortex street [11, 12] shown in
Fig. 12.

Students certainly expected to see such a flow by
now in the lab because of the discussion at the
beginning of the lab guide. However, they were
usually surprised at how easy it was to simulate
this flow and a bit puzzled to see that they have
now computed two reasonable solutions to the
flow field for the same Reynolds number, one
steady and one unsteady. The lecture part of the
lab that took place after the students had done this
simulation was a discussion of flow instabilities
and multiple (non-unique solutions) to the under-
lying partial differential equations.

POTENTIAL FLOW

Potential flows and superposition are not
covered in the semester-long introductory fluid
mechanics course at Georgia Tech. Therefore, the
pre-lab lecture for this lab covered the basics of
potential flow theory. Students saw that a velocity
potential satisfying Laplace's equation governs the
flow field under the assumptions of an inviscid,
irrotational, incompressible flow. They also saw
that Bernoulli's equation produced the corres-
ponding pressure field for the flow. After this

(a) (b)

Fig. 10. Steady two-dimensional flow past a cylinder. (a) Re � 1.37 and (b) Re � 13.7.

Fig. 11. Steady two-dimensional flow past a cylinder for
Reynolds number Re � 137.

Fig. 12. The time dependent von KaÂrmaÂn vortex street behind a
cylinder.
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derivation, the ideas of a linear flow field and
superposition were easily presented. Simple funda-
mental potential flows such as uniform flow,
source/sink flow, doublet flow, and free-vortex
flow were presented as general solutions to Lapla-
ce's equation that could be verified easily by
substitution.

The potential flow lab included the only prede-
fined model used in the course. The reason for this
is that the source/sink, doublet, and free-vortex
flows had singularities in the potential field that
needed to be carefully treated in order to produce
accurate solutions. For the first part of the lab,
students copied a COMSOL model file based on
the potential flow equations and were directed to
turn on and off various fundamental potential
flows by setting various constants to either a
nonzero or zero value. When the resulting stream-
lines for the flow were plotted, the students saw all
of the fundamental flows mentioned above and,
using superposition, the flow past a Rankine half
body, flow past a cylinder, and flow past a spin-
ning cylinder. This last flow is shown in Fig. 13.

After this predefined model, the students were
asked to numerically compute the potential flow
for simple geometries such as the flow past a circle
and a square by solving Laplace's equation with no
superposition. The most interesting portion of this
section of the lab was the investigation of two-
dimensional flow in a venturi. The streamlines and
constant-potential lines for this flow field with the
flow going from left to right are shown in Fig. 14.

Students were also asked to derive an equation
for the flow rate in the venturi using only Bernoul-
li's equation, conservation of mass, and the
assumption of a uniform flow at the throat of the
venturi and upstream of the throat. The result for
the flow rate Q in terms of the pressure difference
between these two locations is the following:

Q � 2�p=�

h2
u ÿ h2

t

� �1=2

huht; �2�

where �p is the pressure difference between a point
well upstream of the throat and at the throat of the
venturi, hu and ht are the heights of the channel at
these two locations, and � is the fluid density. This
result is similar to the well-known result [13] for
the flow rate in a pipe used by pipe flow meters.
When the student extracted the required pressure
readings from their numerical potential flow solu-
tion and compared the numerical flow rate Qn with
the predicted flow rate she found that the relative
error (Q±Qn)/Qn was 1.4%. Furthermore, she
found that this error did not go to zero with
increasing mesh resolution, but actually got more
precise. The challenge for the student was to
correctly explain this discrepancy as a result of
the non-uniform velocity at the throat of the
venturi. Surprisingly, this proved to be difficult
for many students. Explanations in terms of
numerical errors, measurement error, and the
effects of friction on the flow were very common
and incorrect. Most likely, this difficulty was
because this was the first time some students had
to think in terms of the difference between two
model flows rather than the difference between a
numerical flow solution and a real flow. Develop-
ing this kind of reasoning skill is very important to
engineers who use CFD results to assist in the
design process.

THERMAL CONVECTION

The thermal convection lab was the first one to
do multiphysics, which in this case is a combina-
tion of fluid flow with heat transfer. Two geome-
tries were considered, heating from the side and
heating from below.

Heating from the side
The side heating model was very simple: a fluid

contained in a rigid square box, a fixed tempera-
ture on the left wall that is higher than the fixed
temperature on the right wall, and no heat flux
through the top and bottom walls. The lab guide
led the student though the entire modeling process
for this geometry. Step by step the model was
posed, solved, and visualized to explain the
physics. At first, constant fluid properties were
assumed. The solution to this flow is simple one-
dimensional conduction from left to right and a
stagnant fluid. The student was asked to think
about how the fluid could move due to this
heating? The idea of temperature-dependent fluid
properties was presented and how the change in
the density would lead to a body force that could
drive fluid motion. The Boussinesq approximation
[23] was then presented, in which all fluid proper-
ties are assumed to be constant except for the fluid
density, which varies only in the body-force term

Fig. 13. The predefined potential flow model for a uniform flow
past a spinning cylinder. The figure shows the streamlines for

the velocity field and a surface plot of the potential field.

Fig. 14. Two-dimensional potential flow in a venturi. The
mostly horizontal lines are streamlines and the mostly vertical
lines are constant-potential lines. The flow is from left to right.

Computational Fluid Exploration as an Engineering Teaching Tool 1139



of the equations. The resulting solution is shown in
Fig. 15.

In this lab, the governing equations for the
model were posed in dimensionless form. The
dimensionless groups that appear are the Rayleigh
number, which is the magnitude of the driving
body force, and the Prandtl number, which is the
ratio of the momentum to the thermal diffusivity.
Students were asked to explore the model as these
two parameters were varied and to explain what
they saw in terms of physical mechanisms. They
saw the development of thermal and velocity
boundary layers as the Rayleigh number increased.
As the Prandtl number decreased, thermal diffu-
sivity becomes more important and the overall
velocity and pressure magnitudes decreased
because the body force was less able to drive the
flow. The resulting flow field became more circular
and a pressure minimum appeared at the center of
the cavity. This is due to an inertial effect in the
flow related to the same physical mechanism that
produced the secondary flow in a bend seen in the
earlier microfluidics lab. Students were asked to
explain this effect and were reminded of this earlier
result.

One quantity of particular interest in this prob-
lem is the net heat flux through the fluid, which in
dimensionless terms is the Nusselt number.
Students could easily obtain this quantity from
their simulation using the integration tools
included in the COMSOL software. Using the
parametric solver they computed the Nusselt
number as a function of the Rayleigh number
from 2000 to 200 000 and compared their results
with a standard heat transfer correlation found in
undergraduate heat transfer texts [24]. The numer-
ical results were consistently about 10% below the
correlation.

A final exercise in this part of the lab that the
students found very powerful was the inclusion of

the full temperature dependence of all fluid proper-
ties in the model. COMSOL includes a standard
materials library with this data in terms of callable
functions. It was a simple matter to place these
functions in the appropriate input boxes of the
software and then resolve the model to see the net
effect on the flow. The changes were minor, but
definitely observable and in some instances more
significant than expected. Surprisingly, the Nusselt
number results for the simulation, which were
consistently less than the standard correlation
using the Boussinesq approximation, crossed over
the standard correlation for a Rayleigh number of
approximately 120 000. The two results now
appeared to be in better agreement.

Heating from below
The geometry of an infinite liquid layer confined

between rigid walls and heated from below is a
classic instability problem in fluid mechanics [14].
For a Rayleigh number Ra less than 1708, the
velocity field is stagnant and the temperature field
is given by one-dimensional conduction through
the fluid, i.e., it is linear with distance above the
lower wall. For Ra > 1708, the layer is unstable
because warmer-lighter fluid is beneath cooler-
heavier fluid. The result is convection rolls or
cells in many different forms depending on the
system [25].

In this part of the lab, the students explored the
buoyancy-driven instability by solving their model
using the transient solver for Rayleigh numbers of
1000 and 2000. The initial conditions for the
velocity and temperature fields were an approx-
imation of the unstable convection solution that
the students input directly into the model in terms
of simple polynomial and sinusoidal functions.
The transient results showed either the decay of
the fluid motion back to a stagnant conducting
layer for Ra � 1000, or the development of the
steady convection rolls shown in the bottom image
of Fig. 16 for Ra � 2000.

The students were then asked to compute the
steady flow solution for Ra � 1709, a point just
above the onset of the instability. The result is the
top image of Fig. 16. The rest of the time in the lab
was spent comparing the two flows for Ra � 1709
and 2000 in terms of flow and heat transfer
characteristics using whatever software tools the
student felt were needed.

For their lab reports, students were instructed to
include clear explanations for their observations in
terms of relevant physical mechanisms. This type
of exercise helps them develop an intuitive under-
standing of the physics involved in the flow, which
can then be extended to other problems. For
example, the major qualitative difference in the
two flows shown in Fig. 16 is the loss of vertical
symmetry in the temperature field for the higher
Rayleigh number case. This was correctly
explained by most students as an effect of fluid
convection. Most students presented their results
in terms of separate surface plots for the flow and

Fig. 15. Thermal convection in a side-heated enclosure. The
grayscale surface plot is the temperature field. The left side is

hot and the right side is cold. The arrows are the velocity field.
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temperature fields, rather than the combined steam
line and surface plots shown in Fig. 16. However,
the combined plot shown in the top image in Fig.
16 leads to a very simple question for discussion
with the students, i.e., what is the direction of the
velocity disturbance in each convection cell, clock-
wise or counter-clockwise, and why?

STUDENT PROJECTS

The student computing projects were an oppor-
tunity for each student to explore a fluid flow
problem of their own choosing. They were given
about two weeks to choose the project and about a
month to build the model, perform the simulation,
analyze the data, and write their report. Each
project was screened before the model was built
to ensure that it was doable in a month and that it
had enough physics to make the fluid exploration
interesting. Students were strongly encouraged to
choose a project that could be done using a two-
dimensional simulation. The reasons for this are
that a three-dimensional model is typically much
harder to build, mesh, and solve than a two-
dimensional model. Also, students did not have
much experience with the three-dimensional soft-
ware tools in COMSOL since they had used them

only once in the earlier microfluidics lab. And,
most importantly, previous experience with
student CFD projects showed that most students
could not do a three-dimensional simulation in one
month.

As expected, there was a wide variety of student
projects. The simplest were external flows. Fig. 17
shows a result for one project on the flow over an
airfoil. The student computed the lift and drag on
an NACA 0012 airfoil section [26] versus the angle
of attack of the oncoming flow. The numerical
data were compared with wind tunnel data and the
critical angle for the onset of stall was identified.
The student discussed how lift was provided by the
flow and the physical mechanism for the stall
phenomenon.

Another student compared the aerodynamic
drag on a number of different vehicles, from race
cars, to trucks, to the bulldozer shown in Fig. 18.
The fluid mechanics was just a simple comparison
of the drag force on the vehicles, but the student
spent 30 hours on the project. Most of this time
was spent trying to import the vehicle shape data
from 3D CAD models. COMSOL has a CAD
import module that makes this process much
easier, but it was not available for this course.

A good multiphysics project was the flow and
heat transfer in a cross flow past a cylindrical tube
bank. The student exploited the use of symmetry in
the tube bank to produce the model shown in Fig.
19. He examined many aspects of the flow, such as
flow separation behind the tubes, pressure,
temperature, and velocity distributions, particle
paths in the flow, and total heat transfer as a
function of the inlet velocity.

A final example of a student project was time
dependent heat transfer and convection in a solar

Fig. 16. Simulations of a fluid layer between rigid plates heated
from below. The surface plot is the deviation of the temperature
field from the conduction solution. Fluid cells with the darkest
gray are hot, cells with a mid-gray are cold, and the very light
gray between cells has a medium temperature. Solid lines are

streamlines. Top, Ra � 1709; bottom, Ra = 2000.

Fig. 17. Onset of stall for flow over a NACA 0012 airfoil.

Fig. 18. Aerodynamic drag on a bulldozer.

Fig. 19. Surface plot of the temperature field for cross flow in a
heated cylindrical tube bank.
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oven as shown in Fig. 20. This project was more
complicated than any of the other projects.
However, it was part of this student's senior-
design group project and since he was very inter-
ested and motivated by the project, he was allowed
to do it. He encountered many problems during
the work and solved them all, but he spent over 50
hours outside of class to complete the work.

The project was to design a simple solar oven for
the sterilization of hypodermic syringes in remote
third world environments. The basic physics was
the same as the thermal convection lab discussed
above, so the student had a good start. The
geometry came from his group's design. Since
this was a solar oven the student had to include
thermal radiation in the governing equations for
heat transfer. Radiation is included in the heat
transfer module that was used in the course, but it
was not covered in any of the labs. The student did
his own study of the COMSOL help files and was
able to successfully implement radiation into his
model. However, one modification that was
needed was that the upper glass surface of the
oven operated like a band-pass filter, allowing
thermal radiation to pass through the glass surface
at visible frequencies but blocking infrared radia-
tion from leaving the oven. This filtering effect was
not part of the standard settings used in the
COMSOL heat transfer module. Thus, the student
read the documentation on the implementation of
the radiation boundary condition for the glass
surface and modified it to mimic this effect. The
resulting simulation (shown in Fig. 20) proved to
be very helpful in the successful completion of his
senior-design project.

CONCLUSIONS

The course was a success for the students and
the instructor. The major objective of the course,
which was to develop a greater physical under-
standing of complex fluid mechanical phenomena,
was achieved. The COMSOL software with its
integrated toolset and its graphical user interface
was easily learned by everyone. This allowed the

students to spend most of their time investigating
flow fields and trying to understand flow physics
rather than wrestling with the software to build a
model or get a solution. The following subsections
summarize comments and observations by several
students and the instructor about the course.
Student comments were expressed to the instructor
either personally or in the online course evaluation
that is given to all Georgia Tech courses. Sugges-
tions for improvements in the course and the
software are also given.

Students' perspective
On the positive side, all of the students liked the

course and most would recommend it to other
students. They liked using computers and enjoyed
being able to examine flows in real-world-type
systems rather than in the idealized systems typi-
cally studied in an introductory fluid mechanics
course. The few students who had used other CFD
software in the past appreciated the ease with
which they could interact and modify the govern-
ing equations and system parameters by simply
using MATLAB-type functions and expressions.
These students especially became very competent
with the software. All students became more profi-
cient at discussing fluid flows in terms of the
physical processes involved rather than just
saying things like ` . . . the drag increased when
the velocity increased . . .' for example. The
students particularly liked the ability to examine
and visualize the field variables of the solution,
such as velocity, pressure, and temperature, even
for simple flows. This gave them a better under-
standing or `feel' for the flow than they got by just
seeing a single plot or analytical function repre-
senting the solution.

Some students thought that the workload for a
few of the labs was excessive. This was particularly
true for those students who did not have much
experience with similar software tools, such as
computer-aided-design (CAD) software. For a
couple of the labs, such as the one on thermal
convection or turbulent flow, finding converged
solutions was still difficult and frustrating.
However, many of the problems encountered were

Fig. 20. A surface plot of the temperature in a solar oven after 2200 seconds of operation without convection (left) and with convection
(right). The arrows are the velocity field at this instant in time. The flow is not steady.
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the result of an inappropriate setting for a system
parameter or a boundary condition or an incorrect
geometry. These kinds of errors were hard to track
down and they usually led to many more hours of
work than was necessary to finish to lab.

Even when there were no problems with the
model or the solution, some labs took too much
time because of the large number of explorations
and questions that the students were asked to do.
This kind of problem was easily corrected once the
instructor had a better idea of the typical amount
of time a student needed to work through a lab.

Finally, the lectures on the fundamentals of the
finite-element method were given during the last
couple of weeks of the course. The students felt
that this was too late and that the lectures were not
deep enough. It would be better to do these
lectures at the beginning of the term right after
the COMSOL tutorial, but concurrent with the
first couple of labs. This would give the students a
better idea of some of the mesh concepts and
convergence criteria they were using in the labs.

Instructors' perspective
The main component of the teaching materials

used in this course was the computer labs. It was a
full-time effort to design the labs and to write the
lab guides. Each lab problem had to be an inter-
esting flow with interesting physics. It had to be
doable by a student working about ten to fifteen
hours per week. The lab as written had to work
correctly. Students wasted too much time and
became very frustrated if it didn't work because
of an error or typo in the lab guide. The explora-
tion questions in the manual had to be carefully
posed. The students' level of understanding of the
physics is not as high as the instructor's so subtle
interactions in the physics are often beyond the
ability of the student to notice and appreciate. The
physical interactions being explored had to be very
basic, easy to see, and easy to explain.

After the basic concept of the lab was discussed in
the preparatory lecture, the students were usually
excited to begin the lab work. The instructor±
student interaction when they had a problem with
the lab or a question about the fluid mechanics was
usually very good. The most difficult questions
though were what to do when the lab results were
not going according to the lab guide. As any
computer-support person knows, trying to figure
out where the user (student) made his mistake is time
consuming and frustrating. This is why it is essential
that the lab works correctly as written.

As noted by many students, it was clear that the
finite-element lectures should be given at the
beginning of the term rather than the end. If
given earlier, it would also be possible to give an
assignment to write a MATLAB program to solve
an ordinary differential equation using the finite-
element method. An example of this kind was part
of the finite-element lectures, but having the
student write their own code would be a much
better way for the student to understand the

technique. One of the flow labs would have to be
dropped if this assignment was given and the
trade-off for this would have to be evaluated by
the instructor. It is not clear that all students would
benefit equally from such an assignment, particu-
larly those students who are less familiar with
programming and those who do not plan to
work full time with CFD.

Future improvements
There are several improvements or additions to

the COMSOL software that would help improve
the course, help students to become better users of
the software, and help them to improve their
understanding of the fluid mechanics under ques-
tion.

First, searching and finding converged solutions
of complicated flows can be frustrating and time
consuming. What are the best techniques available
to do this? Can these techniques be directly imple-
mented into the software? At least, it would be
helpful to have such techniques collected and
described in a separate section of the documenta-
tion.

Better tools are needed to inspect the quality of
the solution. The predefined residual variable that
is available is not very good. It should be normal-
ized in some way so that it is a quantitative
measure of the error in the solution. In the micro-
fluidics lab the geometry was built to micron
dimensions. As a result, the residual of the solution
was very large and it was difficult to judge the
error in the solution from the magnitude of the
residual alone.

Finally, improvements in the flow visualization
tools are needed when these tools are used to
inspect smaller portions of the flow field. The
current tools should be easier to use and more
intuitive. This is especially true for the particle-
tracing tool. This tool can be used to produce
particle paths, which are streamlines in steady
flows. However, it is often very difficult to make
such plots look good and to make sure they include
the most interesting flow features, such as regions
of recirculating flow. One needs to know where
such features exist in order to seed the flow with
the particles for visualization. This problem can be
circumvented in two dimensions by defining the
stream function and making a contour plot.
Perhaps this could be done automatically in the
software when a stream line plot is selected.

In closing, the course was a success from the
perspectives of the students and the instructor. It
gives the students the kind of engineering experi-
ence that they need in order to decide what career
they want to do when they graduate and it looks
good on their resume when they are interviewed by
prospective employers. Since the students typically
enjoy the course and are motivated to learn, the
instructor has a more fulfilling interaction with the
students. It becomes fun to teach and to watch the
students learn and appreciate the physics of fluid
flows.
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