Int. J. Engng Ed. Vol. 26, No. 1, pp. 96-110, 2010
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2010 TEMPUS Publications.

Teaching Scrum through Team-Project
Work: Students’ Perceptions and Teacher’s

Observations™

VILJAN MAHNIC

Faculty of Computer and Information Science, University of Ljubljana, Trzaska 25, 1000 Ljubljana,

Slovenia. E-mail: viljan.mahnic@fri.uni-lj. si

In order to prepare students for the increasing use of agile methods in industry, teaching these
methods is becoming an important part of the Computer Science and Software Engineering
curricula. So far most of the attention has been devoted to Extreme Programming and its practices,
but there is not much reported about teaching Scrum, in spite of the fact that Scrum is one of the
most widespread agile methods. To fill this gap, a course was developed at the University of
Ljubljana that not only teaches Scrum through a capstone project, but also serves as a study about
the learnability and applicability of Scrum. This paper describes the course details and analyses
students’ perceptions and teachers’ observations after running the course for the first time in the
Spring semester of the Academic Year 2008109. The student surveys showed that students were
overwhelmingly positive about the course and confirmed the anecdotal evidence of Scrum’s benefits
as reported in the literature.

Keywords: software engineering education; agile methods; Scrum; capstone project

1. INTRODUCTION

AGILE METHODS FOR SOFTWARE DEVEL-
OPMENT [1, 2] emerged as a reaction to docu-
mentation driven, heavyweight software
development processes that are typical for the
traditional disciplined approach advocated by
software quality models such as CMMI [3].
According to the Manifesto for Agile Software
Development [4] these methods value individuals
and interactions over processes and tools, working
software over comprehensive documentation,
customer collaboration over contract negotiation,
and responding to change over following a plan.
Some methods that are inspired by these values
include Extreme Programming [5], Scrum [6-8],
Adaptive Software Development [9], the Crystal
family [10], Feature-Driven Development [11],
Dynamic Systems Development Method [12], and
Lean Software Development [13].

Experience has shown that adopting agile
methods improves management of the develop-
ment process as well as customer relationships
[14], decreases the amount of overtime, and
increases customer satisfaction [15]. In the last
few years several successful implementations of
agile methods in private companies as well as in
the public sector have been reported in the litera-
ture, e.g., [16-20]. According to the Agile Adop-
tion Rate Survey performed by Dr. Dobb’s Journal
in 2008 [21], agile teams report significant improve-
ments in productivity, quality and stakeholder

* Accepted 25 November 2009.

96

satisfaction, and reasonable improvements in
cost. A similar survey conducted by VersionOne
[22] additionally reports significantly improved
project visibility and enhanced ability to manage
changing priorities. However, the latter survey
underlines that the (in)ability to change the organ-
izational culture, the general resistance to change,
and the lack of personnel with the necessary agile
experience are the greatest barriers to further
adoption of agile practices in software develop-
ment organizations.

In order to prepare students for an increasing
use of agile methods in industry, teaching these
methods is becoming an important part of the
Computer Science and Software Engineering curri-
cula. So far most attention has been devoted to
teaching Extreme Programming (XP) [23-26] and
its practices, particularly pair programming [27-
29] and test-driven development [30-32]. Some
authors also report their experience in teaching
various combinations of XP practices, e.g., contin-
uous integration and test-driven development [33],
test-driven development and refactoring [34], and
pair programming, test-driven development and
refactoring [35]. With regard to the teaching of
other agile methods, there are far fewer reports in
the literature. Reed [36] describes an agile class-
room experience with the Lean Software Develop-
ment method, while Van Til et al. [37] developed
an interdisciplinary elective course to teach lean
principles from a broader, manufacturing-oriented
perspective.

Most attempts at introducing agile methods are
still limited to elective courses and capstone

Teaching Scrum through Team-Project Work 97

projects that take place after the students have
mastered a traditional plan-driven approach to
software development. However, due to the
increased use of agile methods we can expect that
teaching these methods will be incorporated into
the core Software Engineering courses, thus giving
agile and traditional plan-driven approach equiva-
lent treatment. An example of such a course is
given in [38].

Although agile methods are gaining popularity
in industry some people still view them as a back-
lash to software engineering and compare them to
hacking [2]. In order to eliminate doubts and
provide industry with advice that is grounded in
research findings there is an urgent need to empiri-
cally assess the applicability of these methods
further. Dingsoyr et al. [39] claim that the current
state of theory and research on particular agile
development methods is in the nascent phase
according to classification described in [40], while
only XP and its pair programming and test-driven
development practices might be characterized as
intermediate.

In this situation student projects can also serve
as case studies providing useful information about
the learnability and applicability of particular agile
development methods. Students’ perceptions of
agile methods are analysed in [41], while [42] and
[43] describe formal experiments comparing the
agile approach with traditional software construc-
tion. Dyba and Dingseyr’s systematic review [44]
identified 33 empirical studies on agile software
development, of which nine (27%) were conducted
in a university setting. This review revealed that the
studies almost exclusively investigated the XP
method. Consequently, one of the clear findings
was that the coverage of the research area should
be increased, placing more focus on management-
oriented approaches such as Scrum, which Ding-
sayr et al. [39] consider to be an example of an area
where there is a large gap and that should be given
priority.

In the last few years the use of Scrum has
increased significantly. Annual surveys on the
state of agile development [22, 45] have shown
that Scrum, Scrum/XP Hybrid and XP are the
three agile methods that are followed most closely
in practice. In 2007 37% of respondents used
Scrum, 23% Scrum/XP Hybrid, and 12% XP. In
2008 the share of Scrum increased to 49.1%,
Scrum/XP Hybrid was used by 22.3%, and XP by
8.0% of respondents. Therefore, teaching Scrum is
becoming an important issue if we want to prepare
students for the increasing needs of industry. A
knowledge of Scrum is crucial because for most
companies the adoption of Scrum is the first step
on their way towards agility. Using Scrum they
establish a framework into which the XP technical
practices can be incorporated easily and more
efficiently. This means that Scrum and XP comple-
ment each other. Scrum introduces project
management practices that ensure transparency,
inspection and adaptation, while XP provides en-

gineering practices that cover technical aspects of
software development.

Following these facts we have decided to intro-
duce Scrum into the final Software Engineering
course that the undergraduate students of Compu-
ter Science at the University of Ljubljana take in
their last (eighth) semester. The course is designed
as a capstone student project with the aim of not
only teaching students the Scrum method, but also
of contributing to research into Scrum by explor-
ing students’ perceptions and find those items that
influence the students’ satisfaction with work on a
Scrum project.

In the next section we describe the aims of the
course and research questions that we wanted to
answer. We then describe the course details,
students’ perceptions, and teachers’ observations.
The balance between the amount of coaching and
self-organization is discussed in order to help other
educators to evolve and/or apply our method of
teaching Scrum.

2. AIMS OF THE COURSE AND RESEARCH
QUESTIONS

The course first ran in the Spring semester of the
Academic Year 2008/2009 with the following aims:

1. to teach Scrum in a close to real world environ-
ment strictly following the method as it is
described in [8];

2. to explore the perceptions of Scrum from the
students’ perspective;

3. to measure the performance of the Scrum-based
development process using the metrics model
proposed in Mahnic et al. [46, 47].

Considering the first aim, the course required
students to work in groups to solve a real problem.
Since students had mastered traditional methods
of software development, fundamentals of data
bases and information systems in previous courses,
there were only three weeks of formal lectures at
the beginning of the course to provide them with
the missing knowledge of agile methods and
explain the rules of project work. Students were
given a choice between two projects: Project A
consisted of the development of a project manage-
ment tool for monitoring the Scrum-based soft-
ware development process, while Project B was
defined in co-operation with a software company
and consisted of the development of a simplified
version of a hospital information system. A
detailed description of both project settings is
given in the next section. Our hypothesis was
that students will prefer learning through practical
project work in agile teams than formal lectures.
According to experience and recommendations
reported in the literature (e.g., [48-51]) this kind
of learning (especially if performed in partnership
with industry) contributes significantly to the
acquisition of professional skills such as team-
work, planning and organizing, communication,

98 V. Mahnic

commitment, co-operation and adaptability. For
this reason we also expected the course to be useful
for students’ employability, allowing them a
smooth transition from study to a working en-
vironment.

With regard to students’ perceptions, our aim
was not only to find out how they perceived the
course as a whole, but also to analyse their opin-
ions about particular Scrum concepts and identify
those Scrum practices that significantly affect
satisfaction with the work on a Scrum project.
Additionally, we wanted to ascertain how
students’ opinions match the anecdotal evidence
about Scrum benefits reported in the literature. In
order to obtain the necessary data for qualitative
analysis, several surveys were performed that are
described in detail below. With regard to students’
perceptions of individual Scrum concepts and
Scrum benefits, we posed the null hypothesis that
their attitude towards Scrum and its benefits was
neutral, but we hoped to find a statistically signifi-
cant tendency towards the positive side. The paired
sample t-test was used to determine how students’
opinions about Scrum change with time as they
gain more knowledge and practice with the
method, while Pearson’s product-moment correla-
tion was used to identify similarities between
patterns of students’ responses to different items
and find practices that contribute most to satisfac-
tion with the work on a Scrum project.

With regard to the third aim, we paid special
attention to the collection of data on work spent
on each task, in addition to the amount of work
remaining that was already prescribed by the
original method. These data were used by the
teacher to compute several process performance
indicators (viz. work effectiveness, schedule perfor-
mance index and cost performance index) as
proposed in [46] and [47]. These indicators helped
the teacher to monitor progress and react immedi-
ately in case of deviations from the plan. They were
also presented to students in order to give them
rapid feedback about their performance and
encourage them to work consistently rather than
procrastinate. Our hypothesis was that collecting
data for measuring performance does not hinder
the agility of the method, but contributes signifi-
cantly to monitoring the development process.

3. COURSE DETAILS

In order to obtain meaningful results, one of the
main challenges of the course was to simulate a
real world environment. For this reason two mean-
ingful, practical projects were defined, one of them
in co-operation with one of the largest software
development companies in Slovenia. The company
readily accepted our invitation because they
expected the results of the study to be useful in
making decisions about the adoption of Scrum in
the company. Both projects followed the Scrum
process as closely as possible with some minor

changes because the students could not work on
the project every day due to other academic
commitments. Details are given in the subsections
below.

In the Academic Year 2008/2009 the course was
attended by 31 students who were grouped into
seven teams. Four teams worked on Project A,
while three teams worked on project B. The
amount of work was defined considering the
rules of the ECTS. Given the fact that the course
is allocated 7 ECTS points, the expected workload
of each student (including contact hours) was
between 175 and 210 hours.

3.1 Project Settings and Role Playing

Since there was no collocated user representative
working permanently with student teams, both
projects were chosen from problem domains with
which the students were familiar and they could
develop the desired functionality without the
constant help of the real customer. Nevertheless,
the teacher played the role of the customer of
Project A and a representative of the co-operating
company (a graduate student of Computer Science
with experience in building health-care informa-
tion systems) represented the customer of Project
B. The ‘customers’ attended all lab hours and were
available via email to answer students’ questions
regarding the required functionality of both
systems.

In accordance with the principle of self-organi-
zation, students were given the opportunity to
decide on who they would work with, and which
platform and tools to choose for the implementa-
tion. According to Scrum rules each team of
students played the role of a Scrum Team that
was collectively responsible for the success of each
iteration and of the project as a whole. The teacher
was the ScrumMaster of all teams responsible for
the Scrum process and for teaching Scrum to
everyone involved in the project. The teacher also
played the role of the Product Owner representing
the interests of all stakeholders of Project A.
Similarly, the representative of the company that
specified Project B acted as the Product Owner of
Project B.

Both projects were planned to be finished in two
iterations (i.e., Sprints in Scrum terminology). The
Scrum method in its original form prescribes a
Sprint length of 30 calendar days and requires the
Team to meet every day for a 15-minutes Daily
Scrum meeting. However, because of scheduling
problems and other course commitments it was
impossible to expect students to work on the
project every day. We resolved this problem by
prescribing two Daily Scrum meetings per week:
one in the presence of the ScrumMaster and the
Product Owner took place during the lab hours on
Monday, while the other had to be organized by
each team independently on Thursday. After each
Daily Scrum meeting an updated version of the
Sprint Backlog document had to be sent to the
teacher. A complete schedule of all Daily Scrum

Teaching Scrum through Team-Project Work 99

Initial Adjustment | Adjusted
1)) Product Backlog Item Description Priority | Estimate | Factor Estimate
1-1 Maintenance of projects data 1 20 1.50 30
(create/update/delete a project description)
1-2 | Maintenance of developers data 1 15 1.00 15
(create/update/delete developer’s details)
1-3 Maintenance of a Product Backlog 1 60 2.00 120
(create/update/delete a Product Backlog item)
1-4 | Maintenance of a Sprint Backlog 1 60 2.00 120
(create/update/delete a task)
1-5 | Maintenance of a metrics table 1 15 1.00 15
(create/update/delete a metric description)
1-6 | Maintenance of impediments data 2 15 1.20 18
(create/update/delete an impediment record)
Sprint 1 185 318
2-1 Recording metrics at the beginning of each Sprint 2 40 1.20 48
(at Sprint planning meeting)
22 Recording metrics collected at Daily Scrum meetings 2 40 1.20 48
23 Printing a Product Backlog 3 20 1.50 30
2-4 Printing a Sprint Backlog 3 20 1.00 20
2-5 | Displaying work effectiveness and earned value indicators 3 40 1.40 56
2-6 | Recording metrics at a Sprint review meeting 4 40 1.10 44
2-7 | Recording metrics at a Sprint retrospective meeting 4 30 1.00 30
2-8 | Displaying other indicators (fulfillment of scope) 4 30 1.00 30
2-9 | Project documentation 5 40 1.00 40
Sprint 2 300 346
Release 1 485 664

Fig. 1. The initial Product Backlog of Project A.

meetings as well as other meetings (Sprint plan-
ning, Sprint review and Sprint retrospective) was
prepared in advance and given to the students.

3.2 Product Backlog

At the beginning of the course the Product
Owners prepared the initial Product Backlog for
both projects containing a list of prioritized
requirements divided into two Sprints. The initial
Product Backlog for Project A is shown in Figure
1. The rows are the Product Backlog items, sepa-
rated by the Sprint and Release subheadings. For
each Product Backlog item an initial estimate of
the work amount (in hours) was provided, multi-
plied by the adjustment factor taking into consid-
eration the complexity of individual requirements
as well as providing room for student teams to
adjust the estimated effort to their capabilities and
previous experience in practical project work.
Beside the initial Product Backlog the students
were also given a short description of each require-
ment and a draft data model (entity—relationship
diagram) outlining the database design of each
project.

3.3 Maintenance of the Sprint Backlog

Each iteration started with a Sprint planning
meeting in order to define the contents of the next
Sprint and to develop the initial version of the
Sprint Backlog. In the first half of the meeting the
Product Owners discussed the requirements and
effort estimates with student teams giving them the
chance to decide on the subset of the Product
Backlog items to be chosen for implementation.
After agreeing on the contents of the Sprint, the
second half of the meeting was devoted to the

development of the Sprint Backlog. It was up to
each team to work out how to turn the selected
Product Backlog items into an increment of poten-
tially shippable product functionality. Strictly
following Scrum rules, the instructors who played
the roles of the Product Owners and the Scrum-
Master did not interfere, but just observed and
answered questions asking for further information.
At the end of the Sprint planning meeting each
team had to hand the initial version of its Sprint
Backlog to the teacher.

During the Sprint the teams had to meet regu-
larly at the Daily Scrum meetings and maintain
their Sprint Backlogs, adding new tasks (if
required), omitting tasks that proved to be unne-
cessary, and splitting the tasks that were initially
defined too roughly into more detailed ones. For
each valid task data about the hours spent and the
hours remaining had to be recorded and the
updated Sprint Backlog had to be sent to the
teacher after each Daily Scrum meeting.

Figure 2 shows an excerpt from the augmented
spreadsheet application that was given to students
for the maintenance of the Sprint Backlog. For
each task a student had to be chosen to be
responsible for it and the task status had to be
maintained. Classification of tasks according to
their type allowed the tracking of the amount of
different kinds of work during each Sprint, while
‘Hours Spent’ and ‘Hours Remaining’ sections
represent the amounts of work spent and work
remaining (in hours) to be recorded during each
Daily Scrum meeting. Column 0 in the ‘Hours
Remaining’ section corresponds to the initial esti-
mate of each task. Since the tasks in the Sprint
Backlog emerge as the Sprint evolves, when each

100 V. Mahnic

Task
Task | poek Deseription | Responsible Xask | Task Valid Hours Spent Hours Remaining
D Type | Status
From | Till
1 2 3 4 5 7 (1]2]{3|4]|5|6] .. JO(1|2]|3|4|5]|6]| ..
Total

Legend

4 - Task Type

5 — Task Status

6— Task Valid From
meefing)

7— Task Valid Till
Scrum meeting)

Analysis, Design, Coding, Testing, Documentation, Rework, Other (Specify)
Not started, In progress, Completed, Omitted, Moved into next Sprint, Split/Divided, Other (Specify)
Day of the Sprint when the task was defined (the consecutive

ber of the corresponding Daily Scrum

Day of the Sprint when the task became not valid (the consecutive number of the corresponding Daily

Fig. 2. Worksheet used for the maintenance of the Sprint Backlog.

task was defined and when it became invalid (if
omitted or split into more detailed ones) must be
known. Only valid tasks are taken into considera-
tion when performance indicators such as the
amount of work remaining, schedule and cost
performance indexes are computed.

Considering the principles of self-managing and
self-organizing teams advocated by Scrum the
instructors did not interfere in the distribution of
tasks between team members and the estimation of
effort. However, the ScrumMaster strictly moni-
tored the maintenance of the Sprint Backlog and
asked all teams to provide data about work spent
and work remaining in time.

3.4 Sprint Review and Sprint Retrospective
Meetings

The Sprint review and Sprint retrospective meet-
ings took place at the end of each Sprint.

At the Sprint review meetings the students
presented the results of their work to the instruc-
tors (playing the roles of the Product Owners and
the ScrumMaster) and representatives of the co-
operating company, who commented on the solu-
tions and asked for changes when necessary. While
the main purpose of the Sprint review meeting in
Scrum is the demonstration of the new function-
ality to end users, in our case this meeting also had
an educational component: students could
compare different solutions and user interfaces
for the same requirements and learn from the
experience of other teams.

At the Sprint retrospective meetings students
and instructors met to review the work in the
previous Sprint, giving suggestions for improve-
ments in the next one.

4. STUDENTS’ PERCEPTIONS

Students’ opinions regarding Scrum and the
course as a whole were collected by two question-
naires. The first questionnaire dealt with the use of
Scrum in our project (e.g., the adequateness of the
Product and the Sprint Backlog, the roles of the
Product Owner and the ScrumMaster, etc.) and

was used at the end of each Sprint to evaluate the
students’ experiences for each iteration separately.
The second questionnaire served as a final survey
at the end of the semester to obtain a general
evaluation of the course as a whole as well as for
gathering students’ opinions about the benefits of
Scrum that are usually reported in the literature. In
addition, formal discussions about the strengths
and weaknesses of Scrum were conducted during
the Sprint retrospective meetings that were organ-
ized after each Sprint.

4.1 Quantitative Analysis at the End of Each
Sprint

The survey conducted at the end of each Sprint
contained ten questions on a 5-point Likert scale,
grade 1 representing the most negative (strong
‘No’) and grade 5 the most positive opinion
(strong ‘Yes’). The survey was anonymous and
was answered by 30 out of the 31 students enrolled
in the course. One questionnaire that was not filled
in completely was excluded from further analysis.
In order to test the extent to which student percep-
tions are consistent the intraclass correlation coef-
ficient (ICC) was computed using the absolute
agreement type of the two-way random effects
model [52]. The average measure reliability ICC
values for Sprint 1 and Sprint 2 were 0.763 and
0.743, respectively. Since by convention the ICC
values above 0.7 are considered acceptable [53] we
proceeded with the analysis, assuming that the
survey data were reliable enough to substantiate
appropriate conclusions.

Results of the survey are gathered in Table 1.
Columns Sprint 1 and Sprint 2 represent the
average grades (the mean), standard deviation,
and the results of a one-sample t-test for each
Sprint separately. In the last column the results
of the paired sample t-test are shown to compare
the difference between students’ opinions after
each Sprint.

The one-sample Student’s t-test was used to
determine how much students’ perceptions deviate
from the null hypothesis that their attitude to
Scrum was neutral, where the arithmetic mean
value of all questions would be equal to 3. Results

Teaching Scrum through Team-Project Work

101

Table 1. Results of the survey at the end of each Sprint

Sprint 1

Sprint 2

Mean

Std.
dev.

One-
sample
t-test
(t-value)

One-
sample
t-test
(t-value)

Paired
sample
t-test
(t-value)

Std.

Mean dev.

1 Clarity of requirements specified in the 3.21
Product Backlog

Was the Product Backlog clear enough?

Did the short description of each

requirement suffice to understand what

the Product Owner really wanted?

2 Effort estimation 2.97
Were the estimates of workload provided

in the Product Backlog adequate?

3 Maintenance of the Sprint Backlog 3.72
Was it clear how to maintain the Sprint
Backlog and provide data requested by

the spreadsheet application?

4 Administrative workload 3.24
The administrative work requested by the
Scrum method does not represent a

significant additional workload.

5 Co-operation with the ScrumMaster 4.07
Was the co-operation with the

ScrumMaster adequate?

6 Co-operation with the Product Owner
Was the co-operation with the Product
Owner adequate?

7 Co-operation with other Team members 4.00
Was the co-operation with other Team
members adequate? Does the Scrum

method encourage co-operation?

8 Workload
Was the amount of work required on the
project adequate?

9 Satisfaction with the work on the project 3.72
Are you satisfied with the work on the
project?

Satisfaction with the Scrum Method

Is the method useful? Would you
recommend the method to other software
developers?

10 3.72

0.98

0.98

0.75

0.92

0.90

1.04

0.99

0.80

1.14 3.87 0.90 5.28%* 3.91%*

—0.19 3.80 0.81 5.44%* 4.25%*

5.19%* 4.30 0.79 8.96** 4.31%*

3.27 1.08 0.49

6.24%* 4.33 0.71 10.27%* 2.20%

4.74%* 4.03 0.85 6.66** 1.44

5.20%* 4.10 0.92 6.53%* 0.46

4.14%* 3.73 0.78 5.12%%* 0.00

4.89%* 0.92 4.74** 0.96

3.66* 3.87 0.94 5.07** 0.50

*p < 0.05; **p < 0.01.

in Table 1 show that 7 out of 10 hypotheses were
rejected after Sprint 1, and 9 out of 10 hypotheses
were rejected after Sprint 2. In all these cases the
student grades were significantly higher than 3;
therefore, we can accept the alternative hypothesis
that students on average had a positive opinion
about the Scrum method and its use in our course.

The paired sample Student’s t-test enabled us to
analyse the before—after effect of the Scrum
method by comparing the average grades after
Sprint 1 and Sprint 2. All grades except one
increased after the second Sprint, four of them
(see questions 1, 2, 3 and 5) with a statistically
significant difference. This shows that the students’
attitude towards Scrum improved as the students
gained more experience.

Students’ opinions were most positive with
regard to questions 5, 6 and 7 concerning co-
operation between all parties involved in the
project. We were gratified that the co-operation

with the ScrumMaster received the highest grade
(see question 5). On the one hand it indicates that
the course was well prepared and conducted, and
on the other it shows the importance of good
coaching when agile methods are introduced to
novices. Students were also very satisfied with the
co-operation with their team-mates, thus clearly
indicating that Scrum contributes to successful
teamwork (question 7). We believe that this
grade would be still higher if we did not have
problems with two non-participatory students.
The co-operation with the Product Owner also
received a high grade (question 6).

At the beginning students had some questions
about the maintenance of the Sprint Backlog and
about providing metrics required by the spread-
sheet application, but the initial problems were
quickly resolved and the grades (although not
bad in the first Sprint) rose significantly in the
second Sprint (question 3). Nevertheless, the

102 V. Mahnic

answers to question 4 show only a weak agreement
with our opinion that the administrative work
required by the Scrum method does not represent
a significant additional workload. This question
was further discussed during the Sprint retrospec-
tive meetings.

Since the students were not given a detailed
requirements specification, but just the Product
Backlog containing a prioritized list of require-
ments and a short textual description of each
requirement, we were afraid that they would have
problems with understanding what the Product
Owner really wanted (question 1). This was
partly true during the first Sprint (although the
average grade is still on the positive side of the
Likert scale), but the situation improved signifi-
cantly during the second Sprint through better
communication between the students and the
Product Owner. This shows the importance of a
customer representative being a member of the
development team.

After the first Sprint the students had a neutral
opinion regarding the adequacy of the initial effort
estimation provided in the Product Backlog (ques-
tion 2). It is interesting to note that during the
Sprint some student teams decreased the initial
estimates and reported their tasks to be completed
in less time than planned at the beginning.
However, the Sprint review meeting revealed that
their solutions were merely prototypes that worked
properly if the user entered correct data, but failed
in the case of mistakes. After explaining again that
each application should be fully tested and resis-
tant to misuse before being considered ‘done’ the
attitude of these students towards effort estimation
changed as indicated by the increased grade after
Sprint 2.

The answers to question 8§ are also positive and
show that the majority of students agreed with the
amount of work required. However, this is the only
question with a lower grade after the second
Sprint. We think that this is a consequence of the
fact that (considering the experience from the first
Sprint described in previous paragraph) we paid
more attention to strict testing and usability of the
code developed, thus giving students the feeling of
an increased workload. Nevertheless, the differ-

ence between the two grades is too small to be
significant.

The answers to the last two questions show that
the majority of students was satisfied with the work
on the project and the use of Scrum. Most of them
found the method useful and would recommend it
to others. This is in line with the findings of some
other studies, e.g., [36, 41] describing the students’
enthusiasm with regard to agile methods.

Pearson’s product-moment correlation was used
to identify similarities among patterns of responses
to different questions. Table 2 shows a significant
positive correlation between question 9 and ques-
tions 1, 3, 4, 5 and 6, leading to the conclusion that
the overall satisfaction with the work on a Scrum
project depends on the clarity of the requirements
specified in the Product Backlog, clear rules for the
maintenance of the Sprint Backlog, appropriate
administrative workload, and good co-operation
with the ScrumMaster and the Product Owner.
The positive correlation between questions 3 and 5
also indicates that the ScrumMaster plays an
important role in facilitating the maintenance of
the Sprint Backlog. The high correlation between
questions 5 and 6 must be interpreted cautiously
since the roles of ScrumMaster and Product Owner
were played by the same person on project A.
Nevertheless, a good ScrumMaster can contribute
a great deal to improving the co-operation between
the Product Owner and the development team.
Finally, the positive correlation between questions
1 and 3 shows that a clear specification of require-
ments in the Product Backlog is an important
prerequisite for efficient maintenance of the
Sprint Backlog.

Surprisingly, there is a significant negative corre-
lation between questions 7 and 8§ that is difficult to
explain. Detailed analysis of students’ comments
concerning these two questions revealed some
extreme cases. On the one hand, there were some
students who rated their co-operation with other
team members excellent, but meant that the final
polishing of application details in order to produce
a shippable code free of bugs required too much
work. On the other hand there was a student who
rated workload excellent, but was very unsatisfied
with the teamwork due to a slacker in his team.

Table 2. Pearson correlations (r)

1 2 3 4 5 6 7 8 9 10

1 Requirements 1.00 0.30 0.44* 0.18 0.29 0.10 -0.11 0.29 0.59*%* 0.06
2 Effort estimation 1.00 0.26 0.10 0.24 0.06 0.31 -0.09 0.18 0.06
3 Sprint Backlog 1.00 0.15 0.49*%* 0.29 -0.14 0.24 0.41%* 0.33
4 Administration 1.00 0.24 0.22 0.32 -0.16 0.50** 0.24
5 ScrumMaster 1.00 0.78*%% 0.32 -0.02 0.63** —0.09
6 Product Owner 1.00 0.26 -0.09 0.49** 0.05
7 Teamwork .00 -0.58** (.11 -0.14
8 Workload 1.00 0.11 0.00
9 Satisfaction 1.00 0.17
10 Scrum Method 1.00

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

Teaching Scrum through Team-Project Work 103

Table 3. Results of the final survey at the end of the course (Part I)

1 Do you support the decision to run the course as a capstone project providing students with necessary knowledge through solving
a practical problem in a semi-industrial environment?
a) yes 30 100.0%
b) no 0 0.0%
2 How useful is the course?
a) the course is useful and interesting 21 70.0%
b) the course is useful 5 16.7%
¢) the course is not useful 3 10.0%
d) the course is not useful and uninteresting 1 3.3%
3 How do you rate the course in comparison to other courses in the final year of your study?
a) better 14 46.7%
b) approximately the same 13 43.3%
c) worse 1 3.3%
d) no answer 2 6.7%
4 How do you rate the objectivity of examination?
a) very bad 1 3.3%
b) bad 0 0.0%
c) average 2 6.7%
d) very good 8 26.7%
e) excellent 19 63.3%
5 Does the course contribute to your employability and professional career?
a) yes 27 90.0%
b) no 3 10.0%

Unfortunately, we could not find a significant
correlation between question 10 and other ques-
tions. It seems that students’ satisfaction with
Scrum depends mostly on the ease of the Sprint
Backlog maintenance (= 0.33) and the amount of
additional administrative workload (r = 0.24).

4.2 Final Survey at the End of the Course

The final survey at the end of the course was also
anonymous and was answered by all students
except one (N = 30). It consisted of two parts.
Results of the first part concerning the general
evaluation of the course are presented in Table 3,
while the results of the second part dealing with
students’ opinions regarding the benefits of Scrum
are gathered in Table 4.

4.2.1 General evaluation of the course

General evaluation of the course clearly
confirmed our hypothesis that students prefer
learning Scrum through practical project work
than formal lectures. The answers to question 1
show a unanimous support for the decision to run

the course as a capstone project enabling them to
learn by solving an almost-real problem. Compu-
ter Science curricula at universities in Slovenia
usually lack such courses, therefore a comment
of one of the students that this was the only real
problem that he had worked on during his studies
was not a surprise. Accordingly, the great majority
of students (86.67%) found the course useful or
useful and interesting (question 2). The answers to
question 3 also show that students were satisfied
with the course. Almost half of them felt that the
course was better than other courses in the final
year of their study and only one of them rated the
course as worse.

There was no formal exam, and students’ grades
were obtained taking into consideration the
amount of Product Backlog accomplished, the
quality of software and documentation developed
as well as the instructors’ judgment on how well
the team worked together, maintained the Sprint
Backlog and kept to schedule during both Sprints.
Answers to question 4 show that the great majority
considered the grades that they obtained to be fair

Table 4. Results of the final survey at the end of the course (Part II)

One-sample
t-test
Mean Std. dev. (t-value)
1 The product becomes a series of manageable chunks. 4.33 0.88 7.90%*
2 Progress is made, even when requirements are not stable. 3.19 0.88 1.10
3 Everything is visible to everyone. 4.19 0.74 8.37**
4 Team communication improves. 4.04 0.90 6.00%*
5 The Team shares successes along the way and at the end. 4.59 0.57 14.46**
6 Customers see on-time delivery of increments. 4.07 0.78 7.15%*
7 Customers obtain frequent feedback on how the product actually works. 3.93 1.00 4.83%*
8 A relationship with the customer develops, trust builds, and knowledge grows. 4.19 0.79 7.83%*
9 A culture is created where everyone expects the project to succeed. 4.15 0.86 6.91**

##p < 0.01.

104 V. Mahnic

and correct. Most of students also found the
course beneficial to their employability and profes-
sional career (question 5).

4.2.2 Students’ opinions regarding Scrum benefits

The second part of survey consisted of nine
assertions regarding Scrum benefits as reported
in [6]. For each assertion students were asked to
specify how much they agree (or disagree) using a
5-point Likert scale (1 ‘Strongly Disagree’ to 5
‘Strongly Agree’). Three questionnaires that were
not answered completely were removed from
analysis. The consistency of students’ responses
was checked by computing the average measure
ICC wusing the absolute agreement two-way
random effects model. The ICC value of 0.829
indicates that the survey data were reliable
enough to substantiate appropriate conclusions.

The one-sample t-test was used again to verify
the null hypothesis that student opinions are
neutral regarding the cited benefits. Results in
Table 4 show a statistically significant positive
level of agreement with all assertions except asser-
tion 2, thus rejecting 8 null hypotheses out of 9.

Seven assertions obtained an average grade
greater than 4. Students strongly agreed that
Scrum enables teams to share successes throughout
the project (assertion 5), helps to split the product
into a series of manageable chunks (assertion 1),
makes everything visible to everyone (assertion 3),
improves customer relationships (assertion 8),
creates a culture where everyone expects the project
to succeed (assertion 9), and enables customers to
see on-time delivery of increments (assertion 6).

There was also an evident agreement with asser-
tions 4 and 7 concerning improved team commun-
ication and customer feedback on how the product
really works.

It seems that the only assertion students were
not sure about was the progress in the case of
unstable requirements, although this grade is
slightly positive, too. We think that this is a
consequence of the fact that the course consisted
of only two Sprints and (due to limited course
duration) we could not simulate a quickly chan-
ging environment to provide students with the
necessary experience.

4.3 Sprint Retrospective Meetings

In addition to surveys, the Sprint retrospective
meetings were an excellent opportunity to discuss
students’ opinions and gather their suggestions for
improvement. We organized a formal Sprint retro-
spective meeting at the end of each Sprint (and
before the beginning of the next one) as prescribed
by the Scrum method. At the meeting each Team
was asked to answer two questions: (1) What went
well during the last Sprint; and (2) What could be
improved in the next Sprint. Potential improve-
ments were prioritized and discussed in order to
make the development process more effective and
enjoyable for the next Sprint.

At the first retrospective meeting students

reported a positive experience with Scrum,
encouraging them to begin work on the project
early and to work consistently rather than procras-
tinate. Additionally, they found Scrum helpful in
establishing good communication within their
teams. On the other hand they felt the need to
improve the definition of tasks in the Sprint Back-
log and their allocation to individual team
members in a way that would enable uniform
distribution of the workload. Experience from
the first Sprint showed that some teams did not
pay enough attention to testing and integration;
therefore, all teams were strongly advised to
include the corresponding tasks into their Sprint
Backlogs. The next improvement referred to better
communication between the teams and both
Product Owners in order to provide students
with timely answers to their questions regarding
Product Backlog requirements.

At the second retrospective meeting, students
reported that the improved knowledge of Scrum
(as well as of the technology they used) helped
them to organize their work better and progress
more quickly. They paid more attention to testing
and integration, but mostly planned these tasks to
take place at the end of the Sprint. Therefore, an
improvement was suggested that the students test
and integrate throughout the Sprint as often as
possible. A collocated customer representative
should also be available to execute acceptance
tests instead of having to wait for customers’
remarks until the Sprint review meeting.

The issue of overhead was discussed at both
meetings since the question of administrative
workload caused by the maintenance of the
Sprint Backlog and recording work spent was
rated worse than others (although still positive).
We believe that students see this work as unpro-
ductive, but think it is much lower than traditional
heavy methods of software development. Repre-
sentatives of the participating company that also
attended the meetings helped us to convince the
students that most companies request employees to
report on the amount of work actually spent on
different tasks, and that successful project manage-
ment is impossible without a clear definition of the
tasks and their distribution between team
members. Therefore, some additional administra-
tive work is inevitably present in all real projects.

5. TEACHER’S OBSERVATIONS

It had already become evident during the course
that the majority of students are enthusiastic about
the practical approach used in the course and the
use of Scrum. They provided the data required for
monitoring performance on time and—except for
two freeloaders—tried to do their best to contri-
bute to the success of their teams. Nevertheless, the
course also presented some dilemmas regarding the
amount of coaching needed in order to improve
the final result of the students’ projects.

Teaching Scrum through Team-Project Work

5.1 Monitoring Performance

According to the third aim of the course a great
deal of the teacher’s attention was devoted to
performance measurement. Although the results
of the survey (see question 4 in Table 1) did not
confirm our hypothesis that the administrative
work required by the Scrum method does not
represent a significant additional workload,
collecting data on the hours spent and hours
remaining for each task in the Sprint Backlog
proved to be useful for the computation of differ-
ent performance indicators. In addition to the
burn-down chart proposed by Scrum and repre-
senting the total amount of work remaining on
each day of the Sprint, the computation of the
earned value method (EVM) [54] schedule and cost

105

performance indexes (SPI and CPI) was intro-
duced in order to obtain a complete insight into
project performance. While other studies dealing
with the use of EVM within Scrum (e.g., [55, 56])
describe the computation of earned value at the
release level, we introduced the computation of
EVM indexes at the Sprint level as proposed in [46,
47]. This approach provided the values of SPI and
CPI on a daily basis, thus enabling an immediate
response in the case of deviation from the plan. An
analysis of the burn-down, SPI and CPI charts of
different teams gave the course an additional
research component that rendered it more inter-
esting.

Figures 3, 4 and 5 represent an example of
performance monitoring in Sprint 2 for one of

400

360 e
300 e

250

200
150

100

a0

Wotk Remaining (hours)

0 1 2 3 4

7]

& 7 g 9

Consecutive Number of Daily Scrum Meeting

Fig. 3.

Sprint Burn-down Chart (Team #3, Sprint #2) representing the total amount of work remaining (in hours).

= 1.8
]
£ L8 /\\\
o 1.4
§ 17 A\// \
E 1 MW
€ os
o 06
@
s 04
s 02
1 2 3 4] G 7 a 9 10 11 12
Consecutive Number of Daily Scrum Meeting
Fig. 4. Schedule Performance Index (Team 3, Sprint 2).
18
E - /‘_——0————‘—\—._‘
£ 14 el + —,
& 92
c
o 1
E
5 08 —
E 06
- D4
g 0.2
g o
1] T T T T

1 2 3 4]

B

i 8 3

Consecutive Number of Daily Scrum Meeting

Fig. 5. Cost Performance Index (Team 3, Sprint 2).

106 V. Mahnic

the student teams. The total amount of work
remaining, shown in Figure 3, and the earned
value SPI and CPI indexes, shown in Figures 4
and 5, were computed after each Daily Scrum
meeting, which took place twice a week as
described in Section 2. Therefore, the horizontal
axis represents the consecutive numbers of the
Daily Scrum meetings and the value 0 on the
horizontal axis of Figure 3 corresponds to the
initial state after the Sprint planning meeting. In
a real Scrum project the aforementioned values
should be computed every day and the horizontal
axis should represent the number of days that had
elapsed since the beginning of the Sprint.

The computation of the SPI and CPI proved to
be simple and required only one additional metric:
the number of hours spent on each task recorded in
the Sprint Backlog after each Daily Scrum meet-
ing. In our calculations we assumed the hourly rate
to be equal for all students. However, in practice,
the cost of an engineering hour should be main-
tained for each developer (or each task type)
separately.

Although the burn-down chart was a valuable
tool for monitoring performance it did not provide
information about the effort spent and work effec-
tiveness. For this reason the use of additional
indicators was beneficial if we wanted to have
full insight into the project performance. While
the SPI provided similar information to the burn-
down chart, the CPI enabled the actual labour cost
to be compared with the plan, considering the
values of hours spent and hours remaining main-
tained in the Sprint Backlog.

These graphs helped us to monitor the progress
of the student teams more closely and to discover
potential problems early. For example, the Sprint
Burn-down Chart in Figure 3 clearly shows that at
the beginning of the Sprint the amount of work
remaining (as reported by the team) diminished
faster than planned, a situation quite opposite to
the late project experiences usually reported in the
literature. The same effect was also seen from the
SPI graph in Figure 4, showing unusually high
values of SPI. Examining this situation we found
out that the team members declared some tasks to
be done without thorough testing and without
assuring that the functionality developed met the
end user needs. In order to solve this problem the
team had to allocate additional time for reworking
and testing, causing an increase in the amount of
work remaining and a decrease of the SPI after the
Daily Scrum #5. In this way, the early discovery of a
problem helped the team to make corrective actions
in time and to complete the Sprint successfully.

On the other hand the CPI remained high (see
Figure 5) even after the allocation of additional
time, indicating that the team needed less money to
complete the tasks than planned at the beginning
of the Sprint. This could be a sign of the high
productivity of the team (this team was one of the
best), but also a sign of poor planning. In fact, the
course revealed that estimating the amount of time

needed for individual tasks is not easy and needs
more experience than students have. In some cases
the high value of CPI was also a consequence of
the ‘releasing before done’ effect described in the
next section.

5.2 Balancing Coaching and Self-Organization

In spite of the fact that student surveys clearly
indicated that the course was successful, the
evaluation of the students’ projects presented
some questions regarding the quality of their
work. Only two teams out of seven produced
code that was really shippable and could be (with
some minor improvements) used in practice. Three
teams developed solutions that formally offered
the required functionality, but lacked robustness,
reliability and professional polish. The other two
teams developed individual functions, but did not
succeed in integrating them completely into a
workable solution.

The quality of the students’ projects could be
improved by stricter coaching, but in this case we
would sacrifice the principle of self-organization
advocated by Scrum. Therefore, an important
issue in designing such a course is the maintenance
of balance between strict coaching and self-organ-
ization. In our case the first aim was to follow the
Scrum method strictly since the course was also
used to study the students’ perceptions about
Scrum and the computation of EVM indexes.
For this reason the principle of self-organization
was given priority. It was up to student teams to
decide about the roles of each team member and
the methods and tools used for the implementation
of the requested functionality. Consequently, the
roles within the teams were not always adequately
assigned and the requirement specifications were
seldom elaborated further in discussions with the
Product Owner (who also played the role of the
end customer). Additionally, the first Sprint review
meeting revealed that some teams did not fully
understand the meaning of task being ‘done’, but
sometimes declared the tasks to be completed
without thorough testing and checking compliance
with end user needs. This effect of ‘releasing before
done’ meant that the amount of work remaining as
reported by some teams did not reflect reality, but
was decreasing too quickly, thus giving a false
impression of the project being ahead of schedule
and the team being more efficient than expected.

This experience should be considered by those
designing similar courses in the future. The teacher
should adapt the balance between coaching and
self-organization to the aims of their course. While
more coaching enables a higher quality of final
product, self-organization provides experiential
learning through discovery and participation
rather than following instructions. We tried to
resolve these dilemmas by a means provided by
Scrum, i.e., through Sprint retrospective meetings.
At these meetings the ScrumMaster and the
Product Owner played a more active role than
prescribed by Scrum, providing (in addition to

Teaching Scrum through Team-Project Work 107

students’ opinions) their views of what was good
and what went wrong in the previous Sprint and
suggesting improvements for the next one. Teams
that succeeded in adopting the suggested improve-
ments obtained better results.

Our plan is to increase the amount of coaching
in the future. In spite of good results of the survey
regarding the clarity of the Product Backlog, we
plan to pay more attention to requirements speci-
fications. We expect that the more rigorous intro-
duction of wuser stories (especially acceptance
criteria) and story point estimates will enhance
the understanding of requirements, improve plan-
ning, and cut the number of changes requested by
end users at the Sprint review meetings. Addition-
ally, students will be requested to clearly assign
team roles in order to achieve cross-functionality
and not underestimate the roles of tester and
collocating representative of end user.

6. SUMMARY OF FINDINGS, POSSIBLE
GENERALIZATIONS AND LIMITATIONS
OF THE STUDY

Survey results have confirmed our initial
hypothesis that students prefer learning through
practical project work to that of formal lectures.
Detailed statistical analysis after Sprint 2 has also
shown a significant positive attitude regarding all
aspects of our course except administrative work-
load. It is important that the students’ opinions
improved as they gained more knowledge about
Scrum. Additionally, a high level of agreement
with anecdotal evidence about the benefits of
Scrum reported in the literature has been found,
confirming 8 assertions out of 9.

Cross-correlation of survey items has revealed
that the satisfaction with the work on a Scrum
project is strongly correlated with the quality of
requirements specified in the Product Backlog,
clear rules for the maintenance of the Sprint Back-
log, appropriate administrative workload, and
good co-operation with the ScrumMaster and the
Product Owner. Collecting data about work spent
has proved beneficial in monitoring progress not
only through the amount of work remaining, but
also by measuring earned value in terms of sche-
dule and cost. However, there has not been statis-
tically significant agreement with our hypothesis
that collecting data on work spent does not hinder
the agility of the method.

These results can be generalized in two ways:
from the standpoint of teaching a similar course
and from that of using Scrum in industry. From
the standpoint of teaching Scrum it is evident that
students prefer the practical approach that enables
learning through project work. Therefore, the
results concerning the students’ perceptions of
Scrum are valid under the assumption that the
course is delivered in a similar way and the
instructors pay enough attention to the aforemen-
tioned items that affect satisfaction with the work

on a Scrum project. From our point of view, the
roles of the ScrumMaster and the Product Owner
are crucial to the success of such a course. Playing
these roles requires much effort on the part of
instructors as they must not only monitor the
progress, but on many occasions also collaborate
with team members contributing to the success of
the project. There is no guarantee that the same
results will be obtained if the course is delivered as
formal lectures.

From the standpoint of using Scrum in industry
the main limitation of our study is that it was
conducted with students in an academic environ-
ment. However, in order to increase the degree of
validity we made every effort to simulate an
industrial environment as closely as possible.
Students worked on almost-real projects (one of
them was defined in co-operation with a software
company) and followed the Scrum method as
strictly as their other academic duties allowed.
The study relied on senior students enrolled in
their last semester, many of them having some
professional experience, thus blurring the line
between these students and novice professionals.
Berander [57] identified that in a project setting
where the students have made a true commitment,
students tend to act and think more like profes-
sionals. A recent study by Svahnberg et al. [58] has
also shown that it may be possible to influence
students to provide answers that are in line with
industrial practice. For all these reasons we argue
that the results of our study are applicable to
situations (currently very frequent) when compa-
nies start introducing Scrum into their develop-
ment process, but do not have enough developers
with adequate knowledge of Scrum.

7. CONCLUSIONS

In the Spring semester of the Academic Year
2008/09 the final Software Engineering course at
the University of Ljubljana was redesigned in
order to expose students to agile methods, parti-
cularly Scrum. Scrum was chosen because it is one
of the most widespread agile methods, but lacks
more detailed evaluation and empirical evidence
about its applicability. For this reason, in addition
to offering a new up-to-date content the course
also had a strong research component, serving as a
case study for evaluation of students’ perceptions
and introducing measurement of earned value at
Sprint level.

In order to provide students with an almost-real
environment the course was designed as a capstone
project with only a small amount of formal lectures
needed to introduce agile concepts and Scrum. The
majority of the course was dedicated to project
work during which student teams developed real
projects strictly following the Scrum method. By
choosing relevant projects from real life the course
not only provided students with a knowledge of
Scrum, but also with professional skills needed in

108

an industry environment. One of the projects was
defined in co-operation with a software company
that provided Product Backlog with requirement
specifications.

Experience after teaching the course for the first
time has shown that the course achieved all three
objectives.

1. Students enjoyed learning Scrum in a close to
real world environment.

2. Their perceptions about Scrum were positive,
and the empirical evaluation based on surveys
conducted after each Sprint and at the end of
the course confirmed the anecdotal evidence
about the strengths of Scrum reported in the
literature.

3. Data from Sprint Backlogs collected during the
course enabled the computation of earned value
schedule and cost performance indexes as pro-
posed in some of our previous works. Comput-

V. Mahnic

ing SPI and CPI on a daily basis complemented
the Sprint burn-down charts and enabled an
immediate reaction in case of deviations from
the plan.

Experience has also shown that a balance between
coaching and self-organization is important when
teaching Scrum to beginners. While self-organ-
ization is useful from the pedagogical point of
view, providing experiential learning through
discovery and participation, strict coaching is
important to achieve a quality end product. Since
our course closely followed Scrum rules we gave
priority to self-organization trying to improve the
development process through discussions at Sprint
retrospective meetings. However, in the future we
also plan to increase the amount of coaching,
paying more attention to the precise specification
of requirements and the assignment of appropriate
roles within student teams.

REFERENCES

. P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta, Agile Software Development Methods, VTT
Electronic, Espoo, 2002.

2. D. Cohen, M. Lindvall and P. Costa, An introduction to agile methods, Advances in Computers, 62,
2004, 2-67.

3. CMMI, CMMI® for Development, Version 1.2. CMU/SEI-2006-TR-008, Software Engineering
Institute, Carnegie Mellon University, 2006.

4. Manifesto for Agile Software Development, http://www.agilemanifesto.org/, 2001 (viewed
11.8.2009).

5. K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 2000.

6. L. Rising and N. S. Janoff, The Scrum software development process for small teams, /EEE
Software, 17(4), 2000, pp. 26-32.

7. K. Schwaber and M. Beedle, Agile Software Development with Scrum, Prentice-Hall, Upper Saddle
River, 2002.

8. K. Schwaber, Agile Project Management with Scrum, Microsoft Press, Redmond, 2004.

9. J. A. Highsmith, Adaptive Software Development: A Collaborative Approach to Managing Complex
Systems, Dorset House Publisher, New York, 2000.

10. A. Cockburn, Agile Software Development, Addison-Wesley, Boston, 2002.

11. S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven Development, Prentice-Hall,
Upper Saddle River, 2002.

12. J. Stapleton, DSDM, Dynamic Systems Development Method: the Method in Practice, Addison-
Wesley, Reading, 1997.

13. M. Poppendieck and T. Poppendieck, Lean Software Development: An Agile Toolkit, Addison-
Wesley, Boston, 2003.

14. M. Ceschi, A. Sillitti, G. Succi and S. De Panfilis, Project management in plan-based and agile
companies, IEEE Software, 22(3), 2005, pp. 21-27.

15. C. Mann and F. Maurer, A case study on the impact of Scrum on overtime and customer
satisfaction, Proceedings of the Agile Development Conference (ADC’05), 2005, pp. 70-79.

16. B. Schatz and 1. Abdelshafi, Primavera gets agile: A successful transition to agile development,
IEEE Software, 22(3), 2005, pp. 36-42.

17. V. Mahnic and S. Drnovscek, Introducing agile methods in the development of university
information systems, Proceedings of the 12th International Conference of European University
Information Systems EUNIS 2006, Tartu, Estonia, 2006, pp. 61-68.

18. J. Fecarotta, MyBoeingFleet and agile software development, Proceedings of the Agile 2008
Conference, 2008, pp. 135-139.

19. K. Scotland and A. Boutin, Integrating scrum with the process framework at Yahoo! Europe,
Proceedings of the Agile 2008 Conference, 2008, pp. 191-195.

20. J. Scott, R. Johnson and M. McCullough, Executing agile in a structured organization:
government, Proceedings of the Agile 2008 Conference, 2008, pp. 166-170.

21. S. W. Ambler, Has agile peaked? Let’s look at the numbers, Dr. Dobb’s Journal, http://
www.ddj.com/architect/207600615?pgno=1, 2008 (viewed 11.8.2009).

22. VersionOne, 3rd Annual Survey: 2008, The state of agile development, Full Data Report, http://
www.versionone.com/pdf/3rd AnnualStateOfAgile_FullDataReport.pdf, 2008 (viewed 11.8.2009).

23. M. M. Miiller and W. F. Tichy, Case study: extreme programming in a university environment,
Proceedings of the 23rd International Conference on Software Engineering (ICSE’01), 2001.

24.

A. Shukla and L. Williams, Adapting extreme programming for a core software engineering
course, Proceedings of the 15th Conference on Software Engineering Education and Training
(CSEET02), 2002.

25

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Teaching Scrum through Team-Project Work

. O. Hazzan and Y. Dubinsky, Teaching a software development methodology: the case of extreme
programming, Proceedings of the 16th Conference on Software Engineering Education and Training
(CSEET03), 2003.

Y. Dubinsky and O. Hazzan, eXtreme programming as a framework for student-project coaching
in computer science capstone courses, Proceedings of the IEEE International Conference on
Software-Science, Technology & Engineering (SwSTE’03), 2003.

H. Srikanth, L. Williams, E. Wiebe, C. Miller and S. Balik, On pair rotation in computer science
course, Proceedings of the 17th Conference on Software Engineering Education and Training
(CSEET04), 2004.

L. Williams, L. Layman, J. Osborne and N. Katira, Examining the compatibility of student pair
programmers, Proceedings of the Agile 2006 Conference, 2006, pp. 411-420.

L. Williams, Lessons learned from seven years of pair programming at North Carolina State
University, ACM SIGCSE Bulletin, 39(4), 2007, pp. 79-83.

P. J. Schroeder and D. Rothe, Teaching unit testing using test-driven development, Workshop on
Teaching Software Testing 2005, http://www.testingeducation.org/conference/wtstd/pjs_wtst4.pdf,
2005 (viewed 11.8.2009).

A. Tinkham and C. Kaner, Experiences teaching a course in programmer testing, Proceedings of
the Agile Development Conference (ACD’05), 2005, pp. 298-305.

D. S. Janzen and H. Saiedian, Test-driven learning: intrinsic integration of testing into the CS/SE
curriculum, Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE’06), 2006, pp. 254-258.

J. Bowyer and J Hughes, Assessing undergraduate experience of continuous integration and test-
driven development, Proceedings of the 28th International Conference on Software Engineering
(ICSE’06), 2006, pp. 691-694.

B. Carlson, An agile classroom experience: teaching TDD and refactoring, Proceedings of the Agile
2008 Conference, 2008, pp. 465-469.

S. Xu and V. Rajlich, Empirical validation of test-driven pair programming in game development,
Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science
and 1st IEEEIACIS International Workshop on Component-Based Software Engineering, Software
Architecture and Reuse (ICIS-COMSAR’06), 2006, pp. 500-505.

P. Reed, An Agile classroom experience, Proceedings of the Agile 2008 Conference, 2008, pp. 478
483.

R. P. van Til, M. W. Tracey, S. Sengupta and G. Fliedner, Teaching lean with an interdisciplinary
problem-solving learning approach, International Journal of Engineering Education, 25(1), 173-180,
2009.

L. Layman, L. Williams, K. Slaten, S. Berenson and M. Vouk, Addressing diverse needs through a
balance of agile and plan-driven software development methodologies in the core software
engineering course, International Journal of Engineering Education, 24(4), 2008, pp. 659-670.

T. Dingseyr, T. Dyba and P. Abrahamsson, A preliminary roadmap for empirical research on agile
software development, Proceedings of the Agile 2008 Conference, 2008, pp. 83-94.

A. C. Edmondson and S.E. McManus, Methodological fit in management field research, Academy
of Management Review, 32(4), 2007, pp. 1155-1179.

G. Melnik and F. Maurer, A cross-program investigation of students’ perceptions of agile
methods, Proceedings of the 27th International Conference on Software Engineering (ICSE’0S5),
2005, pp. 481-487.

F. Macias, M. Holcombe and M. Gheorghe, A formal experiment comparing extreme program-
ming with traditional software construction, Proceedings of the Fourth Mexican International
Conference on Computer Science (ENC’03), 2003.

P. N. Robillard and M. Dulipovici, Teaching agile versus disciplined processes, International
Journal of Engineering Education, 24(4), 2008, pp. 671-680.

T. Dyba and T. Dingseyr, Empirical studies of agile software development: A systematic review,
Information and Software Technology, 50, 2008, pp. 833-859.

VersionOne, 2nd Annual Survey ‘The State of Agile Development’, Survey Highlights & Full Data
Report, http://www.versionone.com/pdf/StateOfAgileDevelopmet2_FullDataReport.pdf, 2007
(viewed 16.11.2009).

V. Mahnic and I. Vrana, Using stakeholder driven process performance measurement for
monitoring the performance of a Scrum based software development process, Electrotechnical
Review, Ljubljana, 74(5), 2007, pp. 241-247.

V. Mahnic and N. Zabkar, Introducing CMMI measurement and analysis practices into scrum-
based software development process, International Journal of Mathematics and Computers in
Simulation, 1(1), 2007, pp. 65-72.

S. Smith, M. Mannion and C. Hastie, Encouraging the development of transferable skills through
effective group project work, Software Engineering in Higher Education II, edited by J-L. Uso, P.
Mitic and L. J. Sucharov, Computational Mechanics Publications, Southampton, UK, 1996.

L. Neal, The development of the technical, professional and personal competencies of software
engineering students through work based learning, Software Engineering in Higher Education I,
edited by J-L. Uso, P. Mitic and L. J. Sucharov, Computational Mechanics Publications,
Southampton, UK, 1996.

J. D. Tedford, R. H. A. Seidel and M. A. Islam, Teamwork and its influence on learning in industry
based projects, Proceedings of the 10th UICEE Annual Conference on Engineering Education,
Bangkok, March 2007, pp. 203-206.

A. Drobnic Vidic, Development of transferable skills within an engineering science context using
problem-based learning, International Journal of Engineering Education, 24(6), 2008, pp. 1071—
1077.

P. E. Shrout and J. L. Fleiss, Intraclass correlations: Uses in assessing rater reliability,
Psychological Bulletin, 86(2), 1979, pp. 420-428.

109

110

54.

55.

56.

57.

58.

V. Mahnic

. D. Garson, Reliability Analysis, Statnotes from North Carolina State Univesity, http:/faculty.
chass.ncsu.edu/garson/PA765/reliab.htm (viewed 25.10.2009).

F. T. Anbari, Earned value project management method and extensions, Project Management
Journal, 34(4), 2003, pp. 12-23.

T. Sulaiman, B. Barton and T. Blackburn, Agile EVM—Earned value management in Scrum
projects, Proceedings of the Agile 2006 Conference, 2006, pp. 7-16.

A. Cabri and M. Griffiths, Earned value and agile reporting, Proceedings of the Agile 2006
Conference, 2006, pp. 17-22.

P. Berander, Using students as subjects in requirements prioritization, Proceedings of the 2004
International Symposium on Empirical Software Engineering (ISESE’04), 2004, pp. 167-176.

M. Svahnberg, A. Aurum and C. Wohlin, Using students as subjects—An empirical evaluation,
Proceedings of the Second International Symposium on Empirical Software Engineering and
Measurement (ESEM 2008), October 9-10, 2008, Kaiserslautern, Germany, 2008, pp. 288-290.

Viljan Mahnic is an Associate Professor and the Head of the Software Engineering
Laboratory at the Faculty of Computer and Information Science of the University of

Lj

ubljana, Slovenia. His teaching and research interests include agile software development

methods, software process improvement, empirical software engineering and software
measurement. He received his Ph.D. in Computer Science from the University of Ljubljana

in

1990.

