
Computer-Based Knowledge,
Self-Assessment and Training*

MARKO CÏ UPICÂ , ZÏ ELJKA MIHAJLOVICÂ

University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Electronics,
Microelectronics, Computer and Intelligent Systems, Unska 3, 10 000 Zagreb, Croatia.
E-mail: zeljka.mihajlovic@fer.hr

We present the design, technical issues and use of a software environment for learning and
educational assessment. Our proposed system offers individualized tasks for each student and
allows variations and modifications of the tasks (with instructor supervision). The system is
designed to support distance learning, but it can also support and enrich education in a traditional
classroom. Using application-based computer graphics tasks, we present various potential uses of
the proposed software environment. Computer graphics tasks are highly demanding for inter-
activity, visual presentation and simulation. The proposed design addresses the most demanding
graphics challenges. We demonstrate that the proposed framework applies to different courses and
that this mode of learning is highly motivating for students.

Keywords: educational technology; programming environments; unsupervised learning; com-
puter graphics software

1. INTRODUCTION

DURING THE LAST TWO DECADES, much
effort has been made to incorporate computers,
electronic devices, and Internet technologies into
educational settings in an attempt to provide a
new, rich and integrated platform with a variety of
systems and content that helps users acquire new
knowledge. At first, existing Internet technologies
were applied in education in an attempt to enrich
traditional courses given by human instructors.
For example, chats enabled synchronous user-to-
user and user-to-instructor communication,
forums and e-mails enabled asynchronous com-
munication, web applications offered a means to
distribute course materials (such as Microsoft
PowerPoint presentations, PDF documents, or
audio and video materials). Popular products
that provide such services include Moodle [1] and
BlackBoard [2]. In addition, a product focused on
course management support and laboratory exer-
cises is described in [3].

Today, however, we expect available technolo-
gies to offer much more. Available technologies
have a wide range of modes that can enrich
education with visualization elements, virtual
environments [4], remote real laboratories [5],
simulation [6], interaction and collaboration envir-
onments in the context of a real or virtual univer-
sity. Such technologies make learning attractive,
exciting and effective. In particular, they involve
students in an active and interactive mode of
learning, not only in course materials, but also in
the design process for those materials [7]. Learning

through game playing is also emerging as a
successful approach to education [8].

Instead of speaking of PDF or PowerPoint files,
which are understandable only by humans, now we
can speak about learning objects: objects enriched
by metadata that are suitable for learning, educa-
tion or training, as specified by the Learning
Object Metadata specification [9], Sharable
Content Object Reference Model specification
[10] or by IMS specifications [11]. Objects
described using these specifications are suitable
for computer processing. Standards such as IMS
Simple Sequencing and IMS Learning Design
allow us to specify the teaching process. Specifica-
tions such as IEEE Public and Private Information
for the learner (PAPI) [12] and IMS Learner
Information Package [11] enable us to describe
the users' model (current users' knowledge and
abilities). When properly used and combined,
these specifications permit a software system to
select what, how and when should be offered to the
user during learning. An example of such a system
is ALE [13].

An important part of this education paradigm is
the ability to provide a personalized learning
experience [14], [15]. For example, Dolog et al. in
[15] illustrate this with a scenario in which a person
was given a task to create a module for an e-
banking application for a local bank. This task
required knowledge of the Java programming
language and an understanding of banking opera-
tions and security considerations, as well as addi-
tional specialized knowledge. Given the current
user's profile and other constraints, such as the
time available for learning and the budget, the
software was tasked with recommending a per-* Accepted 22 July 2009.

111

Int. J. Engng Ed. Vol. 26, No. 1, pp. 111±125, 2010 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2010 TEMPUS Publications.



sonalized selection of learning materials and learn-
ing activities that would contribute most to the
user's learning goals and help the user do the given
task.

Today, a large quantity of learning material must
be distributed among many systems, and that
materials as well as users can migrate from one
institution that uses a particular set of systems to
another that uses different systems. In a distributed
environment, such systems must be able to share,
query, transfer and consider user profiles and learn-
ing objects. Aroyo et al. [16] described the current
state of interoperability for adaptive learning
components and concluded that, with respect to
interoperability either between systems or between
formal models, current solutions are unsatisfactory.
Kravcik [17], [18] discussed usage of the semantic
web to overcome some of the existing issues.

New approaches to e-learning platforms are
based on services instead of on a monolithic
structure [19]. Such platforms will support feder-
ated exchange between services, various levels of
interoperability and service composition through
orchestration and choreography [20]. Service
composition and choreography will allow for
dynamic discovery and assembly of e-learning
services in order to satisfy user requirements [19].

An often-stated goal that should enable broader
usage of educational systems is to improve usabil-
ity while minimizing the complexity of the author-
ing tools. A successful example is the WINDS
project [21], [13] with which authors without
programming skills can produce adaptive course
materials by specifying declarative knowledge for
adaptation by means of pedagogical metadata.

Knowledge assessment is an important part of
every educational system. Educational systems can
make use of such assessments to check whether
users have learned particular concepts, and update
users' profiles accordingly. When used as a supple-
ment to traditional courses taught by instructors,
computer-based knowledge assessment could be
used to save work that would otherwise fall to
human graders, speed-up the grading process and
significantly improve objectivity. Many popular
software tools such as MOODLE [1] offer know-
ledge assessment through quizzes with questions
written by the instructor. The software presents
either all or a random selection of the prepared
questions to users during assessment. Considering
the fact that not all questions are equally difficult,
algorithms for question creation and selection are
still being developed (e.g. [22], [23] ). Tovarozek et
al. [24] describe a method for generating adaptive
assessments that is suitable for well-structured
domains. Assessment as a part of an e-learning
platform is described by the IMS Question and
Test Interface Specification [11].

Brusilovsky [25], [26] and Pathak [27] suggest the
use of individualized questions for self- assessment
of programming knowledge. They show that para-
meterized code fragments may be used for student
assessment, and can lead to significant improve-

ment in students' knowledge. The important obser-
vation to come from their investigations is that
students themselves value the system highly as a
very helpful learning tool.

Our focus is on producing a scalable solution for
generating individualized questions that include
individualized multimedia content, complex
generation of algorithms and work in cooperation
with other systems to actually prepare the ques-
tions. The first version of the described framework
and prototype implementation was introduced in
[28]. We present an improved and extended
version, which is also open-source. Also, we
describe the application and usage of the system
we developed based on our framework in a field
that inherently requires a rich multimedia environ-
ment for presenting and responding to questions:
computer graphics. The integrated system requires
strong support from our software framework.
While the system individualizes parameterized
graphic questions and exercises that require inter-
active graphic solutions, the instructor can adjust
the parameters range and consequently tune the
complexity of the assignment. The parameterized
approach is also an important concept for per-
sonalized access to learning environments [15].
Namely, the personalized approach anticipates
complexity control, and our framework provides
it directly. Our framework should also enable easy
inclusion of various algorithms, such as in [23].
Unfortunately, this approach implies incompat-
ibilities with specifications such as IMS QTI Ques-
tion and Test Interoperability [11]; the reasons for
this are explained near the end.

2. REQUIREMENTS AND KEY IDEAS

Let us first discuss some of the important require-
ments for the software environment. Although we
focus on student assignments and exams, note that
we are not just interested in simple problems. The
idea is to create dynamic and versatile problems that
emphasize higher order thinking skills rather than
just drills and practice. Thus, whenever possible, we
include some parameters to change not only the
numbers in a problem, but also to dynamically
choose between similar problems. During the learn-
ing process, students may practice on assignments
as many times as they want. Instructors can observe
their progress through records of this process.
Another important requirement is that of auto-
evaluation. For some problems, this is very difficult
to arrange: some tasks have pictures for results, and
for others the procedure is equally important if not
more than the final result. Adaptability is another
important goal. The system must guide students to
successive tasks based on the correctness of their
previous answers, influencing the learning process
adaptively.

The key components of the system should be
designed independently of the presentation tech-
nology: therefore, we use a multi-technology plat-

M. CÏ upicÂ & ZÏ . MihajlovicÂ112



form. It is important to bear in mind during the
design process current and future tasks and
requirements, as well as to design basic compo-
nents that are independent of the presentation
technology.

2.1 Dynamics capability
Dynamics capability enables identification of

problems that can use a template for generating
questions from problems with statically preloaded
question text based on the problem-type and the
preloaded possible answers. Typical ABC ques-
tions supported in many popular e-learning
systems do not have this capability; a user must
preload the question text and possible answers, the
order of which can then be randomized. Rando-
mization capability means that the same question
usually will be presented with a random order of
answers to different students.

The simplest form of a problem with dynamics
capability is a problem that can be stated in a
pseudo-language as follows: `What is the result of
addition of {$a} and {$b}?' A correct solution
would be specified as `{$a}+{$b}', and constraints
may be written as `a, b are integers from interval [0,
50]'. More advanced dynamics capability is asso-
ciated with problems that can dynamically gener-
ate multimedia objects, such as individualized
images and incorporate them into questions.
Another example of the use of dynamics capability
is the creation of a scene with objects specified by a
predefined set of parameters, such as the initial and
transformed positions of the object. In that case,
the number and range of parameters for transfor-
mations should be defined to create a figure that
describes the problem. For each student, a differ-
ent scene is created by randomization of the
parameters. Dynamic capabilities are used not
only in the presentation of problems, but in their
solutions as well. The creation of a BSP (Binary
Space Partitioning) tree for a given scene is an
example of an interactive and dynamic construc-
tion of solutions for a particular problem.

2.2 Auto-evaluation
Auto-evaluation capability means that the soft-

ware can automatically evaluate an answer and

determine its correctness. For the most complex
problems, sometimes a simulator is required to
evaluate the result. An important advantage of
auto-evaluation is that it gives students feedback
on the correctness of the results that they have
achieved. Another advantage of auto-evaluation is
objectivity in the process of validating assign-
ments; in addition it relieves instructors or teach-
ing assistants from the job of grading the
responses. A representative problem that cannot
undergo auto-evaluation is an essay-like problem,
where the student writes the answer in natural
language. Some problems where the student must
enter textual answers can have auto-evaluation
capability, but only in a limited sense. If the
answer is limited to only a few predetermined
words, the software can verify the answers by
using regular expressions.

2.3 Adaptability
When presenting the problems, there are also

some important concerns about their ordering. In
short, what problems will the assignments consti-
tute, how many questions will be asked and will the
correctness of a previous question have any influ-
ence on the selection of the next question? All of
these concerns relate to the same issue: adaptabil-
ity. If the assignment is adaptable, on what
grounds is this adaptability based? Adaptability
can be based on a simple algorithm or on more
complex artificial intelligence algorithms and
methods.

When planning our framework, we chose not to
fix any of these issues and capabilities, but to
rather build a framework capable of supporting
all of them.

2.4 Multi-technology presentation
A particular challenge is to allow mobility and

support a diversity of presentation technologies.
These capabilities are frequently lacking in other
software products. We would like to provide a user
with a variety of presentation options. Presenta-
tion technologies could be provided through a
local GUI-based application, through a Web
browser or through a cell phone. This issue is
important for two reasons: first, we would like

Fig. 1. Multi-technology access to our StudTest system.

Computer-Based Knowledge, Self-Assessment and Training 113



our architecture definition to be technology inde-
pendent; second, we recognize that the choice of
technology may determine possible user responses.
Depending on the chosen presentation technology,
an answer could be submitted by clicking or
selecting something, by entering text or a
number, or perhaps by drawing. Figure 1 demon-
strates the multi-technology access to our system,
StudTest. StudTest supports different presentation
technologies over widely adopted protocols, such
as HTTP and TCP/IP.

3. PRACTICAL CONSIDERATIONS

Course policy is another issue that must be
taken into account. A typical example is a policy
such as `the student must pass test X, where the
number of attempts is unlimited', or `students are
not allowed to take test Y if they have not passed
test X'. Also, some courses have the following
policy: `Students can solve test X as many times
as they want; we will grade them by their last
attempt'. Such a policy is commonly used to
ensure that students have learned the course mate-
rial. Another example of a course policy is `Test X
can be taken for no longer than 15 minutes'.
Different course policies may be applied during
the learning and exam phases.

Security is another important issue: that is, who
will be able to access the tests, and when? If testing
is supervised for the entire cohort of students,

although students are tested in small groups (e.g.
there are a limited number of available computers),
care must be taken to disallow access to the tests
for students who are not under staff supervision.
Today, this is typically accomplished by password
protection. To disable password leakage to outside
students (e.g. through cell-phones), IP-based
control can also be used and/or passwords can be
changed on a regular basis.

The last issue that we will analyse is scalability
and handling of heavy loads. The system should be
designed to handle a large number of users (the
order of thousands). But depending on the specific
course organization, situations are possible where
many of the students using the system simulta-
neously during a time-constrained testing can
generate heavy peak loads. In those conditions, it
is critical for the system to have short response
times. This can be achieved in two ways: by
building a clustered system with load-balancing
support or by building a system based on asyn-
chronous operation that can postpone less impor-
tant operations during heavy loading conditions
(or both). In order to offer the possibility of both
solutions, we defined an asynchronous operations-
based framework that can easily be clustered.

4. MODEL DEFINITION

We first define the core elements of our archi-
tecture and describe the basic concepts and inter-

Fig. 2. Core elements of the StudTest architecture.

M. CÏ upicÂ & ZÏ . MihajlovicÂ114



actions between them. We define Test as a collec-
tion of all students' attempts to solve given assign-
ments.

4.1 Core elements
The core of the system connects the TestCon-

troller, TestGrader, TestSupervisor and TestCh-
ecker with the TestDescriptor (Fig. 2). The
TestDescriptor describes a test. Through the
Core, the instructor defines the main objectives
for the test. From the list of all available problems,
the instructor selects a set of problems appropriate
for the particular exam or by stating examination
objectives. The number of problems in that set is
greater than or equal to the number of problems in
TestInstance that will be generated. If the number
is larger, problems can be randomly chosen. Test-
Controller determines which problems are to be
included according to the specification. In addi-
tion, TestController, according to policies defined
in TestDescriptor, determines whether the test is
adaptive. TestGrader determines the score accord-
ing to the specified evaluation (details will be
further explained). TestDescriptor will enable
inclusion and configuration of available security
constraints.

Practical considerations are included through
TestSupervisor and TestChecker. TestSupervisor
supervises test solving. Rules are defined in the
policies of the TestDescriptor. An example of a
rule is a time limit. TestChecker verifies prerequi-
sites. For example, the number of attempts to
create TestInstances could be a specified prerequi-
site.

After the test description is ready, the student
may go through TestController to initiate a
TestInstance. The TestInstance is a concrete test
that will be presented to the student. For each
student and TestDescriptor, the TestInstances are
grouped into collections by means of Test. Thus,
the Test is a wrapper that is constructed for each
student. Test can be visualized as a folder contain-
ing all of the student's attempts to solve the
specified TestDescriptor.

The most crucial part of the test design concerns
ProblemInstance generation. Our framework
heavily relies on support of the concept of prlets
(pronounced `pearl-ets'), which we introduce here
(the term is inspired by servlets, which are
currently widely accepted and used as a core
Java-based technology for Web applications,
standardized by Sun (JSR-000053) ). It is also
worth mentioning that a similar attempt was
made at Ramapo College of New Jersey. That
team introduced problems with more than the
usual capabilities, known as problettes, that can
be used in most Java enabled Web browsers in
form of Java Applets [29].

4.2 Prlets
To offer a variety of possibilities and capabil-

ities, we have defined the concept of Prlet, and
constructed the rest of the framework to be a Prlet

container: a component-based environment that
executes Prlets and supports pluggable objects.
The general idea behind Prlets is that they repre-
sent pluggable components that have public names
and can be referred to globally, which means they
can also be easily shared. They contain the
complete logic needed for problem editing, instan-
tiation and potentially evaluation. This framework
operates with several categories of objects, as
follows. The Prlet is a component composed of
the following objects: ProblemGenerator, one or
more ProblemEditors, ProblemInstantiator and
ProblemEvaluator, as shown in Fig. 3.

The ProblemGenerator stores basic information
about a Prlet, including its public name, problem
type and whether or not it can evaluate answers
automatically. The ProblemEditor allows for
customization of a problem template based on
concrete questions (to be introduced later as
ProblemInstances). Through ProblemEditor, a
instructor specifies ranges for parameters for parti-
cular problems, making them more or less
complex. A parameter could define, for example,
the number of elements in a scene. Obviously, a
scene with more elements presents a more challen-
ging task than one with fewer. ProblemEditor also
includes supported technology identifiers. Tech-
nology identifiers influence problem presentation.
Editing of problem template parameters can be
supported in a narrower range of technologies
where standard HTML is mandatory; however, a
new editor must be written for each technology.

The ProblemInstantiator generates concrete
problem based on the current parameters of the
problem template. Most of the power of the
presented framework lies exactly hereÐproblem
instantiation allows the integration of separate
components (e.g. communication with other
servers on the Internet, Web services for help,
etc.) that can be used to create a new instance of
a problem. Since ProblemInstantiator knows the
type of problem it creates, all the necessary data
imposed by that type will be stored in ProblemIn-
stance's repository (private data storage).

The ProblemEvaluator evaluates and generates
comments on user solutions, determines their

Fig. 3. Prlet structure and associated elements.

Computer-Based Knowledge, Self-Assessment and Training 115



correctness using a predefined measure and gener-
ates the correct solution in the case where solution
generation is computable, supported and no
correct answer was provided by the user. Due to
this division of labour, evaluators not only imple-
ment complex algorithms themselves, but may also
use other resources for evaluation purposes, such
as contacting other servers on the LAN or the
Internet in order to use prepared clusters for
necessary calculations, and so on.

ProblemType represents a technique for
presenting a problem to a user. Typical problem
types are single±correct±ABC-question, multiple±
correct±ABC±question, input±textOrNumber±
question, input±listOf±textOrNumber±question
and CustomProblemPanel. The latter was defined
in order to support problems that will be
presented uniquely in a graphical user interface.
The system offers rich tools such as drawing for
the solution input. In our framework, we separate
this information from the Prlet itself in order to
distinguish type-presentation issues from problem-
logic issues, leaving only the logic issues as a part
of Prlet. This separation also enables implementa-
tion of multi-platform presentation capability.
Namely, when the user's client contacts StudTest
(Fig. 1), as a part of the handshaking process it
must send a TechnologyIdentifier telling the
StudTest what test presentation technology the
client supports. Based on this parameter, StudTest
can than select for each ProblemType (Fig. 3) an
appropriate ProblemRenderer component, which
knows how to appropriately present that problem
type to the user using the user's own technology.

Hence, the ProblemRenderer is a component
used to present problems of a specified type
using the selected technology. Thanks to this
separation of parameters, all that is needed is to
implement added support for new technologies is
an additional set of renderers for the specific
technology to be added; that is, no Prlet needs to
be aware of the change.

4.3 Protocol
To allow for customization, StudTest defines an

assessment protocol based on finite automata,
shown in Fig. 4, with a typical scenario given in
Fig. 5.

When a student first requests a test by following
a link in web browser, StudTest creates a new test
instance for that student. At that point, the test
instance is not initialized. Next, StudTest starts the
preparation phase. The TestController selects an
initial set of problems and instantiates them (Fig. 4
and Fig. 5). When all problem instances have been
instantiated, a test instance is prepared. Next,
checkers defined in the test descriptor are
consulted to see if the student can access the test
instance. Access can be denied if, for example, the
student's request comes from a disallowed IP
address, or if the time for the test has not yet
come. If any of the checkers deny access, the test
instance state will remain uninitialized. If all the

checkers grant access, the test instance is enabled.
All of the defined supervisors are then advised that
testing has begun. Once the first question is
selected and displayed, the test instance transitions
to the state `Solving in progress'. StudTest waits
for the student's solution.

When the student enters a solution and requests
the next problem, all supervisors are consulted to
see if the interaction is still allowed. The student
solution is saved, and the next problem is
displayed. TestController determines which
actions will be available to the student. A typical
set of actions will include `Next problem' and
`Previous problem' (if such exists), direct naviga-
tion to all test problems, test suspension and
`Finish test'. If test suspension is requested, the
test instance will be frozen rather than proceeding
to the next problem. This would be allowed in
cases where a student is permitted to solve the test
over a few days.

When the student solves the test and triggers the
`Finish test' action, the test instance transitions to
the `Solving finished' state. Evaluators for all
problem instances are started, followed by config-
ured graders. When all problem instances have
been evaluated and graded, the test controller
calculates the total score for the test instance,
and determines whether the student passed or
failed.

Since StudTest offers such a fine-grained exam-
ination protocol, other examination scenarios are
possible. For example, given an appropriate test
controller, a limited number of problem instances
can be selected during the preparation phase.
Upon completion of the preliminary assessment,
TestController can immediately begin evaluating
them and select additional problems based on the

Fig. 4. Simplified examination protocol.

M. CÏ upicÂ & ZÏ . MihajlovicÂ116



evaluation result, thus creating an adaptive test.
Unfortunately, this protocol is incompatible with
IMS QTI Question and Test Interoperability. The
reason for this is that the general idea behind
StudTest is to allow flexibility such that skilled
programmers can easily add new test checkers, test
supervisors, test graders and test controllers. New
problem types can easily be defined and added,
enabling and supporting development of new
problems suited for students and assessment of
their knowledge. Programmers of average skill
can easily develop new problems by using
already-defined problem types. However, in order
to do this, some sort of programming knowledge is
necessary, making XML-based problem descrip-
tions, which comprise the foundation of IMS QTI,
inadequate.

5. IMPLEMENTATION OF PROBLEMS
BASED ON StudTest FRAMEWORK

5.1 Implementation of computer graphics problems
The StudTest framework was implemented in

the Java programming language. We chose to use
Java technology for two reasons: first, to our
knowledge, only Java offers a stable and portable
platform for application development. Because of
its broad acceptance and the existence of Virtual
Machine implementations for almost all widely-
used operating systems, Java is the optimal choice.
The second reason is that our goal is to support
graphically-rich problems with complex user inter-
faces and complex methods for solution input.
Considering the tendency to move assessment
systems to the Web and HTML, it is again clear

that the only portable platform for these purposes
is offered by Java Applets. An additional reason to
use Java is that some kind of scripting language is
required in order to support dynamic problems;
today, JavaScript is often used for that purpose.
JavaScript was initially introduced as a simple
scripting language for simple client-side computa-
tions and event handling, and was never meant to
be a full-fledged object-oriented programming
language. We have decided to base all of our
scripting needs on a regular and widely accepted
object-oriented programming language [30] with
modern language constructs and built-in support
for concurrency.

5.2 Some computer graphics problems
Many elements of standard computer graphics

problems were implemented based on the StudTest
framework. First, we present the use of the Stud-
Test framework to test for some fundamental
computer graphics algorithms such as Bresenham's
line drawing algorithm and depth-buffer technique
[31].

Bresenham's line algorithm determines which
points in a two-dimensional discrete raster space
should be drawn in order to form a close approx-
imation of a straight line between two given points
T1 and T2. Each pixel is represented as enlarged.
After selection of a pixel, a value for this pixel can
be assigned with an input box. Pixels are chosen
according to the integer value corresponding to the
pixel centre which is the closest to the ideal line
between T1 and T2. For each raster point that is
selected as a line point, an input box is opened and
an error value determined by the algorithm can be
entered. Hence, to determine the error values, a

Fig. 5. Typical examination scenario.

Computer-Based Knowledge, Self-Assessment and Training 117



student should follow the Bresenham's algorithm
by hand and obtain the required values. Evalua-
tion of correctness is performed based on the
selected pixels and their actual error values. In
Fig. 6. on the left side, the Bresenham's line
drawing algorithm is presented in the real environ-
ment. This particular exam had fourteen problems
and the Bresenham's line drawing algorithm is
presented as seventh. A student may choose the
next problem directly by selecting the problem
number on the right or by selecting Previous or
Next. Current solutions may be saved and contin-
ued later by choosing Suspend. Finish will begin
the evaluation of the solutions.

Another simple example is the depth-buffer
technique. In the first row, three polygons with
appropriate depth (z) values and different colours
are drawn. The goal is to find a value in the depth-
buffer for each pixel and to select the appropriate
colour in the colour-buffer (second row). The
initial value is zero (white) and the view is oriented

from the positive z-axis to the origin (Fig. 6. right).
Selection of a pixel in the depth buffer changes its
depth value and selection of a pixel in the colour
buffer changes the colour between four possible
options. Each pixel may be selected using the
mouse or a slider at the bottom of the screen.
Although these are simple tasks, they are never-
theless important to grasp for understanding basic
computer graphics techniques, and are appropriate
for demonstration of the problem implementation
in the StudTest framework.

5.3 BSP Tree
The BSP (Binary Space Partitioning) tree parti-

tioning technique is one of the most successful
space partitioning techniques, since it allows both
object modelling and classification via a single
structure. To learn how to create and handle BSP
partitioning trees, three problem types were posed.
The first was to create a tree structure for a given
scene, as given on the left side of Fig. 7. When the

Fig. 6. Examples of computer graphics problems. Bresenham's line drawing algorithm is shown on the left. In each raster point that
should be drawn an error value should be entered in the input box. Depth-buffer technique is shown on the right. In this problem three
polygons with appropriate depth values are given. The goal is to determine the final value in the depth-buffer and appropriate colours

in colour-buffer, after given polygons are drawn.

Fig. 7. Example of interactive BSP (Binary Space Partitioning) tree creation (left) with parameters for control of the BSP scene
complexity (right).

M. CÏ upicÂ & ZÏ . MihajlovicÂ118



`Add' function is active, each edge on the left is
selected and placed in an appropriate node on
the right, where a tree representation should
be built. Node 3, in this example, has been selected
as the root node. The first node on the positive side
is node 4, while on the negative side node 2 is
chosen.

If edge 7 is selected as the root node, then edges
0 and 2 should be divided. During creation of the
scene, all possible intersections are marked with
dots. Depending on the chosen order of the edges
in the tree structure, a student divides appropriate
edges. This example has been built using the
StudTest framework. Another version of the
same example has been created as a stand-alone
applet [32].

Figure 7 right presents the relevant parameters
in ProblemEditor for this example. To control the
complexity of the scene, the desired number of
edges or shapes (triangles, quadrilaterals) could be
placed in the scene, or chosen by random selection.
The number of edges ranges from two to nine and
number of shapes from one to six. Based on given
parameters for each student a new scene is created.
Possible interactions of edges are controlled by the
editor in order to keep the scene clear and obvious.
Evaluation of solution accuracy for this problem
depends on the relative position of each edge in the
tree structure with respect to the other edges in the
scene. Thus, partially correct solutions can also be
evaluated.

Another example with BSP trees is where the
scene, appropriate tree and camera position are
given in advance, but the node that contains the
camera position must be determined. For this
problem, the correctness of the solution can only
take a binary response: correct or not correct. A

third task is to generate a rendering order from the
furthest edge to the closest edge for a given scene,
BSP tree and camera position. This task is usually
called BTF: Back to Front sorting (http://
www.zemris.fer.hr/predmeti/rg/seminari/
07_Prokopec/index.html /Examples/Building a
Rendering Order).

5.4 Implementation of artificial intelligence
problems

We present two examples of problems imple-
mented for a course on artificial intelligence:
neural networks and fuzzy control systems. Both
of these problems deal with soft-computing;
however, we have implemented a number of
other problems covering propositional logic, predi-
cate logic, Bayesian classifiers, and so on. We show
screenshots of both problems from Problem Devel-
opment Framework, a set of tools accompanying
the StudTest framework that enable offline prob-
lem development and testing before actual deploy-
ment in StudTest.

1) Learning a neural network based on the back-
propagation algorithm

Neural networks [33] are a fundamental soft-
computing model that can solve hard problems
such as nonlinear prediction and pattern recogni-
tion. Neural networks are composed from many
smaller and simpler processing elements called
artificial neurons, which are then interconnected.
There are many types of neural network architec-
tures, and one of the most well understood is that
of feed-forward artificial neural networks. Know-
ledge in such a network is distributed across the
neuron interconnections, modelled as weights.
Correct weights are learned by the network

Fig. 8. Examples of artificial intelligence problems: learning a neural network with back-propagation algorithm (left), fuzzy control
system (right).

Computer-Based Knowledge, Self-Assessment and Training 119



during the learning phase; back-propagation is one
of the most frequently used weight-learning algo-
rithms. The developed problem is shown in Fig. 8
left. During problem instantiation, a network
architecture is randomly created (with feed-
forwardness enforced) and initial weights are
randomized. Then, the student is asked to perform
one step of the back-propagation algorithm for the
given network input and requested output, and to
calculate new weights. A helper object renders the
created network graphically. As we can see, each
student gets a different neural network with differ-
ent set of inputs and outputs, and must solve the
problem alone.

2) Fuzzy control systems
Fuzzy control systems [34] are widely used to

control consumer electronics. They can work with
imprecise data and are based on IF-THEN rules.
They are grounded in the theory of fuzzy sets and
fuzzy relations. Figure 8. right shows an example
of a fuzzy control problem. A student is presented
with a fuzzy control system having two inputs (X
and Y) and a single output (Z). Input values X and
Y, and output value Z are linguistic variables, with
terms X0, X1, X2, Y0, Y1, Y2 serving as inputs and
Z0, Z1, Z2 as outputs. An appropriate fuzzy set
models each of these terms and is displayed both
graphically and textually. Fuzzy IF-THEN rules
are then defined. Students are asked to determine
the system output for a given input. In this prob-
lem, both the input terms and associated fuzzy sets
and the output terms and associated fuzzy sets are
generated randomly. IF-THEN rules are also
created randomly, as is the system input value, so
that different students get different problems to
solve. In order to evaluate this kind of problem,
the evaluator must implement a fuzzy control
system programmatically, which can easily
determine the correct answer. Helpers render
the created fuzzy sets and linguistic variables
graphically.

5.5 Implementation of digital logic problems
We present two sample problems implemented

for a Digital Logic course: determining the
Boolean function for a given CMOS implementa-
tion, and realizing the Boolean function in PLA
circuits. These represent a small but illustrative
subset of the problems developed to cover the
material in this course.

1) Determining the Boolean function for a given
CMOS implementation

Boolean functions are often implemented in
CMOS since this technology has many satisfactory
properties, with the most significant being low
power consumption [35]. Students learn about
CMOS technology in a digital logic course. The
first problem we model creates random Boolean
functions and asks students to draw their imple-
mentations [28]. The circuit is checked via simula-
tion. The simulator developed to evaluate this
problem is also publicly available online [36], so
that students can experiment with various digital
CMOS circuits.

Figure 9 left shows the second problem. For
each student, the problem instantiator constructs a
random Boolean function, implements it in
CMOS, and then presents the CMOS schema to
the student. The student must then analyse this
circuit and determine which function it imple-
ments. In order to solve this problem correctly,
the student must know how Boolean functions are
implemented in CMOS, and enter the algebraic
form of the Boolean function. The evaluator will
then check if the solution is correct by comparing
the logical output of the original function to the
student's solution. The helper renders the CMOS
schema graphically.

2) Realization of Boolean functions in PLA
circuits

The PLA circuit is one of programmable digital
circuits [37] taught in the digital logic course (along

Fig. 9. Examples of digital logic problems: CMOS implementation of Boolean function (left), programming of PLA (right).

M. CÏ upicÂ & ZÏ . MihajlovicÂ120



with PAL-s and FPGA-s). In order to help
students to better learn how these circuits work,
we have developed a problem as shown in Fig. 9
right. In this problem, the student is presented with
a PLA of one of the following types: AND-OR,
OR-AND, NAND-NAND, NOR-NOR. The
problem instantiator randomly creates the alge-
braic form of a Boolean function that the student
must implement. This problem is presented to the
student with a Java applet, which allows the
student to solve the problem by clicking on
programmable interconnection switches. Figure 9
right shows a partially programmed PLA for a
function g. Once solved, the problem evaluator will
simulate the PLA circuit programmed by the
student in order to verify that it was correctly
programmed. Note that special care must be
taken with this kind of problem, since there can
be hundreds or thousands of equally correct solu-
tions, so simple comparison with the expected
solution is not appropriate.

6. EVALUATION

For evaluation, the hypotheses we wanted to test
were that the proposed architecture provides a
reusable, extensible, robust framework for web-
based assessment that significantly improves
students' knowledge in an attractive and qual-
itative way. The proposed framework has been
used since 2005 to support several courses: digital
logic, computer graphics, interactive computer
graphics and lately artificial intelligence.

The framework was first tested on homework
assignments for a course in digital logic in 2005±
06. The course included three assignments with
approximately fifteen problems each. Table 1
summarizes the number of students, homework
assignments, problems per assignment and total
number of problems. The first column identifies a
course as digital logic (DL), computer graphics
(CG), interactive computer graphics (ICG) and
artificial intelligence (AL) and its associated
academic year. The second column presents the
number of students in each generation. In the
academic year 2005/06 there were a considerable
number of students in DL who did not pass the
course in a previous year, so the total number of
students was very high. During the next few years,
the number of students stabilized. The transition

period corresponded with the start of the Bologna
process at our University in 2005.

During the first DL homework assignment in
2005±06, the allotted period for the assignment
was one week and the deadline for finishing the
assignment was fixed. Most students waited until
the last minute to press the `Finish' button and
send their results. Because of simultaneous access
by a large number of students, there was a case of
data overload and the whole system collapsed.
When the system was restored, the deadline was
extended to avoid complaints from angry students.
All the results were correctly uploaded and eval-
uated. The main drawbacks of the system were
exposed and repaired. After the initial period, the
system worked well. The last column in Table 1
present the total number of problems in the pool of
all problems, which grows each year.

The proposed framework supports development
of various question types and problems, including
interactive ones such as BSP tree building. Our
framework is extensible and reusable because the
core part of the software architecture is the same
for all courses; only the prlets differ for each
problem, as presented in Fig. 2. Reusability is
also exhibited by the fact that the same problems
can be used to produce individualized assessments
for a large class and for different semesters. This is
because they are parameterized. The whole system
appears to be very robust, since several thousands
of students can use the system to solve their
assignments. Hence, peak overload is handled
properly.

The total number of problems in the system
library grows each year, so the probability that
two students will get the same problem types
continually decreases. Over time, students noticed
that there was no way to cheat on the assignments.
Moreover, instructors strongly encouraged the
students to learn, practice and understand each
problem type because similar ones would appear in
the midterm or final exam. It is important to
convince the students of that fact, because it
provides additional motivation for them to solve
the given assignments by themselves, beginning
with the second homework. We noticed that
some of them chose to work in groups, not to
cheat, but rather to help each other and to learn
how to solve different problem types. Therefore,
our goal of motivating the students to learn and
improve their knowledge was achieved.

Table 1. Summary of the use of StudTest framework in five courses

Course, academic
year

Number of
students

Number of homework
assignments

Number of problems per
assignment

Total number of
problems

DL, 2005±2006 1103 3 15 50
DL, 2006±2007 948 3 20 70
DL, 2007±2008 834 5 10 90
CG, 2006±2007 58 1 10 20
CG, 2007±2008 a 65 2 8 25
ICG, 2007±2008 b 101 2 8 25
AI, 2007±2008 94 1 10 10

Computer-Based Knowledge, Self-Assessment and Training 121



The incentive for students in the digital logic
course was 15 credit points (15%). Students said
that they preferred more distributed assessments in
the semester with fewer problems, so we replaced
three homework assignments of twenty problems
each with five homework assignments of fifteen
problems each. We also changed successive access
to problems with direct access to each problem. A
similar experience was reported in [26].

In CG in 2006±07, homework was optional, but
five extra credit points (5%) were offered for
completing it. In CG in 2007±08, two groups
were studied, one given an optional five extra
credit points (CG 2007±08), and one given five
credit points for the course ICG 2007±08 (5%).
Students suggested increasing the number of credit
points because of the required time to solve the
homework. In the AI course, students who solved
homework correctly were given 1.67 credit points.
In Table 2, we can see that the number of students
who solved more than one homework assignment
(column `1 HW') is very high, especially when
more credit points were offered. The number of
students who solved all proposed homework
assignments is slightly smaller, but it is important
to notice that the proportion of students who
solved all homework assignments among students
who passed the exam was especially high: almost
all cases were around 90% or higher.

For an objective evaluation of StudTest, we
observed the results of the homework assignments,
two midterms and the final exam. The final course
grade was a combination of homework assign-

ments, three exams, laboratory work, and class-
room activities. Students also completed entry,
midterm and final questionnaires during the seme-
ster that were very useful for course review. From
those data we calculated correlations. To show that
a prediction of exam results can be made based on
homework results, we used regression analysis to
establish the relationship between these results.

Over the last three years, we collected a signifi-
cant quantity of data from the use of StudTest in
various courses. We evaluated the linear relation-
ship between exam results and appropriate home-
work covering the same course material using
Pearson's correlation (linear relationship model).

As exemplified in Table 3, in DL during 2005±
2006, we evaluated the linear relationship between
the first homework (HW1) and the first midterm
exam, the second homework (HW2) and the
second midterm exam (MI2) and finally between
the third homework (HW3) and the final exam
(ZI). In the regression analysis we included only
those students who completed both the homework
and the related exam in the number of observa-
tions. This is the reason why the number of
students in the sample is less than the number of
students in the course (due to illness, travel, etc).
An analysis using Pearson's correlation coefficient
indicated a statistically significant linear relation-
ship between HW1 and MI1 (r = 0.394), HW2 and
MI2 (r = 0.412), and HW3 and ZI (r = 0.341),
assuming p=5%. We obtained similar results, all
with statistically significant linear relationships,
for all other courses and academic years.

Table 2. Statistics of the use of StudTest framework in homework assignments and corresponding exam results

Course, academic year 1 HW all HW Pass exam (all HW & Pass exam)

DL, 2005±2006 1070 (97%) 973 (88%) 814 (74%) 797 (98%)
DL, 2006±2007 919 (97%) 793 (84%) 723 (76%) 698 (97%)
DL, 2007±2008 804 (96%) 626 (75%) 601 (72%) 540 (90%)
CG, 2006±2007 32 (55%) 32 (55%) 27 (47%) 26 (96%)
CG, 2007±2008 37 (57%) 21 (32%) 29 (45%) 20 (69%)
ICG, 2007±2008 88 (87%) 78 (77%) 83 (82%) 75 (90%)
AI, 2007±2008 73 (78%) 73 (78%) 77 (82%) 67 (87%)

Table 3. Regression analysis. Exam results and corresponding activity in homework assignments

intercept predictor variable
Num. of

Course Predict. observ. R R square coef. t stat p value coef. t stat p value

DL0506 HW1-MI1 1022 0.394 0.155 3.330 5.537 3.91E-08 0.105 13.689 2.76E-39
HW2-MI2 1031 0.412 0.170 3.360 5.879 5.56E-09 0.103 14.493 1.86E-43
HW3-ZI 876 0.341 0.116 7.517 12.256 5.55E-32 0.090 10.717 2.88E-25

DL0607 HW1-MI1 894 0.402 0.161 2.460 5.172 2.85E-07 1.601 13.094 5.84E-36
HW2-MI2 834 0.371 0.138 4.228 9.586 1.02E-20 1.445 11.525 1.28E-28
HW3-ZI 779 0.336 0.113 5.734 6.963 7.07E-12 2.265 9.960 4.48E-22

DL0708 HW1-MI1 766 0.230 0.053 4.487 7.317 6.42E-13 1.587 6.544 1.09E-10
HW2,3-MI2 713 0.323 0.104 5.227 6.763 2.81E-11 1.557 9.103 8.7E-19
HW4,5-ZI 647 0.364 0.133 3.746 4.048 5.8E-05 2.009 9.938 9.51E-22

CG0607 HW-KZ2 27 0.473 0.224 10.814 7.013 2.37E-07 1.099 2.686 0.012665
CG0708 HW2-ZI 19 0.476 0.226 10.128 2.559 0.020329 13.981 2.231 0.03946
ICG0708 HW2-ZI 78 0.365 0.133 7.685 5.977 6.88E-08 5.842 3.419 0.001011

HW1-MI1 85 0.295 0.087 5.949 2.832 0.005798 7.512 2.815 0.006095
AI0708 HW3-ZI 65 0.265 0.070 6.712 2.171 0.033684 1.116 2.178 0.033194

M. CÏ upicÂ & ZÏ . MihajlovicÂ122



It is important here to mention that showing a
statistically significant linear relationship cannot
be interpreted as proving cause and effect.
However, students often told us that doing the
homework was a good way to prepare themselves
for exams and to try to solve many complex and
difficult problems. Also, some students who could
not solve the homework alone sought help, further
contributing to their improved results on both
homework and exams.

This clearly shows the benefits of including such
a system in a course: since students get their own
versions of the problems, they must solve the
problems themselves. If a student solves it incor-
rectly, the system can be configured to give the
student another newly-created instance of the
problem, letting the student learn and try again,
eventually resulting in better student knowledge.

7. NEW ISSUES IN THE LEARNING
PROCESS

Developing the framework for the system was
very demanding. Many students contributed to the
development of the StudTest framework, not only
by providing programming expertise but also with
their ideas and creativity. Experiences gained
through this project, for students and instructors,
were invaluable. Based on the StudTest frame-
work, problems for several courses were imple-
mented and tested on several generations of
students. In each new generation, the system was
improved and fresh ideas for the problem tasks
appeared. Student participation is always very
important in the definition of new problems,
because students have a different perspective on a
specific task from the instructors. From the
student's point of view, some particular problems
are difficult to understand and clarify: thus, it is
very important to define tasks such that solving is
directed toward understanding and learning.

Another important advantage of the proposed
system is that it makes the learning process attrac-
tive, since students must continually refocus their
attention each time a new scene is created until
they achieve full understanding. The auto-evalua-
tion component is crucial for asynchronous com-
munication, allowing the learning to occur on the
student's timetable. Multi-technology is
supported, so students can learn wherever and on
whatever platform they choose. Moreover, each
problem inspires the creation of a new one.
Students retained high enthusiasm and passion,
and influenced the continuous improvement of
course materials, not only in quality of the materi-
als but also in terms of new vision and challenges
for learning and assessment methods.

8. CONCLUSIONS

Currently, there are many attempts to make the
learning process better, more interesting and more

interactive. People are constantly changing, and
today, weÐthe digital immigrantsÐare trying to
visualise learning techniques for the generation of
digital natives. In this new world, students are
learning from digital materials; they learn by
playing games, by participating in virtual worlds
and by performing experiments in virtual and/or
remote laboratories or simulators. An important
part of this picture is problem-based learning, in
which learning is centred around problems that
must be understood and solved. Problems can be,
and often are, integrated in games, however,
usually very specialized ones. For instance, games
bundled with an excellent physics simulator are
useless for learning of quantum theory or optics.

We have demonstrated another approach, which
offers a context-free foundation for building
problems and performing assessments. Supported
problems can be quite simple, or very complex. They
can have a simple user interface, or rich graphical
interface. They can be instantiated and evaluated by
provided Java-based programs; for those purposes
they can even utilize arbitrary additional software
tools available on site (such as Wolfram's Mathe-
matica, MatLab, etc.). This kind of platform can be
utilized in many ways to enhance the learning
process or assess student knowledge.

In its simplest form, StudTest can be used as an
assessment tool. Given the problems, StudTest can
generate individualized questions for each student,
effectively preventing cheating. Given the fact that
problems support self-evaluation, results can be
made available to students immediately, providing
rapid feedback, which is appreciated by students.

StudTest can also be used as a tool for student
self-evaluation. Given the problems, teachers can
set up a number of small topic-focused tests, which
students can use to obtain an objective evaluation
of their topic-specific knowledge. This is particu-
larly important when preparing for formal exams.
These tests can be accessed multiple times; each
time generated problems will be different, which is
important to maintain students' interest.

Finally, students can learn through the creation
of new problems. To foster the development of
new problems, we have created a Problem Devel-
opment Framework, which is an environment
suitable for rapid problem creation. Each year we
provide an opportunity for certain students to try
and create a new problem from a given topic.
Being in such a situation, the students become
highly motivated to learn the topic, and to obtain
a deep understanding, since this is necessary for a
successful problem development, where questions
such as `what if this happens, and what if that
happens' occur constantly. Added value is that
developed problems remain in a problem database,
enabling progressively better knowledge assess-
ment and self-evaluation.

Feedback obtained from students is also very
positive. Many of them very much appreciate the
fact that they can perform a self-evaluation at their
own time and pace, and that they get an immediate

Computer-Based Knowledge, Self-Assessment and Training 123



feedback. Students involved in problem creation
may even be more satisfied, since they mastered the
topic. They were motivated and interested, and felt
that they have made a contribution to the follow-
ing generations of students.

Most importantly, StudTest is not a specific
system, but supports a wide range of applications,
which we demonstrated on three very different
university-level courses. In the future, we expect
that a number of involved courses will also become
larger. A repository of developed problems could
also be established to enable others to benefit from

problems that are already developed. We believe
that a described system for knowledge assessment
and training, which can work with complex
problems, is beneficial both for educators and for
students.

AcknowledgmentsÐWe would like to thank the many students
who participated in the realization of the basic framework for
their very enthusiastic involvement in this project. This work
has been carried out within projects 036-0362980-1921 Comput-
ing Environments for Ubiquitous Distributed Systems and 036-
0361994-1995 Universal Middleware Platform for e-learning
Systems funded by the Ministry of Science, Education and
Sport of the Republic of Croatia.

REFERENCES

1. Moodle, Available at http://www.moodle.org (Accessed September 2008).
2. The Blackboard Learning System, http://www.blackboard.com (Accessed September 2008).
3. V. GlavinicÂ, M. CÏ upicÂ, S. GrosÏ, S, Nescume, A system for managing student assignments, In

Proceedings of the First International Conference on Internet Technologies and Applications (ITA
05), Wrexham, North Wales, UK, 2005, pp. 233±238.

4. P. Wallace, Blending instructional design principles with computer game design: The development
of Descartes' cove, Proceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications 2005, Ed-Media, Montreal, Canada, 2005, pp. 402±407.

5. C. C. Ko, Ben M. Cheng, J. Chen, J. Zhang and K. C. Tan, A Web-based Laboratory on Control
of a Two-Degrees-of-Freedom Helicopter, Int. J. Eng. Educ., 21(6), 2005, pp. 1017±1030.

6. W. L. Chan, Z. Qu, Using XML/Java to Enhance an Online Learning Architecture for Engineering
Education, Int. J. Eng. Educ., 21(2), 2005, pp. 288±296.

7. H. Wang, Performing a course material enhancement process with asynchronous interactive online
system, Computers & Education, 48(4), 2007, pp. 567±581. 10.1016/j.compedu.2005.03.007

8. B. A. Foss and T. I. Eikaas, Game Play in Engineering Education Concept and Experimental
Results, Int. J. Eng. Educ., 22(5), 2006, pp. 1043±1052.

9. IEEE Standard for Learning Object Metadata, 2002, 1484.12.1, Available at http://ltsc.ieee.org/
wg12

10. SCORMÐSharable Content Object Reference Model specification, (2004), Available from: http://
www.adlnet.gov

11. IMS Global Learning Consortium Inc, IMS specifications, Available from: http://www.imsgloba-
l.org/specifications.html

12. IEEE PAPI. IEEE P1484.2.5/D8, 2002. Draft Standard for Learning TechnologyÐPublic and
Private Information (PAPI) for Learners (PAPI Learner).

13. M. Kravcik, M. Specht, Authoring Adaptive CoursesÐALE Approach. Advanced Technology for
Learning, 1(4), 2004, 215±220.

14. P. Dolog, N. Henze, W. Nejdl, M. Sintek, The personal reader: Personalizing and enriching
learning resources using semantic web technologies, In Proceedings of the Third International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH), Eindhoven, Nether-
lands, 2004, pp. 85±94.

15. P. Dolog, B. Simon, W. Nejdl, T. KlobucÏar, Personalizing access to learning networks. ACM
Transactions on internet technology. 8(2, Art 8), 2008, 10.1145/1323651.1323654 ..

16. L. Aroyo, P. Dolog, G-J. Houben, M. KravcÏõÂk, A. Naeve, M. Nilsson, F. Wild. Interoperability in
Personalized Adaptive Learning, Educ. Tech. Soc. 9(2), 2006, pp. 4±18.

17. M. KravcÏõÂk, and D. GasÏevicÂ, Adaptive hypermedia for the semantic web, In Proceedings of the
Joint international Workshop on Adaptivity, Personalization &Amp; the Semantic Web, (Odense,
Denmark, APS '06. ACM, New York, NY, 2006. pp. 3±10. http://doi.acm.org/10.1145/
1149933.1149935.

18. M. KravcÏõÂk, & D. GasÏevic, Leveraging the Semantic Web for Adaptive Education, J. Interactive
Media in Educ., (Adaptation and IMS Learning Design. Special Issue, ed. D. Burgos), (2007),
http://jime.open.ac.uk/2007/06/

19. D. Dagger, A. O'Connor, S. Lawless, E. Walsh, V. Wade, Service oriented eLearning platforms:
from monolithic systems to flexible services, IEEE Internet Computing Special Issue on Distance
Learning, doi: 10.1109/MIC, 2007, p. 70.

20. C. Feier, A. Polleres, R. Dumitru, J. Domingue, M. Stollberg, D. Fensel, Towards intelligent web
services: The web service modeling ontology (WSMO), Int. Conf. Intelligent Computing (ICIC).
2005.

21. M. KravcÏõÂk, M. Specht, R. Oppermann, Evaluation of WINDS Authoring Environment, In: De
Bra, P. & Nejdl, W. (Eds) Proceedings of Adaptive Hypermedia and Adaptive Web-Based Systems,
Springer, 2004, pp. 166±175.

22. D. N. Batanov, N. J. Dimmitt, & W. Chookittikul, Q&A teaching/learning model as a new basis
for developing educational software, In Proceedings of the 30th Annual Frontiers in Education ±
Vol. 01, October 18±21, 2000, F2B.12-18, doi: 10.1046/j.0266-4909.2002.04800.x

23. G. J. Hwang, P. Y. Yin, S. H. Yeh, A tabu search approach to generating test sheets for multiple
assessment criteria, IEEE Transact. Educ., 49(1), 2006, pp. 88±97.

M. CÏ upicÂ & ZÏ . MihajlovicÂ124



24. J. TvarozÏek, M. KravcÏõÂk, & M. BielikovaÂ, Towards Computerized Adaptive Assessment Based on
Structured Tasks, In Nejdl, W. et al. (Eds) Adaptive Hypermedia and Adaptive Web-Based Systems,
Springer Berlin / Heidelberg, 2008, 224±234.

25. P. Brusilovsky, and S. Sosnovsky, Engaging students to work with self-assessment questions: A
study of two approaches, In: Proceedings of the 10th Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE'2005, Monte de Caparica, Portugal), 2005,
pp. 251±255.

26. P. Brusilovsky and S. Sosnovsky, Individualized exercises for self-assessment of programming
knowledge: An evaluation of QuizPACK, J. Educ. Resour., Comput. 5(3), 2005, art. 6, DOI http://
doi.acm.org/10.1145/1163405.1163411.

27. S. Pathak and P. Brusilovsky, Assessing Student Programming Knowledge with Web-based
Dynamic Parameterized Quizzes. In: Barker, P. and Rebelsky, S. (Eds) Proc. of ED-
MEDIA'2002ÐWorld Conference on Educational Multimedia, Hypermedia and Telecommunica-
tions, Denver, CO, June 24±29, 2002, pp. 1548±1553.

28. V. GlavinicÂ, M. CÏ upicÂ, S. GrosÏ, StudTestÐa platform supporting complex and interactive
knowledge assessment, International Conference ICLÐInteractive Computer Aided Learning,
Villach, 2008.

29. ProblettesÐThe Home Page http://www.problets.org/
30. G. Booch, Object-oriented analysis and design with applications, 2nd ed, Addison Wesley, 1994.
31. D. Hearn and M. P. Baker, Computer Graphics with OpenGL, 3rd ed, Prentice Hall, 2003.
32. A. Prokopec, Z. Mihajlovic, Binary Space Partitioning Applet, Interactive applet for learning how

to create and use BSP trees, Available at: http://www.zemris.fer.hr/predmeti/rg/seminari/07_
Prokopec/index.html, 2007.

33. P. Picton, Neural Network, Palgrave Macmillan, 2Rev Ed edition, 2000.
34. H.-J. Zimmermann, Fuzzy Set TheoryÐand Its Applications, Kluwer Academic Publishers, 2nd ed,

1991.
35. D. D. Gajski, Principles of Digital Design, Prentice Hall, 1997.
36. M. CÏ upicÂ, Interactive Digital Circuit Simulator for CMOS Digital Circuits and Logical Gates,

Available at http://www.zemris.fer.hr/predmeti/de/Appleti/applet/applet.html (Accessed November
2008).

37. S. Brown, Z. Vranesic, Fundamentals of Digital Logic With VHDL Design McGraw-Hill, 2000.

Marko CÏ upicÂ received the B.S. degree in Computer Science in 2002 and the M.S. degree in
Computer Science in 2006 from the Faculty of Electrical Engineering and Computing,
University of Zagreb. He is currently a Researcher at the Department of Electronics,
Microelectronics, Computer and Intelligent Systems, of the University of Zagreb, Croatia.
His current research interests include soft computation and e-learning.

ZÏ eljka MihajlovicÂ received the B.S. degree in Electrical Engineering in 1988, the M.S. and
Ph.D. degrees in Computer Science in 1993 and 1998 respectively, from the Faculty of
Electrical Engineering and Computing, University of Zagreb. She is currently an Associate
Professor at the Department of Electronics, Microelectronics, Computer and Intelligent
Systems, of the University of Zagreb, Croatia. Her current research interests include
computer graphics and visualization algorithms, reconstruction techniques as well as e-
learning technologies.

Computer-Based Knowledge, Self-Assessment and Training 125


