Int. J. Engng Ed. Vol. 26, No. 3, pp. 584-592, 2010

Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2010 TEMPUS Publications.

A Balanced HW/SW Teaching Approach
for Embedded Microprocessors™

U. MEYER-BAESE', GUILLERMO BOTELLA2, ENCARNACION CASTILLO? and

ANTONIO GARCIA?

! Florida State University, Department of Electrical and Computer Engineering, Tallahassee, Florida, USA.

E-mail: umb@eng.fsu.edu

2 Department of Computer Architecture and Automation of Complutense University of Madrid, Spain and
Florida State University, Department of Electrical and Computer Engineering, Tallahassee, Florida, USA.
3Departmento de Electrénica y Tecnologia de Computadores, Universidad de Granada, Campus
Universitario Fuentenueva, 18071 Granada, Spain.

Currently popular textbooks on Embedded Microprocessors are analysed in depth and reveal the
inherent weaknesses of these books. For example, while even advanced hardware (HW) concepts
are presented, the textbooks fail to provide descriptions about the development of software (SW)
tools that put these microprocessors (uPs) to work. Conversely, we provide an intimate knowledge
of the close relationship between the uP design and the development tools with two teaching
modules based on an architectural description language (ADL). The URISC model (popular since
the IJEE paper 20 years ago) and the Educational RISC (ERISC) process models are developed
in an iterative refinement of the instruction set. For all intermediate steps, development tools
(assembler, linker, loader, C compiler) are generated which teach students the basics of embedded
processor theory and design procedure. The processors are debugged using three example
programs, synthesized to HDL for ASICIFPGA designs, and are tested on popular Altera and

Xilinx University development boards to offer hands-on design experience.

Keywords: RISC; embedded microprocessor; FPGAs; ADL

1. INTRODUCTION

MOST OF TODAY’S MICROPROCESSORS
are employed in embedded systems. Embedded
systems are usually characterized as those that
include a microprocessor but do not have the
typical components of a computer, such as a
keyboard, monitor, or mouse. Examples of
embedded systems range from cellular phones
and digital clocks to GPS devices, video recorders,
www routers to households, and other electronic
entertainment devices [1]. A modern car, for ex-
ample, typically uses 50-100 microprocessors [2].
Embedded systems are not usually real-time
systems necessitating that certain computation be
accomplished by a certain deadline, like in a ABS
car system. Embedded systems are often resource-
limited by price, power dissipation, memory or
storage. Although many embedded systems require
low-power dissipation, the implemented algo-
rithms, like the error turbo correction coding
used in UMTS phones, are computationally
demanding. Nevertheless, embedded processors
currently perform sophisticated tasks and run
these complex algorithms. The microprocessors
in a car use an estimated 100 million lines of
code; GPS and radio alone account for 20 million
lines of code [2].

* Accepted 26 December 2009.

584

Given the wide range of embedded systems
applications, it is unsurprising that not a single
microprocessor can cover all of the requirements in
HW and SW, so customization is necessary. This is
exactly the job description of a modern embedded
system engineer: to have an intimate knowledge of
the hardware (e.g. the microprocessor and its
peripherals) and the software (e.g. the algorithms
and coding in a computer language such as assem-
bler or C).

Today, the embedded system design course and
laboratories (C&L) offered at universities depends
on the student level and department target, and
can take on many different HW/SW mixture
forms. For Computer Science (CS) students an
Embedded System course usually focuses on
C++, JAVA or UML in combination with some
facts about the underlying hardware components.
Twelve books for a typical CS course are listed in
the literature survey [22-34]. A typical Embedded
Microprocessor Design course taught in Electrical
Engineering (EE) will focus on the design of a
microprocessor in hardware description language,
such as VHDL or Verilog, only leaving out the SW
part almost completely. Seven popular books used
in EE are listed [15-22]. In the middle of these
extremes will be an Embedded System Design
course for a student in a Computer Engineering
(CE) Department focusing on the system design
and integration of commercial, off-the-shelf

Balanced HWISW Teaching Approach for Embedded Microprocessors 585

(COTS) components. Here a hardcore (fixed
netlist) embedded microprocessor (e.g. PowerPC,
PIC, ARM) is augmented with peripheral
(memory, USB, I2C etc.) components and
programs in C or assembler are developed [12-14].

Our C&L teaching modules try to bridge
between the HW-only approach in EE and the
SW-only approach in CS. But the main advantage
of using an architecture description language
(ADL) would be that there is no restriction, as in
a current CE course, to a COST microprocessor—
the ADL allows design of any kind of micropro-
cessor with full control over the instruction set of
the microprocessor, ranging from low-cost 8-bit
microcontroller to high performance 128-bit
VLIW microprocessors. The use of a mixed level
ADL in addition will allow to generate high qual-
ity software tools. A survey of three commercial
and three public domain ADL tools is given later.

Most educational materials and books used
today do not provide the intimate knowledge of
HW and SW working together. This is corrobo-
rated by the fact that most logic or computer
design books [16] teach the HW design of a
microprocessor in all details—including how to
design a CISC and RISC [18] or URSIC P [15],
instruction pipelines [19,20], register allocation,
caches [12], and memory management units [13,
14, 21, 22]—but contain little or no coverage on
the SW tool development that put these parts to
work. Figure 1 shows the HW design and SW tool
imbalance in the current textbooks available for an
embedded microprocessor course. The exploded
pie part shows the pages spent on SW development
tool description in theses textbooks. As is evident,
94% of the information within the textbooks
describes HW design. Books with limited coverage
and description using standard software without
describing development of HW or SW (e.g. [23-
34]) are not included. Even books with titles like
‘Embedded System’ [13, 14, 26] fail almost comple-
tely in this integral part of embedded system
design.

5%

22%

Fig. 1. HW/SW textbook description for embedded micropro-
cessors. Total SW description is 6%. Total 100% equivalent to
615 pages.

Clearly, developing a set of quality SW tools for
a processor is a challenging task, and perhaps
many authors feel more comfortable covering
topics like lexical analysis, compiler-compiler and
grammar [7]. But nonetheless, a close understand-
ing of the relationship between the development
software tools and the underlying hardware is
essential for those learning embedded system
design.

2. DESIGNING APPLICATION-SPECIFIC
PROCESSORS WITH HDL

In the classical embedded microprocessor
approach, we start with an architecture description
and then develop the instruction set and architec-
ture. We then write the HDL code for the proces-
sor and write, based on this developed
architecture, the development tools (e.g. the
instruction set simulator (ISS), the C compiler,
the assembler, etc.). While this hand-coded HDL
may allow us to obtain an extremely small core size
by taking advantage of the underlying logic blocks
(e.g. Pico Blaze by Xilinx used the 32 x 1 LUT to
implement the processor registers and save many
resources), the disadvantage is that any change in
hardware also needs to be coded in all develop-
ment tools. This is considered a major source of
cost and inefficiency in embedded processor design
when using HDL.

This classical approach has been used in a
computer architecture undergraduate course
(since 2001) and an ASIC design graduate course
(since 2006) at the FAMU-FSU College of Engin-
eering in Tallahassee, resulting in many functional
uPs. However, the software development tools
were far from satisfactory.

3. DESIGN APPROACH USING ADL

Embedded processor designs typically begin at a
level of abstraction far beyond the instruction set
architecture (ISA) and require several architecture
exploration cycles before the optimum hardware/
software partitioning for a particular application is
found. This process requires a number of tools for
software development and profiling. These are
normally written manually—a time consuming,
inefficient and error-prone task. With the intro-
duction of so-called Architecture Description
Language (ADL), the design process can be effi-
cient and reliable [3]. Early ADL was either
structure-orientated (MIMOLA, UDL/I) or beha-
viour-orientated (Valen-C or ISDL). Later, mixed
ADLs such as nML, LISA, HMDES, ASIP Meis-
ter, Flexware, TDL and EXPRESSION adopted
an integrated approach—the language captures
both the structural as well as the behavioural
design of the embedded processor also called
application-specific integrated processor (ASIP).
Several of these tools have been developed in

586 U. Meyer-Baese et al.

academia, and some have become commercial
tools such as LISA tools developed at ISS
RWTH Aachen and now the Processor Designer
product of Coware Inc. (CA, US) [9-11] or nML
developed at TU Berlin and now a Target Compi-
ler Technology (Belgium) product [4]. The ASIP
development flow for the LISA tool set is similar
to the classic approach, the only difference is that
one LISA 2.0 based processor description is used
to specify the behavior of the microprocessor as
well as the generated development tools.

The nML comes with a Chess/Checkers retarge-
table C compiler, an RTL synthesis generator GO,
and RISK—a test-program generator. These
commercial tools have been used in a wide variety
of products, such as portable audio and hearing
instruments by CoolFlux, Wireline modems
ADSL2+ by STMicroelectronics, wireless
modems HSDPA by Nokia, and TI video accel-
erators and network processors [4]. A brief
comparison of tools properties that can be used
for an ADL University course is given in Table 1.

ASIP Meister is a GUI-based processor system
and was used by 180 academic institutions in 37
countries during 2002-2005. Since 2006, ASIP
Solution Inc. has taken over the maintenance and
further development of ASIP Meister. The GUI-
based platform is somehow more restrictive than
nML or LISA, but allows for a much improved
development time. An MIPS processor, for
instance, could be developed in eight hours, and
DLX in only 3.5 hours.

The academic ADLs most often focus on special
features. EXPRESSION—developed by UC,
Irvine—is a popular research language that
allows the exploration of memory hierarchies.
MADL, developed at Princeton, allows the
design of superscalar processors and has an easy
C-compiler interface. MAML is an XML-based
ADL that has the support to build VLIW and
multicore processors. However, the quality of the
generated HDL (if any) of the academic ADLs
may not be sufficient for industry products [4].

4. APPROACH TO TEACHING A LISA-
BASED MICROPROCESSOR COURSE

The CoWare Processor Designer, formerly
known as the LISAtek processor design platform

(LPDP), was originally developed at RWTH
Aachen and is now a product of CoWare Inc.
This design flow was used to develop the
embedded processors. The LISA language
supports a profile-based and stepwise refinement
of processor models down to cycle-accurate and
even VHDL or Verilog RTL synthesis models for
fast custom VLSI implementation. In a very
elegant way, it avoids model inconsistencies other-
wise inevitable in traditional design flows. Micro-
processors from simple RISC to highly complex
VLIW processors have been described and success-
fully implemented using the Processor Designer for
FPGAs and cell-based ASICs. There are more
than 40 LISA models in the industry and academia
from different architectural categories (RISC,
PDSP and ASIP). These include different ARM
and MIPS models, PDSP from TI and StarCore, as
well as ASIPs from Infineon (ICORE), STMicroe-
lectronis, etc. CoWare provides 14 different ex-
ample/starting-point models. This includes seven
tutorial models that are used as part of CoWare
training material. Some have multiple versions that
contain over 10 different designs as seen in the
QSIP_X model. Four starting point models are
provided and used as skeletons for starting a new
architecture. Three different IP models for classic
architectures are also included. All models are
instruction accurate, and most of the models are
Harvard-type RISC models that are also cycle
accurate. Pipeline stages vary from three to five.
All types of modern processor are provided from
simple RISC (QSIP), over PDSP like
LT_DSP_32p3 to VLIW LT_VLIW_32p4, to
special processors like a 16- to 4096-point FFT
processor LT_FFT_48p3.

4.1 The Lisa language

Processor design using LISA is organized in
different sections [9-11] beginning with a resource
section to specify the program, data memory,
registers, program counters and the pipeline of
processors. A discussion of a partial resource
section from the URISC processor model follows:

RESOURCE {

MEMORY_MAP {PAGE (0) ,RANGE (0x00000,
0x007F) -> prog_mem[(15..0)1;}

RAMuint32 prog mem<{

Yi

PROGRAM_COUNTER TClocked<uint8> PC;
// Programcounter

Table 1: Comparison of commercial tools and tools from academia

Advantage Disadvantage
Professional tool: e Variety of Training uP models e Expensive
LISA, nML, ASIP Meister e FPGA HDL code generation
e Vendor tutorials
e bug fix
Public Domain: e Free e No production quality HDL generation

EXPRESSION, MADL, MAML

Support of special features

Limited bug fix
No library training of pP models

Balanced HWISW Teaching Approach for Embedded Microprocessors 587

REGISTER TClocked<int8> r[0..15]; //
Register file
PININuint8iport; // Input PINs of the
core
PIPELINE pipe = {FET; EXE};
PIPELINE_REGISTER IN pipe {
uint8 PPC;
uintle PIW;

UNIT PIPE_FD { fetch; };
UNIT PIPE_EW {URISC; };
} // End of resources

The behaviour and timing of the processor are
described by LISA operations. The instructions
encoding can be arranged in a hierarchical tree
so that general behaviour is specified in the parent
operation, while specialized behaviour is described
in child operations. For example, consider ad-
dressing modes of instructions. Absolute or rela-
tive addressing is often used by several parent
operations, and reusing the addressing modes
makes the processor description shorter and
easier to read.

Each LISA operation includes just enough
information that HW architecture and SW tools
can be generated. The elements are defined as
follows and include examples:

e The DECLARE element is used to reference
elements from other operations and to define
used resources.

DECLARE { LABEL src, dst;

INSTANCE addr ;
GROUP mode = { absolute_
addressing | | relative_
addressing };}

® The CODING includes the binary coding of the
instructions as a sequence of coding fields. The
value can be “07,”1” or X (don’t care) or can
have a reference to the coding field of other
LISA operations.

CODING { dst=0bx[4] src=0bx[4] mode

addr }

® The SYNTAX describes the assembler syntax
that references variables via labels.

SYNTAX { ‘‘URISC’'’ ** x[** dst ‘‘],

r[*'syxc’*], " addr }

® The BEHAVIOR description is included in the
data path function of the processor. Coding is
sequential just as in regular C coding. Resources
such as registers, memories, flags and pins can
be accessed, modified and stored.

BEHAVIOR { BF =0; // reset branch flag
sO= (int8) s0 * sl1; //
compute product
sl=s2;s2=s3;s3=0;}//
pop stack by one

® The ACTIVATION allows a LISA operation to
activate another operation or a group of opera-

tions typically for the next pipeline stage. Here is
an example from the ERISC processor that also
includes the coding root tree specification with
CODING AT.
OPERATION decode IN pipe.EXE {
DECLARE { GROUP instruction = {
JMP | |[BEQ| | BNE | | PRINT| | SCAN] |
PUSH| |PUSHI| |POP| |MUL| | SUB] |
NEG| |ADD| |NOP};}
CODING AT (IN.PPC) { IN.PIW==
instruction }
SYNTAX { instruction }
ACTIVATION { instruction }
}
® The DOCUMENTATION allows specification
of a description that will be included in the
instruction set manual generated automatically
by the processor designer.
DOCUMENTATION (‘“decode’’) {
The decode operation specifies the
coding root with AT and calls the
instructions. }

The Processor Designer has a comfortable model
editor with colour coding that allows easy verifica-
tion of the language elements in use (e.g. key words
appear in blue, values in red, comments in green, see
Fig. 2). After successful specification of the proces-
sor, the Processor Designer automatically generates
the SW development tools. The functionality of an
application can then be verified by a run through the
debugger. Figure 3 shows the Processor Debugger
with Disassembler, Profiler, Register, and Memory
display. After successful debugging, the processor is
ready for synthesis to measure performances like the
area, power dissipation or speed. Along with the
Verilog or VHDL code for cell-based ASIC or
FPGAs, Synopsys synthesis scripts and Xilinx
ModelTech simulation scripts can also be gener-
ated. Files could also be run through Altera Quartus
without problems since only elementary standard
HDL constructs are used. Figure 4, for instance,
shows a simulation done with Altera Quartus soft-
ware of the I/O program.

After we have presented the design flow using a
mixed ADL, we can then start to develop two
educational models to be used in class or lab.
For educational purposes, we have developed
two processor models that have previously been
used in traditional pP design courses [5, 6, 12, 15].

4.2 URISC processor model

The URISC processor model, introduced 20
years ago in another IJEE paper, is a popular
architecture that has been used for many years in
Computer Architecture [5, 6] and in HDL courses
[15]. It shows the ultimate limits of the reduced
instruction set computer (RISC) approach, i.e. a
microprocessor with a single instruction. The
instruction subtracts source 1 operand from oper-
and 2, replaces source 2 with the results, and jumps
to a target address if the result of the subtraction is
negative. At the time URISC was introduced

588

U. Meyer-Baese et al.

CoWare jocessor Designer {(urisc.Ipf) - [urisc.lisa]
£ File Edit “iew Build Tools Configure Help =& x]
Ay ST AT DIS SWEE S L
et praAn 8 sCcB[a]l /]
|13 -
14 ERESOURCE {
Model Resources | W
16 MEMORY MAP {PAGE (0}, RANGE (000000, 0xDO0TF) - prog_mem[(15 03]}
17
18 EBM wint32 prog_mem {
19 BLOCKSIZE (16} ; /f Bitwidth 1s 16
e 20 SIEE(128) ; /f Total of 2°T words
@ 21 FLAGS (R|X); ## Read and execute indicates program memory
) 22 ENDIANESS (BIG) ; #f Use for simulator o
@ iport 23 3
& oport 24
=-Pipeline Registers 25 PROGRAM_GOUNTER TClocked:<uintB: PG, // Program counter
26 EEGISTER Tilocked<int8: r[0..15]; // Register file
27 PIN IN uwint® iport; // Input PINs of the core
28 PIN OUT TClocked<uintB» oport; /f Output PINs of the core
boie] uintlé IW; #f The instruction word
B el unsigned bit[1] BF:; // Branch flag without register
—-Registers a1 intd ET: // The branch target
@lC 3z nintd FPC; // Fekch Program Memory address
@PC a3
or 34 PIPELINE pipe = {FET; EXE};
siEtE 35 PIPELINE REGISTER IN pipe {
1A 36 uintB PRC;
@ EF 37 vintlé PIV;
§ BT @
@ FPC 20
@ W 40 REBISTER TClocked<intlf> IC; /f Simulator only: Instruction counter
A1 A
. . < | _>l_|
Files A Resources AOperations /™ | ModerEditor _f Documentation
Iy g ; =l
+++ Using Project File: /net/home/meyerbaese/models07?/URISC/urisc. 1pf
—--- PROCESS: INSTRUCTION-SET MaNUAL
WHRNING : dig:0001/general: No INSTRUCTION found in model, uwsing operation decode as default
-—- Processed L5 LISa 2.0 operations.
--- Please double click on the error/warning message(s) for more information
-—- BUILD PROCESS SUCCESSFULLY FINISHED - Tue Aug 12 11:33:20 2008
Y Messages A Search Results A4 Errar Messages [/
[Line: 26 Col: 53 [({c) CoWare Frocessor Designer Yersion 2007 1.0 Linux -- MNovember, 20074

Fig. 2. The Processor Designer model editor.

bl Processor Debugger: /net/home/meyerbaese/models07/ERISC/app/13factorialffactorial.out
File Program Debug “iew Profiling Windows Extras Help
EEREIEE L EEEEE RN EE == = E R L
[[ymbot set [BRimage symaols =] Goto symbol] Goto address [oxo0oo0000 | “J T |
: Isyni Address Ilnstructinn | Disassetmbly ILD: {gggggggi} : gg;’n "
4 WL e [000DDDOS| L00: PUSH k [EslFiles
i oooooooL ol PUSHTL |00000006] - BUSHT 1
(o 00000002 701 POPOx00L [00000007] EED ELO1
] |0000000g] : PUSH x
d 00000003 200 SCAN [00000009] - ey
I 00000004 702 POPOx00Z |0000000a] : MUL
= 000onnns 90z PUSHI:O0Z 5 {gggggggb} BOP o
] R Pl PUSH
00000006 B0 PUSHIL [0000000] - TR
00000007 d11 BEQ@0x011 | | |0000000e] : SUE =
00000008 901 PUSHD:001
00000009 902 PUSHOx002 .

Y Files .i"\ Syl'r »
0000000z 400 ML + | ame Calls Calls/Total =~ =
0000000k 701 POPOx01 —

3 |FUSH 7 7.45%
> 0000000 902 PUSHOx002 i . L Name| value |
0000000d 801 PUSHIL - I % PC be
0000000 300 SUB = 5 - st be
- - i 0.00 i o
L S0 =2 02
BT 1 1.76% - N
A C|B|E|T Display Address - =
|_ | | [z 7. 13% - -
address | of 1| 2 3| 4| 5| 6 7| 8 9 i I I | (W i (INITIES
noooooon| 0o] 03] o2 oo 0of oof 0af 00| 00| oof oof oo ag| i (INITIES
nooooo10f 0of oo oo| oo| oof oo| 00| 00| oo| oo| oo| oof og| 1 1.06%
noooon2a| 0of oof oo on| 0o| oo| 0o 00| 00| oof on| oo ag| PRINT i 0. 00%
noooo030f 0of oo oo| oo| 00| oo| 00| oo] oo| oo| oo| oof og| SCaN 1 1 6%
oooooo40| 0of oof oof oo 00| oo| 0o oo] 00| oof oo| oo ag| WP 1 1 6% —
nooooosof oof oo oo oo oo] oo] 0o 0o] oof oo] oo oo] oo| | B
| » - - i
 data mem 4 prog mem f el Ebens EXE in pipe \Reglstera A »
FELUGH. LW=zJUb Fu=1t dlu=L1y
2 (FTOH. THos045 Bros TOolf =l
FETCH: I¥=3345 Pi=7 IG=19
ERISC: BEQ to address at PC=8 IC=20
FETCH: I¥=2305 PC=8 IC=20
FETCH: I¥=2306 PC=9 IC=21
FETCH: IW=1084 PC=10 IC=22
FETCH: I¥=1793 Pe=11 IG=23 =
Y stdout A stderr f
| Simulation Mode : JIT-CCS [Source: /nethome/meyerbaese/models07/ERISC/app/1 Sfactorial/factorial.asm 32 [Step : 24 [(c) CoWare Processor Debugger Version ZDD?I

Fig. 3. ERISC debug of factorial program.

Balanced HWISW Teaching Approach for Embedded Microprocessors 589
Boprvwr =101
Master Time Bar:‘ Opz j_-l Pointar:l 546 nz Inlerval:| 546 nz Start; | End:
Valu ps 1UDiU ng EUDiU ng EUDiU ng 4UDiU ng EUDiU ng BUUiU ng |
Name 0 [0ps
i

| = | reset ED

| ckean B0) 1 1 [~—1 . r—1 4 r—1 rm—1 —1 1 1 —1 M1
=d ipart 58 5

| @ 50 T

=4] 50 0

b0 BF BO

5| @ ome vo Ko v 1 ¥ 3 R S 5 T Y 1 ¥ 7 3T ¥ 4 5 W 0 1 47
E prad Heeo (2201 ¥ 2002 . Fros k F20d . 2205 ko0 f 201 ¥ cooz . FrOs ok Food . 205 k100 f Za0n § s002 EC
=4 oport 50 0) 4 5 L L 5

|=| E an B 000 000

=4 530 B 000 00000000

= BO

‘| sl [31

Fig. 4. URISC test program I/O on Altera Quartus. Values 5 is taken from the iport and displayed on the oport.

(1988), memory was small and expensive, and the
original design tried to use only one memory
device, which resulted in many microinstructions
per operation. Today, memory is large and inex-
pensive compared with the original multi-micro
step URSIC design by Parhami, et al. [5]. For
this reason, we made a couple of small modifica-
tions to reflect today’s RISC/FPGA design prin-
ciples:

1. Use 16 registers and not memory to implement
the dst-= src instruction.

2. Initialize all registers to —1 at reset.

3. Use 1[0] as input port (iport); r[1] keep at —1I;
r[15] as output port.

4. Allow monitoring of r[2] (temp), r[9] (loop-
counter), valid flag (VF) and branch flag
(BF). Reset the valid flag after the register is
cleared.

5. Use only one pipeline register for a program
counter (PC=Program memory address) and
instruction word (IW).

6. Use single program memory (127 = 27 words x
16 bits width), no data memory.

7. Allow a relative and absolute PC update.

The URISC models use 8 LISA 2.0 operations and
can be designed in two phases: In the first phase a
simple I/O processor (still synthesizable to FPGA)
is designed. In the second step, the full functional
processor is designed. We have implemented three
software examples that use only the basic feature
available in all university development boards—
such as FPGA, LEDs and switches:

® The first program is a simple I/O test that reads

data from the input DIP switch and displays the
results on the LEDS of the FPGA board, see
Fig 4.

® The second example computes are based on the
DIP switch and the Fibonacci number based on
the iterative procedure Fy = Fy_; + Fy_,.

® The third example is a factorial program.
Depending on the input DIP switch, the factor-
ial is computed. This is more challenging to the
programmer since a multiplier must to be trans-
lated into a series of additions, since URISC
does not include a multiplier.

All three programs have been tested on the Altera
and Xilinx development boards. Programming
files can be downloaded from a companion web
page [8]. Synthesis results for the URISC proces-
sors as examples are given in Table 2. As is evident,
the designs are small and should fit on any popular
university board system, even outdated systems
like the Altera UP2. The speed data is sufficiently
large enough for the on-board oscillator to be used
directly to run the processors. No clock dividers
are required.

4.3 ERISC processor model

The ERISC processor model is an 8-bit basic uP
that has allowed us to develop a full set of
developmental tools, including a C compiler. An
iterative refinement method can be used to develop
the processor step-by-step and verify via a test
program or HDL simulation. Five different
versions were designed where the version number
corresponds to the number of LISA 2.0 operations
in use.

Table 2. Synthesis results for URSIC and ERISC processor models

Altera DE2 Xilinx Nexys S200
Les Multipliers Speed LUTs Multipliers Speed
URISC 326 0 94.74 MHz 284 0 78.9 MHz
ERISC3 64 0 369.69 MHz 58 0 234.7 MHz
ERISC13 390 1 151.38 MHz 347 1 96.4 MHz

590

U. Meyer-Baese et al.

CoWare @ Processor Designer ERISC (ERISC.Ipf) - [erisc.lisa]
£ File Edit ¥iew Options Help =18 x
@ U o |[O A& =mmm m e b6 44 1 |
EEEILE

Instruction-Set 11]10[s [[7 |6 [5]4 [3]2 [1 [0 |assemby synta |

114 | Instruction Registers F pipe EXE.IMN.PIW

[2 | EIRoot instruction instruction

3_ [= instruction instruction

14 | HOP % | % | ®| x| %] x| x|[NOP

15 | ADD % | %[®| =[x x]|x|"ADD"

16 | NEG ® | #| =] | ®| = | x|"MEG"

17 SuB wlow | w | w | w| w]| x| SUB"

i MUL Wl ow | w | w | w | w | w | MUL

3 | POP N "POP" SYMBOL(var-#x)

T PUSHI "PUSHI" imm

17 | PUSH "PUSH" SYMBOL({var-#X)

12 | scanl "SCAN"

13 PRINT "PRINT"

T BHE "BHE" "@" ~3YMBOL{addr=#X)
? BEQ "BEQ" "@" ~3YMBOL{addr=+X)

16 | JMP o "JMP" '@ ~SYMBOL(addr=#X)

< | |

Root

[Line: 0 Cal: 0 [{cy CoWare Processor Designer Yersion 2007.1.0 Linux -- Movembar, 200?4

Fig. 5. Instruction set of final ERISC version.

® Version 1: Very simple version with only one
NOP operation and PM. Can generate: ASM,
DIS, ISS. No HDL
® Version 3: HDL generation modifications:
— SCAN and PRINT instruction to check I/O
— Add 2 stage pipeline (design choice):
1. stage load the instruction word
2. Do the operation in this stage: Changes to
all operations
— Use a two instruction sequence for branch
® Version 8: Add the remaining ALU operations:
ADD, NEG, SUB, MUL, and PUSHI
® Version 11: Add 3 instructions for loop control:
— CONDITIONAL BRANCH (NOT)
EQUAL: BEQ, BNE
— Jump (JMP) unconditional
® Version 13: Add a data memory interface
— PUSH on TOS and
— POP TOS

Figure 5 shows a complete instruction set for
version 13.

5. CONCLUSIONS

We have developed a balanced HW/SW teaching

approach for embedded microprocessors to bridge
the gap between the microprocessor specification
and the software development tool by using archi-
tecture description language. We have provided
two popular processor models that allow a step-
by-step processor instruction set refinement and
software development tools generation in each
design step. Example designs have been synthe-
sized for Xilinx and Altera development boards to
provide hands-on lab experience. Three applica-
tion programs have been developed for each
processor, and all material is available online at
http://www.eng.fsu.edu/~umb

Although we have developed teaching modules
for the LISA language, it is hoped that in the
future similar teaching modules will be developed
and made available at no charge for other popular
ADLs such as nML, ASIP Meister, EXPRES-
SION, MADL or MAML.

Acknowledgments—The authors gratefully acknowledge sup-
port for this work from the Council on Research and Creativity
(CRCQ) at Florida State University and the Humboldt research
foundation. The authors would like to thank Xilinx Inc, Altera
Inc. and CoWare Inc. for their support under the University
programmes. Any opinions, findings and conclusions or recom-
mendations expressed in this paper are those of the authors, and
do not necessarily reflect the views of the sponsors. Many
thanks also to Carissa Neff for the English editing of this article.

REFERENCES

1. M. Anderson, Help wanted: embedded engineers: why the United States is losing its edge in
embedded systems IEEE USA Today’s Engineer Digest, Mar. 2008.

2. R. Charette, This Car Runs on Code, IEEE Spectrum Online, Feb. 2009.

3. P. Ienne, R. Leupers, Customizable Embedded Processors, Morgan Kaufmann Publishers,

Amsterdam, 2007.

Balanced HWISW Teaching Approach for Embedded Microprocessors

4. P. Mishra, N. Dutt, Processor Description Languages, Morgan Kaufmann Publishers, Amsterdam,
2008.
5. F. Mavaddat, B. Parhami, URSIC The ultimate reduced instruction set computer, Int. J. Eng.
Educ., 25, 1988, pp. 327-334.
6. B. Parhami, Computer Architecture: From Microprocessor to Supercomputers, Oxford University
Press, New York, 2005.
7. A. Aho, R. Sethi, J. Ullman: Compilers: Principles, Techniques, and Tools, Addison Wesley
Longman, Reading, Massachusetts, 1988.
8. U. Meyer-Baese, LISA online resource http://www.eng.fsu.edu/~umb/lisa (Accessed 21 December
2009).
9. A. Hoffmann, H. Meyr, R. Leupers, Architecture Exploration for Embedded Processors with LISA,
Kluwer Academic Publishers, Boston, 2002.
10. R. Zurawski (ed.), A Novel Methodology for the Design of Application-Specific Instruction-Set
Processors, Embedded System Handbook, CRC, Boca Raton, FL, 2006.
11. A. Hoffmann, H. Meyr, R. Leupers, Optimized ASIP Synthesis from Architecture Description
Language Models, Springer, Dordrecht, The Netherlands, 2007.
12. U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 3nd ed.,
Springer-Verlag, Berlin, 2007.
13. Z. Navabi, Embedded Core Design with FPGAs, 2nd ed., McGraw-Hill, New York, 2007.
14. F. Vahid, T. Givargis, Embedded System Design, John Wiley & Sons, Inc., Hoboken, New Jersey,
2002.
15. J. Armstrong, F. Gray, VHDL Design Representation and Synthesis, Prentice Hall, Upper Saddle
River, NJ, 2000.
16. S. Brown, Z. Vranesic, Fundamentals of Digital Logic with VHDL Design, 2nd ed., McGraw-Hill,
New York, 2005.
17. J. Catsoulis, C. John, Designing Embedded Hardware, O’Reilly Media, Beijing, 2005.
18. D. Gajski, Principles of Digital Design, Prentice Hall, Upper Saddle River, NJ, 1997.
19. W. Lee, VHDL Coding and Logic Synthesis with SYNOPSYS, Academic Press, London, UK, 2000.
20. S. Lee, Advanced Digital Logic Design, Thomson, Ontario, Canada, 2006.
21. M. Mano, C. Kime, Logic and Computer Design Fundamentals, Pearson Prentice Hall, Upper
Saddle River, NJ, 2008.
22. A. Marcovitz, Introduction to Logic and Computer Design, McGraw-Hill, New York, 2008.
23. M. Bates, Programming 8-bit PIC Microcontrollers in C: with Interactive Hardware Simulation,
Newnes, Elsevier, Oxford, UK, 2008.
24. R. Barnett, S. Cox, L. O’Cull, Embedded C Programming and the Atmel AVR, Delmar Cengage
Learning, 2nd. ed. 2006.
25. M. Barr, A. Massa, Programming Embedded Systems: With C and GNU Development Tools,
O’Reilly Media, Beijing, 2006.
26. S. Barrett, D. Pack, Embedded Systems: Design and Applications with the 68HCI2 and HCSI2,
Pearson Prentice Hall, Upper Saddle River, NJ, 2005.
27. F. Cady, Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering,
Oxford University Press, Oxford, NY, 1997.
28. F. Cady, J. Sibigtroth, Software and Hardware Engineering: Motorola M68HCI2, Oxford
University Press, Oxford, NY, 2000.
29. C. Hallinan, Embedded Linux Primer: A Practical Real-World Approach, Prentice Hall PTR, Upper
Saddle River, NJ, 2006.
30. C. Hellebuyck, Beginner’s Guide To Embedded C Programming: Using The PIC Microcontroller
And The Hitech Picc-Lite C Compiler, Create Space, Milford, MI, 2008.
31. D. Simon, An Embedded Software Primer Addison-Wesley, Reading, MA, 1999.
32. M. Samek, Practical UML Statecharts in C/C++, 2nd, ed., Event-Driven Programming for
Embedded Systems, Newnes, Elsevier, Oxford, UK, 2008.
33. W. Wolf, Computers as Components, Academic Press, San Diego, CA, 2000.
34. K. Yaghmour, J. Masters, Building Embedded Linux Systems, O’Reilly Media, Bejing, 2008.

Uwe Meyer-Baese received the B.S.E.E., M.S.E.E., and Ph.D. (summa cum laude) degrees
from the Darmstadt University of Technology, Darmstadt, Germany, in 1987, 1989 and
1995, respectively. He is currently a Professor in the Electrical and Computer Engineering
Department, Florida State University, Tallahassee. In 1994 and 1995, he held a Post-
doctoral Position in the Institute of Brain Research, Magdeburg, Germany. In 1996 and
1997, he was a Visiting Professor at the University of Florida, Gainesville. From 1998 to
2000, he worked as a Research Scientist in the ASIC industry, where he was responsible for
development of high-performance architectures for digital signal processing. During his
graduate studies, he worked part-time for TEMIC, Siemens, Bosch and Blaupunkt. He
holds three patents, has published over 80 journal and conference papers and has
supervised more than 60 master thesis projects in the DSP/FPGA area. He is author of
the best selling Springer textbook on DSP with FPGAs. He was a recipient of the
Habilitation (venia legendi) by the Darmstadt University of Technology in 2003, the
Max-Kade Award in Neuroengineering in 1997, the Humboldt Research Award in 2006
and a FAMU-FSU College of Engineering Teaching Award 2007.

Guillermo Botella received the M.A. Sc. degree in Physics in 1998, the M.Sc. degree in
Electronic Engineering in 2001 and the Ph.D. degree in 2007, all from the University of
Granada. From 2002 to 2005 he was a research European Fellow at the Department of

591

592

U. Meyer-Baese et al.

Architecture and Computer Technology of the Universidad de Granada and the Vision
Research Laboratory at University College London. After that he joined as Assistant
Professor at the Department of Computer Architecture and Automation of Complutense
University of Madrid. He has been visiting professor in 2008 and 2009 at the Department of
Electrical and Computer Engineering, Florida State University, Tallahassee. He has
authored more than 20 technical papers in international journals and conferences. His
current research focuses on image, video and signal processing on FPGAs, vision
algorithms and design automation for High Level Synthesis.

Encarnacion Castillo received the M.A.Sc. degree and Ph.D. degree in electronic engineer-
ing from the University of Granada, Spain, in 2002 and 2008, respectively. From 2003 to
2005 she was a research Fellow at the Department of Electronics and Computer
Technology at the University of Granada, where she is now an Assistant Professor.
During her research fellowship, she carried out part of her work at the Department of
Electrical and Computer Engineering, Florida State University, Tallahassee. Her research
interests include the protection of IP protection of VLSI and FPGAs-based systems, as well
as Residue Number System arithmetic, high-performance digital signal processing and
VLSI and FPL signal processing systems. She has authored more than 20 technical papers
in international journals and conferences.

Antonio Garcia received the M.A.Sc. degree in Electronic Engineering (obtaining the
Nation Best Academic Record award) in 1995, the M.Sc. degree in Physics (majoring in
Electronics) in 1997 and the Ph.D. degree in Electronic Engineering in 1999, all from the
University of Granada. He was an Associate Professor at the Department of Computer
Engineering of the Universidad Autéonoma de Madrid before joining the Department of
Electronics and Computer Technology at the University of Granada, where he serves as
Professor. He has authored more than 70 technical papers in international journals and
conferences and serves regularly as reviewer for several IEEE and IEE journals. He is also
part of the Program Committee for several international conferences on programmable
logic. His current research interests include IP protection of VLSI and FPGA-based
systems, low-power and high-performance VLSI signal processing systems and the
combination of digital and analogue programmable technologies for smart instrumenta-
tion. He is a member of IEEE and a C&S and SP Society member.

