
Programming Skills in Graduate
Engineering Classes: Students from
Disparate Disciplines and Eras*

S. RATNAJEEVAN H. HOOLE
Department of Engineering and Science, Rensselaer Polytechnic Institute, Hartford, CT 06120, USA.

E-mail: HooleR@RPI.edu

In many graduate engineering classes there are often present students who meet prerequisites in
programming but are rusty because it was a long time ago or they learnt an outdated language. In
courses such as mathematical methods, finite elements, and power engineering there are students
from different engineering disciplines; electrical engineers having programming as an ABET
accreditation requirement, others not. Recent graduates are more sophisticated programmers
than older ones. The problem is to bring the students up to competency without vitiating the content
of the course to be taught so as to enhance it with modern computational methods. This paper
describes an initial two-week MATLAB-based module on matrix equation solution that was used in
four courses over five semesters at Rensselaer Polytechnic Institute. This module was within the
scope of all four courses and, given MATLAB’s ease of use and the students’ mature standing as
graduate students with resources among fellow students, it was used successfully (as a low-level
programming language rather than a simulation tool as in much of the literature) to train even
those who had never programmed before. Programming was thereupon used to enhance the
engineering courses through computational exercises and in the process refine students’ new
programming skills further. A survey confirms the benefits.

Keywords: programming; prerequisites; programming language; education; matrix computa-
tion; MATLAB; accreditation; ABET

1. ABET, PROGRAMMING AND
DISPARATE STUDENTS

FOUNDED IN 1824, Rensselaer Polytechnic
Institute is the oldest degree-granting technological
university in North America. This writer in teach-
ing the four graduate engineering courses Intro-
duction to the Finite Element Method, Advanced
Engineering Mathematics I and II, and Power,
Generation and Control [1] at RPI, had to keep
in mind that a well-taught course has to treat many
numerical topics to be useful in modern engineer-
ing practice. To this end in these four courses,
referred to as Mathematics, Finite Elements and
Power hereafter, computer proficiency is indeed of
the essence.
Moreover, many overenthusiastic universities

(e.g. Drexel University’s College of Engineering)
routinely ask students in their course evaluations
for their knowledge of specific topics in computer
technology such as object oriented programming
before and after the course even when the course
does not allow those topics. Because these survey
results are made publicly available they can ruin
the reputation of an instructor in say electric
machinery in the eyes of the lay-public which
would be unaware that it is difficult to teach

object oriented programming in that course. In
addition to pedagogic imperatives therefore, the
use of computer technology in class becomes
necessary for an instructor’s reputation and survi-
val as well.
Imparting computational content to graduate

courses, however, is not always simple. A graduate
or senior/graduate course is very unlike an under-
graduate course where students have similar
academic backgrounds and belong essentially to
the same age cohort. In a graduate course, espe-
cially when many working professionals are pres-
ent, the backgrounds can vary widely. In
engineering mathematics courses there can be
science students with engineering students; and
full-time, unmarried graduate students with
plenty of flexible hours for coursework, together
with working professionals pressed for time.
Indeed, in the cross-disciplinary engineering
subjects under discussion, the class disparities can
be even wider because students are from different
undergraduate streams with very different accred-
itation requirements. Even in electric power engin-
eering courses, it is now common to see mechanical
and chemical engineers pursuing a graduate degree
in nuclear power engineering, sitting together with
electrical engineers.
This problem is common worldwide as curricula

are increasingly standardized through America’s* Accepted 13 December 2009.

593

Int. J. Engng Ed. Vol. 26, No. 3, pp. 593–601, 2010 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2010 TEMPUS Publications.

ABET [2] working with the international Washing-
ton Accords [3]. Programming has been a required
course in undergraduate engineering accreditation
only in recent times; indeed, many master’s
students in engineering have been out of college
for some years and have graduated without any
programming background. Even today, the
criteria laid down by ABET are not explicit on
the requirements in computation nor are they
uniform across sub-disciplines. For instance,
ABET requires that electrical engineers have
knowledge of computer science to analyze and
design complex software, and systems containing
software components [2, p. 10]. No such descrip-
tion lies in the requirements for mechanical engi-
neers [2, p. 15] and others. If a mechanical engineer
did have programming skills as some in the grad-
uate courses mentioned did, it would be despite the
ABET guidelines and to the credit of farsighted
universities that put their students through
programming. Ahlstrom and Christie [4] have
also grappled with this disparity in Swedish
programs between international and local
students.
Reliance on prerequisites is not a solution

because many do meet prerequisites but because
of age have forgotten the material or learnt
programming with languages no longer common.
The offer of a short 1-credit course is a solution.
Indeed, a full course on MATLAB has been
offered in Sweden as a freshman course for the
purpose of making students MATLAB-proficient
so that they may use it in later courses [5].
However, that was not for addressing the problem
of class disparities but as part of the normal
curriculum. Moreover, as a solution, MATLAB
as a programming course would crowd the curri-
culum in introducing more structured program-
ming later, as with Java. Besides, at graduate level
most students would be reluctant to take it because
it would not count for graduate credit and there
would be problems with employers paying for it.
Another solution, slightly different courses for
different students, is not acceptable to university
administrations because of costs.
Keeping up standards is a challenge in these

circumstances. This paper describes how the four
courses mentioned with very disparate students
were taught without diluting them and indeed
enhancing them through computational assign-
ments by first bringing students to speed in low-
level programming. By low-level programming is
meant the use only of arithmetic and logical
operations (+, -, *, /, <=, &&, ~= etc.), simple
functions as available on a scientific calculator
(like sin(x), ln (x), xy) and simple programming
commands such as for, if, while, and function
combined with file reading commands. Higher
level functions, such as for examining student-
computed results through contour plots and
graphing, would be permitted at the beginning
and, time permitting, replaced with students’ own
programs.

2. EARLY DECISIONS: MATLAB AND
MATRIX COMPUTATION

At the very outset it was decided that no student
would go through these courses without program-
ming proficiency as an outcome. It was further
decided to use MATLAB1 [6] which is now used
so extensively in engineering education that special
issues of journals are devoted to the subject [7].
The option of open source software was not

considered because cheap student versions of
MATLAB are available on Windows—making it
‘‘available in almost all the technical institutions’’
[8]—and open source software often runs on Unix-
like environments that would make students grap-
ple with the operating system more than with the
subject they need to learn [9]. MATLAB’s simula-
tion capabilities are also an asset to students in
verifying solutions they arrive at through low-level
programming. Moreover, there are many Internet-
based resources for students who need help with
MATLAB.
MATLAB has been correctly described by its

vendor [10] as ‘‘a high-level language and inter-
active environment that enables you to perform
computationally intensive tasks faster than with
traditional programming languages such as C,
C++, and FORTRAN.’’ This accords with the
independent findings of Fangohr [11]. Wirth and
Kovesi [12] further state that MATLAB can be
used ‘‘for teaching the fundamental constructs of
programming languages to engineering and science
students’’ in 50% of the time as with other
languages. Without making any claims for
MATLAB as a well-structured programming
language, it is used here as a language with
which a novice can become a functional program-
mer quickly.
Commercial simulation software is used bymany

instructors—for example, COMSOL for treating
differential equations. Their pedagogic value is in
obtaining the solution of large problems quickly,
teaching problem set-up including conditions for
uniqueness and well-posedness, and through
graphics-based output giving students an intuitive
grasp of the system and its behavior. However, such
commercial simulation software was not considered
for two reasons. First, it is difficult to get sufficiently
many instructors to ask the university to acquire a
license unlike MATLAB which has a large support
base. And secondly, and perhapsmore importantly,
there is relatively little pedagogic or intellectual
value in asking students to use someone else’s
code, compared to creating their own as they
would with low-level programming.

3. A LITERATURE CONTEXT

The constraint was to teach low-level program-
ming quickly using MATLAB, bringing the
students to competency and speed without diluting
the course at hand and indeed enhancing it

S. Ratnajeevan H. Hoole594

through computational assignments. The literature
is rich with contributions on the use of MATLAB
in engineering education; for example [4, 5, 7, 8,
11–21]. In fact, while the ISI Web of Knowledge on
29 November 2009 listed 15,452 papers on
MATLAB, from the top end of engineering educa-
tional journals, it listed 58 papers from the Int. J.
Eng. Educ., 39 from the Int. J. Elect. Eng. Educ., 55
from IEEE Trans. Educ. and 47 from Comp.
Applics. Eng. Educ. (but curiously none from
ASEE Eng. Educ.). The vast majority of papers
lie outside these educational journals and use
MATLAB for analysis in research; there are only
occasional papers outside these journals such as
[20] that use it for education. It is therefore
appropriate to say how this work is distinguished
from that most useful, vast literature in the four
educational journals that are of relevance here.
In nearly all the papers from the four education

journals where it is treated, MATLAB is used as a
simulation tool to demonstrate the behavior of
engineering systems; examples are [16–19]. These
often enhance the learning experience by providing
graphical simulations of results, patching together
MATLAB’s toolboxes. The programming is not
independently by the students as libraries like
Simulink and LabView are combined with the
simulation capabilities of MATLAB; low-level
MATLAB programming plays a minor role in
piecing the libraries together. Ref. [21] is distin-
guished in that the instructors use MATLAB
programming at a low level to build their own
simulations and then use them with students,
rather than encouraging students to develop the
tools as is done here.
Papers such as [11] and [12] use MATLAB as a

programming language dedicated to teaching a full
programming course with MATLAB as the only
language of programming. In this paper, however,
the ease of using MATLAB is exploited to teach
the rudiments of programming to students so as to
make them functional programmers who are able
to implement computational assignments in other
engineering courses. Little attention is paid to
formal programming concepts like object orienta-
tion, inheritance etc. and the focus is on the steps
of computation and getting them done. Another
genre of papers such as [19] simply uses the power
of MATLAB as a programming tool for research
with potential applications in education.
In another segment of the literature such as [13,

14], MATLAB is used to give valuable insight to
students by exposing them to projects where they
use MATLAB to solve large engineering problems
through low-level programming. This experience is
not uniform for an entire class and applies only to
the very few students who choose a particular
project using MATLAB programming because of
their interest and skills [13]. In [14], which has
aspects similar to this effort, although an entire
class is involved, each small group has a different
project; little programming is required except for a
few lines of MATLAB code given by the instruc-

tors because the students are freshmen who have
done no programming yet.
This paper builds on [4] and [15], the two papers

that have weak conceptual similarities to this work.
In [4] the obstacles to teaching because of the
disparate MATLAB skills in class among Swedish
and foreign students, are overcome by giving pre-
written MATLAB code so that students could
focus on the results. In [15] MATLAB is used to
enhance an engineering mechanics course and
programming ‘‘mastery is achieved incrementally
throughout the semester.’’ But the difference is that
programming in that paper is at a much higher
level employing the toolboxes of MATLAB such as
ODE solvers and visualization tools, any lines of
code by students being for calling these tools.
The emphasis in this paper, so as to widen the

courses undertaken beyond small, unrealistic
problems by hand, is to make students program
the computational assignments at a low level and
learn to generalize the steps of their calculations as
formal algorithms. This would be as appropriate
for students at a reputationally top-end university
from where they would then go on to the world of
work building simulation software for others to
use, rather than being users of other people’s
packages. Certainly it would not be intellectually
appropriate in a university course, especially at
graduate level as here, to be focused on running
simulations or feed a matrix into the high-level
MATLAB function eig and then say these are its
eigen values. Such an exercise is bereft of anything
cerebral. What is done in the engineering mathe-
matics courses under discussion is to ask students
to write low-level code using, for example, the
power method to obtain the eigen values. At
most the students were permitted to use the func-
tion eig only to verify their answers. In the finite
elements course, they create a mesh, form the
corresponding matrix equation and then compute
the biggest eigen value and, thereupon, the smallest
(i.e. dominant) eigen value. That would be a far
more justifiable numerical extension of the tradi-
tional analytical treatment that this paper seeks to
enhance, than running someone else’s simulator.
What we give up is the ability to run large and
varied problems when we use commercial simula-
tors.

4. MATHEMATICS PROGRAMMING
MODULE AND DELIVERY

After some meandering in the first semester,
matrix computation was chosen as the common
core around which the programming skills are
built using a two-week module (going into three
weeks sometimes depending on the details of the
accompanying lectures as appropriate for the
course). The justification is that it is part of all
the courses and within the authorized syllabus
(directly in mathematics and as a tool in the
others).

Programming Skills in Graduate Engineering Classes 595

The required algorithms were discussed in class
as pseudo-code. Then the early algorithms were
developed on the computer together with the
students in a modern lecture-cum-computer class-
room. Initially as the instructor wrote out the code
on a computer projected on a screen, explaining
each line and what it does, the students copied it on
their machines as best as they could. This process
was helpful in giving them a start (rather than
assigning to those who were beginners the daunt-
ing task of programming from scratch). They
learnt in detail in correcting mistakes and getting
their programs to run and in doing further home-
work. Early elements of code simply involved a
Fourier series for a square wave, summing a fixed
number of terms and plotting the wave (Fig. 1).
This exercise, briefly recalling Fourier series, is
used to teach starting MATLAB, the for loop
and the while loop and plotting—a major depar-
ture from the traditional teaching approach to
programming where students go from the basics.
The code with corresponding algorithms used in
the lectures, is given in this paper explicitly in Figs.
1-8 to share what the students worked with and for
traditional teachers who, though expert in the
mathematical methods they teach, fail to introduce
them in their powerful numerical form because of
not knowing programming or how simple it can be
in MATLAB.
Thereafter determinant evaluation is taught with

the use of function and the simple if statement
using the code of Fig. 2. This introduces recursion
in a simple but elegant way. This is a rapid
introduction to recursion by normal standards
but the students were graduate students.
Now that determinants can be computed,

Cramer’s rule is used to solve the matrix equation
Ax = B using the code of Fig. 3. With these
programs the computation of a matrix inverse is
feasible after formal definitions in solving Ax = B
following the definition of A, n and B as in Fig. 4.
The simple function SubMatSimple easily
computes the determinant of a matrix after delet-
ing a specified row and column for the Minor and
Cofactor using the MATLAB command = [].
From this point onwards only the algorithms are

discussed in class without giving away any of the
code. For example, a useful homework assignment
testing a student’s comprehensive grasp of
programming, building on the if statement, is to
replace the function SubMatSimple of Fig. 4 with
SubMatDetailed without using the MATLAB
command = [].
Fig. 5 gives a sample solution. This broadening

is especially important for students to go on

Fig. 1. Plotting Fourier series for alternating square.

Fig. 2. Determinants: recursion.

Fig. 3. Cramer’s rule: equation solution.

Fig. 4. Solution by inverse computation

S. Ratnajeevan H. Hoole596

independently to other languages. More elaborate
solvers are now introduced. Programming niceties
are avoided and distinctions between row and
column vectors in MATLAB are left to the student
to discover.

The Gauss-Seidel iterative method for solving
Ax = B, very much a part of Mathematics I and
Power, is treated as pseudo-code leading to a
model solution as in Fig. 6. As necessary—
certainly in Mathematics I and Finite Elements—
Gaussian elimination for positive definite matrices
which require no row swapping, is taught using the
algorithms of Fig. 7 as pseudo-code.
Matrix solution by LU decomposition is today

important in many spheres of engineering includ-
ing Finite Elements and Power. For a symmetric
coefficient matrix A with A = LU, U being the
transpose of the lower triangular L for which case
Cholesky solvers become competitive, the algo-
rithms reflected in Fig. 8 are taught and their
development as code left for homework.

5. ADJUSTMENTS AND EXPERIENCE

The module has been taught for four semesters
now, almost finishing the fifth in multiple offerings
over time, the courses sharing the common
outcome of producing graduates competent in
programming concepts and using that competency
to teach the course at hand in a more useful way by
incorporating computational methods. The two
mathematics courses had about 28–30 students at
a time and the two engineering courses 10–20. Yet
the differences in courses and time required some
adjustments. Mathematics I and II initially were
taught alike in the first two weeks. Now in the
ongoing semester (Fall 2009) there are students in
Mathematics II and Finite Elements who were in
Mathematics I or II taught as in this paper. So
some severe adjustment were made curtailing the

Fig. 5. Sub-matrix with our code.

Fig. 6. Gauss Seidel iterations.

Fig. 7. Gaussian triangulation.

Programming Skills in Graduate Engineering Classes 597

module and dealing with those few who missed this
handling of mathematical programming. The
Power course had added emphasis on Gauss-
Seidel iterations and LU decomposition with
complex arithmetic. Finite Elements emphasized
LU decomposition, use of text files and graphics.
A particular student who had never

programmed, came up with finite element code
that though inefficient, worked. For example,
instead of loops he repeated lines of similar code
for each instance of the loop. In time his coding
improved in efficiency and elegance. He after
initially wishing to drop-out, stayed on, and
became a good programmer. An important way
in which the teaching here is distinguished from
formal programming courses is captured by the
comment of a student in the survey at the end:
‘‘Writing the code for the homework problems was
not especially onerous, as the sub-routines did not
necessarily have to be optimized for speed or
memory usage, and thus could be very crudely
written.’’
It was important to be flexible. When a class

complained that they could not keep to the home-
work deadlines, extensions were readily given.
Without the extensions, the students would have
given up. But with the extensions, they worked
hard and the outcome was as desired—they learnt
the subject and became proficient programmers—

judging, say, by the complexity of the programs
they wrote, students, including the few who had
never programmed, reached that stage where they
built up a complete finite element program—read-
ing input data from a text file using MATLAB’s
textread command, assembling the corresponding
matrix equation, and then plotting the solution.
Others in the power course performed steepest
descent optimization for the scheduling of power
generation units at optimal cost.
Even though the course emphasized low-level

programming, MATLAB’s tool box is useful to
students in verifying the results of finite element
code and ODEs. Fig. 9 (top) shows the steady-state
solution by a student of the differential equation

d2V

dt2
þ 2

dV

dt
þ 17V ¼ EðtÞ; with _Vð0Þ

¼ 4:0 and Vð0Þ ¼ 0:0

where E(t) is a periodic, half-rectified square wave,
obtained by breaking up the input into Fourier
components. After obtaining the solution V(t)
themselves, the students verified it using
MATLAB’s function ode23 from the ODE toolbox
(Fig. 9 Bottom). The similarity is clear after the
MATLAB solution’s transients die out. Similarly,

Fig. 8. Solution by LU decomposition for symmetric positive
definite A.

Fig. 9. Student’s steady state solution to ODE with half-square
wave (top) verified by full solution by MATLAB’s toolbox

(bottom).

S. Ratnajeevan H. Hoole598

other MATLAB toolboxes are of assistance in
students’ verifying their own solutions—for ex-
ample, poisolv and poicalc of MATLAB’s PDE
toolbox when dealing with the Poisson equation in
the finite elements course. Fig. 10 gives a student’s
finite difference solution to a Poissonian flow
problem with inhomogeneities. Figs. 9 and 10
emphasize that MATLAB was used as a low-
level programming tool and not as a simulator.
The assignment for Fig. 9 was early in Mathe-
matics II and for Fig. 10 at the end of that course
showing the building up of program complexity as
the course progressed.
What made learning low-level programming as

described here possible was:

(1) the students being mature as graduate stu-
dents;

(2) the mathematics of the matrix module having
been already covered in all the students’ under-
graduate work, the module’s not taking away
valuable class time from the subject to be
taught;

(3) the class having some students who were very
familiar with programming and therefore able
to help those who were behind.

These latter students who were sufficiently experi-
enced programmers, on their own initiative, had
asked for advanced assignments and engaged with
the advanced work with the promise that they will

be guaranteed the grade of A upon completion of
the advanced work.

6. STUDENT SURVEY

The students were surveyed for their perceptions
(Fig. 11). A strong measure of the success achieved
is that the 29% who saw themselves as excellent in
programming at the beginning of the courses, by
the end of the courses had risen to 67% of the
classes. Twenty two percent of the students in these
courses perceived themselves as poorly skilled in
programming (at or below 4 on a scale of 10) at the
beginning of their course. Their improvement went
up from a mean of 2.62 by 3.14 to 5.76 on a scale of
10—an improvement of 120%, a most impressive
gain given the shortness of the module, reinforced
through course-relevant assignments. In contrast,
the overall skill improvement for all students was
about 27%.
When asked if they would have preferred

another language or environment to MATLAB
on Windows, the mean response was 2.48 on a
scale of 10, confirming the correctness of the
decision to go with MATLAB on Windows.
In the mathematics courses where usually the

treatment is seen as drab by students, the reported
value added to the course by MATLAB was 8.2/
10. In the engineering courses also it was affirma-
tive but less resounding at 6.25/10 for Finite
Elements and 5.53/10 for Power. The lowest
mean beginning programming skill level was in
Power at 5.0/10.0 as also the highest class dispa-
rities with a standard deviation of 2.3 in this
number because of the mixture of electrical,
mechanical and chemical engineers in class from
very varying age groups. Subsequent coursework
using programming was also the most intense in
this course (on load-flow, various optimization
methods for scheduling generators, load-flow and
contingency studies etc.). This may explain the
muted enthusiasm, albeit positive.
Overall, on the scale of 10, the student recom-

mendation for using MATLAB in future offerings
was 6.93, with the math course students recom-
mending it more strongly by about 1.0 than the
engineering course students. This may be because

Fig. 10. Flow in a pipe with a source at a constriction.

Fig. 11. Improvement in skills before and after the course.
Key: Before: Lower Bar. After: Upper Bar

Poor: 0–4/10. Good: 5–6/10; Excellent: 7–10/10.

Programming Skills in Graduate Engineering Classes 599

as engineers, they were able to appreciate the
application of mathematics more through the
treatment of large real problems using computa-
tion than in a traditional treatment of mathematics
courses. However, the 22% who saw themselves as
poor programmers answered 5.42 for recommend-
ing MATLAB for future offerings of the courses
saying that it increased their workload for the
course. That is, ironically, those who benefited
the most, while marginally positive, were not as
enthusiastic as the others because of the extra time
they spent grappling with the subsequent program-
ming assignments.
About 29% of the students saw themselves as 7

or better on a scale of 10 in programming at the
beginning. These naturally reported only a small
improvement (about 0.6) in this figure at the end of
course. We may then say that the initial two-week
module took away valuable class time from them.
Yet, they recommended 8.13/10 that the module be
retained in future offerings—1.2 more than the rest
of the students. That is, those who were already
proficient programmers, despite not having bene-
fited through the initial two weeks, realized most
the benefits of the subsequent realistic treatment of
larger problems through numerical methods.

7. CONCLUSIONS

This paper has addressed the problem of teach-
ing computational methods in advanced graduate
courses with students who have different skills in
programming; some refined programmers, some
with no skills at all. A simple short module based

on matrix algebra within the syllabus has been
developed to teach programming using MATLAB
as a user-friendly, but powerful, programming tool
rather than as a high-level simulator. This initial
module has then been used to enhance the course
at hand through methods drawing on their new
programming skills. Students affirm the benefit of
this approach in a survey and strongly recommend
the use of this module with MATLAB in future
offerings of these courses.
Given the shortness of the module, the achieve-

ment is not to be compared with that from a full
course on programming. The 120% skill improve-
ment realized with the less skilled programmers in
class, though important, left them as still-learning
programmers. These students showed the greatest
improvement; but positive though not as strong an
appreciation of the programming module as the
others.
The strongest programmers at the beginning

appreciated most the numerical content of the
courses although they did not benefit much as
programmers. These suggest that the approach
taken is good but that ways must be found to
address the difficulties and overloading of the
initially poor programmers in coping with
programming assignments that were used to
enhance the courses. Similarly work is required
to make those already proficient as programmers
at the beginning, gain something from the initial
two weeks. This may be by a formalized different
track for these students as was done for some
students on their request.
Accreditation agencies need to take note of the

mismatched criteria between the different engin-
eering sub-disciplines and take appropriate action.

REFERENCES

1. Rensselaer Polytechnic Institute, Rensselaer Catalog: 2009–2010, Rensselaer Polytechnic Institute,
Troy, NY. 2009. Also http://catalog.rpi.edu/ (Accessed 28 November 2009).

2. Accreditation Board for Engineering and Technology, Criteria for Accrediting Engineering
Programs, Baltimore, MD, 3 November 2007.

3. Washington Accord Secretariat, The Washington Accord, Washington Accord Secretariat, Balti-
more MD. 2000. http://www.engc.org.uk/international/international_agreements/washington_
accord.aspx (Accessed 29 May 2009).

4. J. Ahlstrom and M. Christie, Using a MATLAB exercise to improve the teaching and learning of
heat conduction during welding, Int. J. Eng. Educ., 21(5), 2005, pp. 769–777.

5. H. P. Wallin, U. Carlsson, U. Ross and K. el Gaidi, Learning MATLAB: evaluation of methods
and materials for first-year engineering students, Int. J. Eng. Educ. 21(4), 2005, pp. 692–701.

6. Eva Part-Enander, Anders Sjoberg (eds), Eva Pärt-Enander and Anders Sjöberg, The Matlab V
Handbook, 2nd edn. Addison Wesley, 2000.

7. Ahmed Ibrahim, Guest Editorial: Special MATLAB and Simulink in engineering education, Int. J.
Eng. Educ. 21(4), 2005, p. 768 and (5), pp. 558–559.

8. M. Varadarajan and S. P. Valsan, MatPECS—A MATLAB-based power electronic circuit
simulation package with GUI for effective classroom teaching, Int. J. Eng. Educ. 21(4), 2005,
pp. 606–611.

9. J. F. Hoburg, Can Computers Really Help Students Understand Electromagnetics?, IEEE Trans.
Educ. 36(1), 1993, pp. 119–122.

10. http://www.mathworks.com/products/matlab/ (Accessed 31 December 2008).
11. H. Fangohr, A comparison of C, MATLAB, and python as teaching languages in engineering, in

M. Bubak, G. DickVanAlbada, P. M. A. Sloot and J. J. Dongarra, (eds), Proc. ICCS 2004, Lecture
Notes in Computer Science, Vol. 3039, Part 4, Springer-Verlag, Berlin, 2004, pp. 1210–1217.

12. M. A. Wirth and P. Kovesi, MATLAB as an introductory programming language, Comp. Applics.
Eng. Educ. 14(1), 2006, pp. 20–30.

S. Ratnajeevan H. Hoole600

13. M. K. Haldar, Introducing the Finite Element Method in electromagnetics to undergraduates
using MATLAB, Int. J. Elect. Eng. Educ. 43(3), 2006, pp. 232–244.

14. A. Horwitz and A. Ebrahimpour, Engineering applications in differential and integral calculus, Int.
J. Eng. Educ., 18(1), 2002, pp. 78–88.

15. J. B. Dabney and F. H. Ghorbel, Enhancing an advanced engineering mechanics course using
MATLAB and Simulink, Int. J. Eng. Educ. 21(5), 2005, pp. 885–895.

16. J. Sanchez, F. Esquembre, C. Martin, S. Dormindo, S. Dormindo-Canto, R. D. Canto, R. Pastor
and A. Urquia, Easy Java simulations: an open-source tool to develop interactive virtual
laboratories using MATLAB/Simulink, Int. J. Eng. Educ. 21(5), 2005, pp. 798–813.

17. P. Kar and J. W. Evans, AMATLAB-based teaching approach to dilute and concentrated solution
theories of electrochemical cells, Int. J. Eng. Educ. 25(1), 2009, pp. 17–23.

18. M. S. Habib, Enhancing mechanical engineering deep learning approach by integrating MATLAB/
Simulink, Int. J. Eng. Educ. 21(5), 2005, pp. 906–914.

19 R. A. Jabr, M. Hamad and Y. M. Mohanna, Newton-Raphson solution of Poisson’s equation in a
pn diode, Int. J. Elect. Eng. Educ. 44(1), 2007, pp. 22–33.

20. M. Kezunovic, A. Abur, G. Huang, A. Bose and T. Tomsovic, The role of digital modeling and
simulation in power engineering education, IEEE Trans. Power Systems, 19(1), 2004, pp. 64–72.

21. P. Krysl and A. Trivedi, Instructional use of MATLAB software components for computational
structural engineering, Int. J. Eng. Educ. 21(5), 2005, pp. 778–783.

S. Ratnajeevan H. Hoole D.Sc. (Eng.) London, Ph.D. Carnegie Mellon University, MSc
Distinction London, B.Sc. Eng. Hons. Cey., IEEE Fellow, C.Eng. (Sri Lanka). He is
Professor of Engineering and Science at Rensselaer Polytechnic Institute. See Int. J. Eng.
Educ. 25(6), p. 1235 for a detailed biography.

Programming Skills in Graduate Engineering Classes 601

