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This paper describes a seminar within the work unit ‘Introduction to the Entropy in Commun-
ications’ in the Statistics and Stochastic Processes course. During the seminar the students study
the entropy of a discrete source, its interpretation as potential information, and the parallelism with
the law of conservation of energy. A detailed analysis of the singularity that represents the case of a
uniform source distribution is carried out and analogies made with the principle of conservation of
mechanical energy. In addition, the intuitive characteristics of the seminar are highlighted, as well
as its gradually increasing development, carrying out successive generalizations. The methodologies
used in the seminar allow the students to discover for themselves an interdisciplinary model of
learning as well as showing them how to use computer simulation as a learning strategy in order to
achieve the learning objectives.
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1. INTRODUCTION

1.1 Entropy in communication
TWO OF THE MOST IMPORTANT ISSUES

in communication theory are (1) determining what
the ultimate data compression is and (2) determin-
ing the ultimate transmission rate of commun-
ication, in accordance with [1]. The information
theory based on the work of Shannon [2, 3] made
significant contributions to the solution to the
above issues. The theory developed by Shannon
uses probability distributions to quantify the infor-
mation through the entropy function. With regard
to the first issue, Shannon relates the entropy to
the average length of the words used to code the
information. The entropy represents the infimum
of such a length.
With regard to the second issue, the transmission

of information through a noisy channel distorts the
information and introduces errors. Conditional
probabilities allows one to define a set of entropies
that measure the information from the transmitter
and receiver points of view, and the capacity of the
channel is defined from those entropies.
Shannon [2, 3] establishes that, regardless of the

presence of noise, the capacity of a channel is the
supremum of the rates at which the information
can be transmitted with an arbitrarily small prob-
ability of error.
According to [5], the concept of entropy

proposed by Shannon (1948) was based on the
entropy of Boltzmann (1896), from statistical
mechanics. Boltzmann was the first to state the
probabilistic meaning of the entropy in thermody-
namics, because of that he is considered to be the
precursor of information theory. He interpreted the
entropy of a physical system as a measure of its
disorder. In a physical system with many degrees of
freedom the number that measures the disorder of
the system also measures the uncertainty of the
individual states of the particles.
Some decades before Clausius (1864) had

defined the entropy of a system in terms of its
measurable characteristics, Boltzmann realized its
probabilistic meaning.
In analogy with the expression of Boltzmann, in

1948 Shannon introduced the entropy in abstract
form as a measure of the amount of information or
uncertainty that a random experiment contributes,
through the concept of probability.
Hartley (1928) tried to define a measure of the

amount of information but such a measure only
took into account the number of results of the
experiment, instead of its probabilities. The
achievement of Shannon was to extend the concept
so that the entropy of Hartley was a particular case
of that of Shannon when the results of the experi-
ment have the same probability.
Because the entropy is a basic piece of the

information theory and because it intervenes
directly in the calculation of the limits that exist
in communication with regard to data compression
and data transmission, we consider it to be of* Accepted 19 December 2009.
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fundamental importance for students of telecom-
munication to carry out a deep study of the
concept of entropy and its interpretation.
The reality is that, on the one hand, in both

science and engineering we find a lot of applica-
tions of the concept of entropy aimed at solving
specific real-life problems [6–11].
However, on the other hand, in engineering

education, the teaching of entropy to undergradu-
ate students in engineering schools focuses basi-
cally on using it in some specific applications.

1.2 Seminar. Objectives and methodologies
Taking the above statements into consideration,

from the point of view of Information Theory
Education and with the aim of strengthening the
theoretical basis of undergraduate telecommunica-
tion students on communication theory, in this
paper we present a seminar on both the interpreta-
tion of the entropy of a source as a central concept
in information theory and communications, and its
analogies with mechanical energy.
At this point, it should be highlighted that the

analysis of such analogies is a novel approach that
allows telecommunication students to learn about
more examples of the close relationship that exists
among topics of subjects that are apparently very
distant from each other, such as ‘Mechanics’ and
‘Statistics and Stochastic Processes’.
The above-mentioned seminar is taught within

the subject ‘Statistics and Stochastic Processes’, at
the end of the first semester of the second academic
year of the undergraduate students of telecommu-
nication engineering.
The seminar is taught once the students have

acquired and applied knowledge of the following:

. Probability. Conditional probability

. Discrete one-dimensional random variables.
Expected value

. Computer simulation of random phenomena

. Estimation theory.

The main contributions of this paper are:

. to introduce concepts and results in an intuitive,
gradually increasing manner;

. to relate quantitatively lost uncertainty and
earned information in a source;

. to identify the couple entropy/information with
thecouplepotential energy/kineticenergy inorder
to analyze the transformation of uncertainty into
information, inasimilarmanner to theconversion
of potential energy into kinetic energy.

. With this philosophy and when the distribution
of the source is uniform, we establish a principle
that is equivalent to that of conversion of
mechanical energy when working in conserva-
tive force fields. The generalization of the dis-
tribution leads us to a general law of
conservation of energy;

. to use computer simulation as a tool that allows
students to carry out some experiments and to
promote a better intuitive understanding.

This seminar is intended to be taught in 5 hours
and is aimed at second-year undergraduate tele-
communication students.
First, we expect that it will serve the students as

an introduction to information theory.
Second, we expect to elaborate methodologies

that allow us to show the students a way of facing
and solving new problems by using scientific
approximation.
The learning objectives are:

. to highlight the characteristic of potential infor-
mation of the entropy of a random discrete
source;

. to use the principle of conservation of mechan-
ical energy in order to analyze the duality
uncertainty/information of the entropy of a
source;

. to establish some basis that allows the students
to better understand successive generalizations
of the entropy (conditional entropy, entropy of
two or more random variables) as well as con-
cepts that come from them (mutual information
and channel capacity).

The methodologies are:

M1. Approximation of a concept through a parti-
cular case of study

M2. Use of the intuition to make a first interpre-
tation of the entropy

M3. Consecutive generalizations of the initial con-
ditions.

M4. Search for models in other fields of engineer-
ing and science

M5. Use of computer simulation in order to
corroborate results, search for counterexam-
ples and establish conjectures

M6. Proposal of a series of key questions whose
answers allow one to advance in the study
and in reaching conclusions.

In Section 2.1 we laid out the basic knowledge
about entropy that the students will learn in order
to understand the seminar. Also, taking an inter-
pretation of the entropy of the source as the
uncertainty of the symbol to be transmitted, we
propose to gradually incorporate information
about the transmitted symbol and to analyze the
value of the addition of the amount of acquired
information and uncertainty that remains.
In Section 2.2 an introductory example is given,

and Section 2.3 is devoted to a study of the case in
which the probability distribution of the source is
uniform. In Section 2.3, we highlight that the
above-mentioned addition is constant when the
information that we have about the emitted
symbol varies.
In Section 2.4, we interpret this case of study as

a conversion of uncertainty into amount of infor-
mation similar to the one that is produced between
potential energy and kinetic energy in conservative
force fields. We establish a mathematical expres-
sion that is equivalent to the principle of conserva-
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tion of mechanical energy in fields that come from
a potential.
In Section 2.5, we use computer simulation to

give an empirical proof of the above result and in
Section 2.6 we see that it is impossible to generalize
this result to an arbitrary probability distribution.
In Section 2.7, we search for a mathematical

expression for the case of a source with an arbi-
trary probability distribution, and in Section 2.8
we carry out its interpretation and establish analo-
gies with the law of conservation of energy in non-
conservative fields. In Section 2.9 we carry out an
assessment of the seminar. The last section, Section
3, is devoted to our conclusions.

2. DESCRIPTION OF THE SEMINAR

2.1 Basic concepts
We begin the seminar by explaining the defini-

tion of information contained in an event [12].

Definition 1: Let A be an event of a probabilistic
space (
, S, P), the amount of information that is
gained by knowing that the event A has occurred is
given by

I Að Þ ¼ loga
1

P Að Þ ¼ � loga P Að Þ;P Að Þ > 0

Next, we define a measure of the uncertainty
associated to a discrete random variable [1].

Definition 2 (Shannon entropy): If X is a discrete
random variable that takes the values x1, x2, . . . . ,
xn with probabilities pi ¼ P(X ¼ xi), i ¼ 1, 2, . . . . n,
the entropy of the random variable X is given by

H Xð Þ ¼ �
Xn

i¼1
pi loga pi ð1Þ

The indeterminate form pi � loga pi with pi ¼ 0 is
solved by defining

pi � loga pi ¼ 0 if pi ¼ 0

Also, as I X ¼ xið Þ ¼ loga
1
pi
, we can write

H Xð Þ ¼
Xn

i¼1
piI X ¼ xið Þ ð2Þ

That is, H Xð Þ is the average information contrib-
uted by the events X ¼ xið Þ, i ¼ 1, ... n.
If a ¼ 2, the entropy is expressed in bits, which is

the entropy of a random variable that takes only
two values with identical probability.
From now on we will consider a ¼ 2, because we

are in the age of digital communications and
almost all the information is digitally transmitted.
In accordance with [13], the following proposi-

tion shows the properties of the entropy of a
discrete random variable.

Proposition 1: Let X be a discrete random variable
that takes the values x1, x2, . . . , xn with probabil-
ities pi ¼ P X ¼ xið Þ, i ¼ 1, 2, . . . n. We then find
that

1) H Xð Þ is continuous in the probabilities pi.
2) H Xð Þ is symmetric:

H p1; :::; pnð Þ ¼ H p� 1ð Þ; :::; p� nð Þ
� �

;

where � is any permutation of the subscripts
(1, ..., n).

3) 0 � H Xð Þ � log2 n
a. H Xð Þ ¼ 0 if and only if pk ¼ 1 for some k

(so that pi ¼ 0 for all i 6¼ k).
b. H Xð Þ ¼ log2 n if and only if pi ¼ 1=n for

i ¼ 1; :::; n.
4) H Xð Þ increases as n increases if X is a uniform

random variable.

At this point, the students are asked to do the
exercise below as homework assignment (30
minutes, individual work after class).

EXERCISE 1: Prove Proposition 1.
Finally, we define the meaning of both source

and entropy of a source [14].

Definition 3: A source is an ordered pair (S, P)
where S ¼ x1; :::; xnf g is called the source alphabet
and P is a probability distribution in S. The
probability of xi is denoted with pi, i ¼ 1; :::; n.

Definition 4 (Entropy of a source): Let (S, P) be a
source. The entropy of a source is defined as the
entropy of the random variable X that takes the
values x1, x2, ... , xn with probabilities pi, i ¼ 1, 2,
..., n, that is

H Xð Þ ¼ �
Xn

i¼1
pi log2 pi

At this point, the introductory example shown
below is given.

2.2 Introductory example: A source that emits
three symbols with uniform probability
distribution—Methodologies M1 and M2
We consider a source that emits one of the three

symbols 1, 2 or 3, with probabilities pi ¼ 1=3,
i ¼ 1; 2; 3;H � H Xð Þ ¼ log2 3:
We have a total and maximum uncertainty with

respect to the symbol that is going to be emitted,
because the three symbols have the same prob-
ability of being emitted.
Let us assume that we receive the information

that the emitted symbol is odd. Let B be the vent,
the emitted digit is odd.
The occurrence of B contributes the following

amount of information: I Bð Þ ¼ � log2
2
3
.

The information contributed by the occurrence
of B has decreased the uncertainty with respect to
what have been emitted (entropy of the source).
Nevertheless, such information has not made the
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uncertainty zero because now there are two equi-
probable results, 1 and 3.
How much does the entropy have decreased?
When we incorporate the information, the prob-

abilities of 1, 2 and 3 are 1/2, 0 and 1/2, respec-
tively. Thus, the entropy of the source will be
HB � H X=Bð Þ ¼ log2 2 and the loss of uncertainty
will be H �HB ¼ � log2

2
3
.

We observe that the loss of uncertainty coincides
with the information contained in B. Thus this has
been useful for decreasing the uncertainty
(entropy) of the source.
Let us assume now that the information we

receive with respect to the emitted symbol is that
the emitted symbol is even. Let A be the event, the
emitted symbol is even. The information contained
in A is I Að Þ ¼ log2 3.
With the information contributed by A the

uncertainty of the source is zero because the only
possibility is that the emitted symbol is 2. This
event totally specifies the result.
Let HA be the entropy that the source has if we

know that A has occurred. As now only the symbol
2 has a probability different from 0 and this is
equal to 1, we have that HA ¼ 0. The loss of
uncertainty will be H �HA ¼ log2 3� 0 ¼ I Að Þ.
Then, we conclude that

H ¼ HB þ I Bð Þ ¼ 0þ I Að Þ ¼ I Að Þ

In the two cases that have been analyzed so far,
the entropy that the source has, after having had
both information on the event that determines
partially or totally the result and information on
the amount of information contained in such an
event, is a constant and is equal to the entropy of
the source.

2.3 Generalization to a source with arbitrary
uniform distribution—Methodology M3
At this point, it is important to verify whether

the result obtained in Section 2.2 is true for an
arbitrary uniform distribution and for any event.
We will consider a source that emits one of the

symbols x1, ..., xn with probability pi ¼ 1=n, i ¼ 1,
2, ..., n.
As we have been doing up to now, we will

continue using the following notation:

. H entropy of the source

. B event that provides partial information on the
emitted symbol

. HB entropy of the source after having had
information on the occurrence of B

. A event that determines what the emitted
symbol was.

. HA entropy of the source after having known
what the emitted symbol was.

The entropy of the source will be:

H ¼ �
Xn

i¼1

1

n
log2

1

n
¼ log2 n ð3Þ

Assume that we know that the event B has
occurred; it has emitted one of the m symbols
xi1; :::; xim, for m < n. Let p0i be the probability of
emitting the symbol i given that B has occurred,
that is,

p0i ¼ P X ¼ xi=Bð Þ ¼ 1

m

The entropy of the source having known that B
has occurred is

HB ¼ �
Xm

i¼1
p0i log2 p0i

¼ �
Xm

i¼1

1

m
log2

1

m
¼ log2m ð4Þ

and the information contributed by the event B is

I Bð Þ ¼ � log2
m

n
¼ log2

n

m
ð5Þ

Therefore, we verify that

HB þ I Bð Þ ¼ log2mþ log2
n

m
¼ log2 n ð6Þ

Thus, HB þ I Bð Þ depends only on the number of
symbols that the source can emit.
If we know what the emitted symbol was and

call this event A, then the entropy HA will be equal
to zero and

I Að Þ ¼ � log2
1

n
¼ log2 n ð7Þ

Consequently we can establish that

H ¼ HB þ I Bð Þ ¼ HA þ I Að Þ ¼ I Að Þ ð8Þ

H ¼ I Að Þ indicates that the entropy of the
source (uncertainty with respect to the emitted
symbol) has been transformed into information
(the information acquired when we know what
the emitted symbol was).
Furthermore,H ¼ HB þ I Bð Þ, that is, the loss of

uncertainty is converted into earned information.
So that in that process the addition of the entropy
that the source has altered, having known an event
that determines partially or totally the result and
the amount of information that such an event
contains, is a constant.

2.4 Interpretation in terms of energy—
Methodology M4
Let us now look for a model with which we can

identify the previous result. To this end, we
consider the framework of Mechanics in Physics:
in that framework a conservation of equivalent
magnitudes is produced [15].
A particle in motion, under only the action of
conservative forces, ~F ¼ rU , has a potential
energy U owing to its position, and a kinetic
energy W owing to its speed.
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During the movement there is a conversion from
one type of energy to the other, in such a way that
the mechanical energy, which is the addition of
both energies, is kept constant.
Let us assume that such a particle, placed at some

distance (P) from the floor and under the action of
the gravitational force (~F ), falls without the effect of
the resistance due to the air. Its potential energy
decreases and its kinetic energy increases in the same
manner (Q), in such a way that when the particle
reaches the floor (R) all the potential energy has
been transformed into kinetic energy.
In accordance with the law of conservation of

mechanical energy, when the particle is under only
the action of conservative forces such as the
gravitational force, the mechanical energy remains
constant along the trajectory.
Let us establish the analogy between the conver-

sion from one energy into another, and what we
explained in previous subsections about the
entropy of a source.
The entropy of the source plays the role of the

potential energy. This decreases as the partial
information on the emitted symbol increases.
When we know what the emitted symbol was, the
entropy converts itself into information. The
amount of information available (i.e., actual infor-
mation) plays the role of the kinetic energy, in such
a way that the addition of both energies is kept
constant throughout the process.
Then, we can consider that the entropy has the

nature of potential information, due to its capacity
to produce actual information.
Equation (8) can be interpreted in the following

way: The sum of the potential and actual informa-
tion does not change when the distribution of the
source is uniform. Fig. 1 shows this analogy.
Therefore, Equation (8) is equivalent to the

principle of conservation of mechanical energy.

2.5 Empirical proof of the previous result—
Methodology M5
Let us assume that a source can emit the

symbols i ¼ 1, 2,..., 10, with pi ¼ 1/10. Then,
substituting n ¼ 0 and m ¼ 5 in (3), (4), (5) and
(7), we obtain the results shown in Table 1 for the
following cases:

i) When we do not have any information on the
emitted symbol.

ii) When we know that the emitted symbol is even
(event B).

iii) When we know what the emitted symbol was
(event A).

Let us now generate a sample of a discrete
uniform variable X in {1, ..., 10} and estimate
the entropy and information from such a sample.
Let us use the relative frequency of each symbol fri
as an estimator of the probability pi [16]. Then we
estimate the entropy of the random variable X by
using the statistic

Ĥ ¼ �
X10

i¼1
fri log2 frið Þ ð9Þ

where fri is the relative frequency at each digit i, for
i = 1, ....., 10, of the sample. The information
contained in each symbol i, for i = 1, ....., 10, is
estimated by using the statistic

Î Aið Þ ¼ � log2 frið Þ ð10Þ

The information contained in B is estimated by
using the statistic

Î Bð Þ ¼ � log2 fr Bð Þð Þ ð11Þ

where fr Bð Þ is the relative frequency of B in the
sample.
The entropy that the source has, after the

occurrence of B, is estimated by

ĤB ¼ �
X5

i¼1

fr2i
fr Bð Þ log2

fr2i
fr Bð Þ ð12Þ

where fr2i is the relative frequency even digit of the
sample.
Then, we carry out some computer simulations

by using R [17, 18], because R has the advantage of
being freely redistributable and widely used in
Statistics.
However, as mentioned in [19] we can use other

platforms such as Matlab that are more general
purpose numerical engines than R. But such plat-
forms tend to have less support for certain statis-
tical functions.
The above-mentioned simulations need only a

few lines of code. The function entropy of
Appendix A carries out the calculation of the
statistics Ĥ, Î Bð Þ, ĤB, Suma ¼ ĤB þ Î Bð Þ
and error ¼ Suma� Ĥ

�� �� in accordance with (9),
(11) and (12), from a single random sample of a
distribution of probability p ¼ p1; ::: p10ð Þ. We
save the function entropy in the text file entropy.R.
In order to carry out the simulation process, we
execute the following R code:

Fig. 1. Law of conservation of mechanical energy versus
entropy.

Table 1. Theoretical entropy

H HB I(B) I(A)

log2 10 log2 5 log2
10

5
log2 10
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>source(‘‘entropy.R’’)
>entropy()
>entropy(1000)
>entropy(10000)

Table 2 shows the results obtained for s ¼ 100, s ¼
1000 and s ¼ 10 000.
At this point, we divide the seminar into several

small groups consisting of three students (each
group) and we ask each group to solve the exercise
below as a homework assignment (after class in no
more than 15 minutes).

EXERCISE 2: Let n ¼ 5, p ¼ 0:2; 0:2; 0:2; 0:2; 0:2ð Þ
and the event B, the emitted digit is odd. Fill in
Table 2 for this case.

2.6 Attempt to generalize (8) to the case of an
arbitrary distribution—Methodologies M3 and M5
Will HB þ I Bð Þ be a constant if we consider a

non-uniform source distribution?
Let us consider a simple random sample of one

discrete random variable X that takes the values in
{1, ..., 9} with probabilities p1 ¼ 0.1, p2 ¼ 0.3, p3 ¼
0.05, p4 ¼ 0.2, p5 ¼ 0.15, P6 ¼ 0.12, p7 ¼ 0.04, p8 ¼
0.02 and p9 ¼ 0.02.
Table 3 shows the results obtained in the simula-

tions for s = 100, s = 1000 and s = 10 000, choosing
p ¼ p1; p2; p3; p4; p5; p6; p7; p8; p9ð Þ.
We execute the following R code:

>p¼ c(0.1, 0.3 , 0.05, 0.2, 0.15, 0.12, 0.04, 0.02, 0.02)
>sum(p)==1
>entropy(100,9,p)
>entropy(1000,9,p)
>entropy(10000,9,p)

In this case, we observe that

H ¼ �
X9

i¼1
pi log2 pi ¼ 2:722

HB ¼ �
X4

i¼1

p2i

P Bð Þ log2
p2i

P Bð Þ ¼ 1:645

I Bð Þ ¼ � log2 P Bð Þ ¼ 0:643:

ð13Þ

At this point, we divide the seminar into small
groups of three students one more time and ask
them to solve the exercise below as a homework
assignment. Also, they have to carry out a
comparative analysis among their results. The
estimated time to do this exercise is about 25
minutes.

EXERCISE 3: In this exercise both n and the event
B are chosen arbitrarily. Then, fill in Table 3 for
this case.

2.7 Searching for an expression of HB + I(B) for
the case of an arbitrary distribution source—
Methodologies M3, M5 and M6
From the previous empirical results we establish

the following conjecture [20]:

Conjecture: The sum of the potential and actual
information is not a constant if the distribution of
the source is not uniform.
Is there any reason that can assure us that the

above conjecture is true?
For the equiprobable case, we said that the

entropy of the source has been transformed into
the information that contains the knowledge that
we have on the symbol that has been emitted. That
is, H ¼ I X ¼ xið Þ.
When the probabilities of the symbols are not

equal to each other, the information of the elemen-
tal events X ¼ xið Þ are not equal either and the
equality cannot be true.
Let us try to search for an expression for the sum

of the potential and actual information, HB þ I(B).
In order to do this, we consider a source that

emits one of the n symbols x1, ..., xn, with prob-
abilities p1, ..., pn, respectively, and

Xn

i¼1
pi ¼ 1:

Let us consider the events Ai, the symbol xi, for
i ¼ 1, ..., n, is emitted.
The information contributed by the occurrence

of Ai is, I Aið Þ ¼ � log2 pi i ¼ 1, ...., n.
The entropy of the source will be

H ¼
Xn

i¼1
piI Aið Þ ð14Þ

We know that it can only be emitted one of the m
symbols (event B) xi1 :::::: xim, with probabilities
pi1 :::::: pim.
The occurrence of B provides the amount of

information

I Bð Þ ¼ � log2 pi1 þ ::::þ pimð Þ ð15Þ

and the entropy that the source has after having
known B is

HB ¼ �
Xm

k¼1
p0ik log2 p

0
ik ð16Þ

Table 2. Estimated entropy: uniform case

Ĥ ĤB Î Bð Þ Suma Error

s ¼ 100 3.279 2.294 0.785 3.080 0.149
s ¼ 1000 3.314 2.318 0.971 3.290 0.025
s ¼ 10000 3.321 2.321 1.004 3.325 0.004

Table 3. Estimated entropy: non-uniform case

Ĥ ĤB Î Bð Þ Suma Error

s ¼ 100 2.595 1.347 0.736 2.084 0.511
s ¼ 1000 2.740 1.665 0.662 2.327 0.412
s ¼ 10000 2.725 1.647 0.643 2.290 0.434
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where p0ik is the probability of emitting the symbol
ik given the occurrence of B, that is

p0ik ¼ P X ¼ xik=Bð Þ ¼ P X ¼ xikð Þ
P Bð Þ ¼ pik

P Bð Þ ð17Þ

Then,

HB ¼ �
Xm

k¼1

pik

P Bð Þ log2
pik

P Bð Þ

¼ � 1

P Bð Þ
Xm

k¼1
pik log2 pik � log2 P Bð Þð Þ

¼ � 1

P Bð Þ
Xm

k¼1
pik log2 pik � log2 P Bð Þ

Xm

k¼1
pik

 !

¼ � 1

P Bð Þ
Xm

k¼1
pik log2 pik � P Bð Þ log2 P Bð Þ

 !

¼ log2 P Bð Þ �
Xm

k¼1

pik

P Bð Þ log2 pik

¼ �I Bð Þ þ
Xm

k¼1
p0ikI Aikð Þ

ð18Þ

Therefore,

HB þ I Bð Þ ¼
Xm

k¼1
p0ikI Aikð Þ ¼

Xn

i¼1
P X ¼ xi=Bð ÞI Aið Þ

ð19Þ

where P X ¼ xi=Bð Þ ¼ 0, for i 6¼ i1; i2; :::; im.
Equation (19) tells us that the sum of both the

entropy that the source has after the occurrence of
B and the information that B contributes is a
weighted average of the information contained in
the symbols to be emitted x1 ...... xn, where the
weights are the respective probabilities of each one
of the symbols after the occurrence of B. There-
fore, (19) is an expression for the sum of potential
and actual information, and represents an exten-
sion of (8) for the case of an arbitrary distribution
of the source.
At this point, we ask the students to complete

the exercise below individually as a homework
assignment. The estimated time to do this exercise
is about 20 minutes.

EXERCISE 4: Show that for the particular case of
uniform distribution, for the symbols x1 ..... xn, the
result obtained in (19) coincides with the one that
we obtained at the beginning of our study, in (8).

2.8 Interpretation in terms of energy—
Methodology M4
By identifying entropy with potential energy and

actual information with kinetic energy, as we have
done so far, unlike the case discussed in Section
2.3, we have obtained a non-constant expression
for the mechanical energy when the source has an

arbitrary distribution. However, the mechanical
energy changes due to the existence of non-conser-
vative forces, and the law of conservation of
energy states that the increase/decrease in the
amount of mechanical energy of a system is
equal to the decrease/increase in the amount of
its internal energy.
For the case in which there are only conservative

forces, there is no variation in the internal energy:
this law is the principle of conservation of mechan-
ical energy.
In the absence of information on the symbol

emitted by the source, the mechanical energy will
be the entropy H. However, when we know what
the emitted symbol xi is, there is no entropy left
and the mechanical energy will be the amount of
information of the symbol, I Aið Þ.

H � I Aið Þ ¼
Xn

j¼1
pjI Aj

� �
� I Aið Þ ð24Þ

Then, if I Aj

� �
< H, the amount of information

of Ai ¼ X ¼ xið Þ is less than the amount of the
average information of the symbols. Not all the
entropy of the source has been converted into the
amount of information of the event Ai. There is a
loss of mechanical energy of the system that is
converted into earned internal energy.
If H < I Aið Þ, the amount of information of Ai is

greater than the amount of the average informa-
tion of the symbols. Mechanical energy has been
earned at the expense of a loss of the same amount
in internal energy.
If for all values of i, i ¼ 1 ... n, we have that

H � I Aið Þ ¼ 0, then pi ¼ 1=n and the probability
distribution of the source is uniform, as we already
knew.
If for all values of i, i ¼ 1 ... n, H � I Aið Þ takes

values close to zero, the amount of information
that the events Ai contain are all close to the
average and therefore very close to each other.
As a consequence, the probabilities of the

symbols are close to each other and therefore
close to 1=n. This means that there is a certain
‘similarity’ between the distribution of probabil-
ities p1; :::; pn and the uniform distribution. The
loss or earn of internal energy when the different
symbols are emitted is small. That is, the prob-
abilities of the source are ‘close’ to the ones of the
uniform distribution with the same number of
symbols, and we approach the model of conserva-
tion of mechanical energy.

2.9 Assessment
To end the seminar we are going to measure the

learning and retention of the material [21–24]. To
that end, several key issues are going to be taken
into consideration, such as: performance of the
students in the seminar, teamwork, and so on.
During the last 30 minutes of the seminar, we are
going to conduct an Assessment Test, in which we
are going to measure the individual work of the
students. In that test we are going to ask the
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students to answer some important multiple
answer questions based on the exercises of the
homework assignments 1 and 4, and the interpre-
tation of the results (8) and (19). An example of the
full version of one of these Assessment Tests is
included in Appendix B.
Furthermore, the teamwork for the homework-
assignment Exercises 2 and 3 is also measured.

3. CONCLUSIONS

In this paper a seminar on the interpretation of
the entropy of a source and its analogies with
energy has been presented. Owing to its character-
istics the seminar has been aimed mainly at tele-
communication students who are interested in
learning about the entropy in communications.

The character of the potential information of the
entropy has been highlighted. Also, the duality
uncertainty/information of the entropy of a
source has been analyzed, and the basis that will
allow us to carry out further generalizations of the
entropy and define concepts derived from it have
also been established.
All the above-mentioned work has been carried

out using methodologies that have allowed the
student to understand a way of approximating
the solution to scientific problems.

Acknowledgements—The authors would like to thank both
Professor J. G. Palomo and G. Perez at the Universidad
Politecnica de Madrid for encouraging us to write this paper
and for their valuable comments and suggestions about it. This
research was supported by the Universidad Politecnica de
Madrid under the research projects on Engineering Education
IE08590220 and IE09590203.

REFERENCES

1. T. M. Cover and J. B. Thomas, Elements of Information Theory, 2nd edn, John Wiley & Sons, New
Jersey, 2006.

2. C. E. Shannon, A mathematical theory of communication. Bell System Technical Journal, 27, 1949,
pp. 379–423 and pp. 623–656.

3. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois
Press, Urbana, 1998.

4. G. A. Jones and J. J. Jones, Information and Coding Theory, Springer-Verlag, London, 2000.
5. J. van der Lubbe, Information Theory, Cambridge University Press, Cambridge, 1997.
6. J. F. Bercher and C. Vignat, Estimating the entropy of a signal with applications, IEEE

Transactions on Signal Processing, 48(6), 2000, pp. 1687–1694.
7. O. S. Jahromi, B. A. Francis, and R. W. Kwong, Spectrum estimation using multirate observa-

tions, IEEE Transactions on Signal Processing, 52(7), 2004, pp. 1878–1890.
8. E. Learned-Miller and J. DeStefano, A probability upper bound on differential entropy, IEEE

Transactions on Information Theory, 54(11), 2008, pp. 5223–5230.
9. J. F. Arnold and M. C. Cavenor, A practical course in digital video communications based on

MATLAB, IEEE Transactions on Education, 39(2), 1996, pp. 127–136.
10. R. Kuc, Teaching the nonscience major: EE101–The Digital Information Age, IEEE Transactions

on Education, 44(2), 2001, pp. 158–164.
11. S. C. Gustafson, C. S. Costello, E. C. Like, S. J. Pierce and K. N. Shenoy, Bayesian threshold

estimation, IEEE Transactions on Education, 52(4), 2009, pp. 400–403.
12. C. W. Therrien and M. Tummmala, Probability for Electrical and Computer Engineers, CRC Press

LLC, Boca Raton, 2004.
13. L. Pardo, Teorı́a de la Información Estadı́stica, Hespérides, Salamanca, 1998.
14. S. Roman, Coding and Information Theory, Springer-Verlag, New York, 1992.
15. H. D. Young and R. A. Fredman, Sears and Zemansky’s University Physics with Modern Physics,

11th edn, Pearson/Addison-Wesley, San Francisco, 2003.
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APPENDIX A. FUNCTION ENTROPY

entropy ¼ function(s ¼ 100, n ¼ 10, p ¼ rep(1/n,n))
# This function carries out the estimation of
# H, HB, I Bð Þ, Suma and error
# from a simple random sample of size s
# of a random variable X in {1, ..., n}
# with probability distribution p.
# Default values: s ¼ 100, n ¼ 10 and
# p ¼ p1; :::; p10ð Þ, p1 ¼ ::: ¼ p10 ¼ 1

10
.

{
muestra ¼ sample(1:n, s, prob ¼ p, replace ¼ T)
fr ¼ rep(0,n)
for (i in 1:n) fr[i] ¼ sum(muestra ¼ i)
fr ¼ fr/s
frB ¼ sum(fr[seq(2, n, 2)])
H.estimate ¼ -sum( ifelse (fr > 0, fr*log2(fr), 0) )
HB.estimate ¼ -sum( ifelse (fr[seq(2,n,2)] >0,
fr[seq(2, n, 2)]/fr(B)*log2(fr[seq(2, n, 2)]/fr(B)), 0))
IB.estimate ¼ -log2(sum(fr[seq(2, n, 2)]))
Suma ¼ HB.estimate + IB.estimate
error ¼ abs(Suma-H.estimate)
return(cbind(H.estimate, HB.estimate, IB.estimate, Suma, error))
}

APPENDIX B: ASSESSMENT TEST EXAMPLE

A source emits one of the symbols a, b, c, d, e, f with probabilities p1 ¼
1

25
; p2 ¼

1

23
; p3 ¼

1

24
, p4 ¼

1

2
,

p5 ¼
1

22
; p6 ¼

1

25
, respectively.

A, B and C represent three people from whom we know that:

� A knows that the symbol b has been emitted.
� B knows that a vocal has been emitted.
� C does not know anything.

1. The potential information that C has is
(a) 13=32
(b) 31=16
(c) 23=44
(d) 15=32

2. The actual information of B is
(a) log2 7þ log2 3
(b) log2 7
(c) 2.54
(d) 5� log2 9

3. The difference between the uncertainty with respect to the symbol that the source has emitted that A and
B have is
(a) log2 9� 8

3
(b) log2 11
(c) log2 9
(d) log2 7þ 3

4. We earn an amount of information less than the entropy of the source when we know that the emitted
symbol was
(a) a
(b) b
(c) c
(d) d
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5. Assume that a source emits the same symbols and has maximum entropy. Then, the value of p5 and the
maximum entropy are
(a) p5 ¼ 1; Hmax ¼ 6
(b) p5 ¼ 1=2; Hmax ¼ log2 10
(c) p5 ¼ 1=6; Hmax ¼ log2 6
(d) p5 ¼ 1=6; Hmax ¼ log2 3

6. If pi ¼ 1=6 for i ¼ 1; 2:::6, then the sum of potential and actual information of B is
(a) 1þ log2 3
(b) log2 5
(c) 2
(d) log2 3þ log2 5
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