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Open-ended problems are an important part of the engineering curriculum because, when well
designed, they closely resemble problem-solving situations students will encounter as professional
engineers. However, valid and reliable evaluation of student performance on open-ended problems
is a challenge given that numerous reasonable responses are likely to exist for a given problem and
multiple instructors may be evaluating student work. The purpose of this paper is to present a
concrete example of how educational design research, a models-and-modeling perspective from
mathematics education, and multi-tiered teaching experiments are brought to bear in the design of
valid and reliable evaluation tools for scoring team responses to complex problem-solving activities
used in a large first-year engineering course in which teaching assistants evaluate student work.
This on-going design study demonstrates how designing a package of evaluation tools (including
rubrics, task-specific supports, and scorer training) based on the aforementioned educational
research methods supports (1) sustained fidelity to engineering expert-identified characteristics of
high performance across iterations of change to improve reliability, and (2) the implementation of
planned iterations of the evaluation tools based on systematically collected data.
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1. INTRODUCTION

OPEN-ENDED PROBLEMS are an important
part of the engineering curriculum because, when
well designed, they closely resemble problem-
solving and design situations students will encoun-
ter as professional engineers. However, two major
challenges exist in evaluating student work on such
problems in engineering education classrooms.
The first challenge is to identify criteria for evalu-
ating students’ solutions that reflect what would be
valued in the professional engineering environ-
ment. The second challenge is to design valid and
reliable tools for use by multiple instructors as they
evaluate students’ responses, especially when a
variety of reasonable solutions may be produced
whether assessing small-scale problem-solving or
large-scale design tasks [1]. In order to motivate
student learning, such assessment should provide
formative feedback to students as well [2]. Thus,
the purpose of this paper is to demonstrate how
educational research methodology is used in the
on-going design of evaluation packages (including
rubrics, task-specific supports, and scorer train-
ing). In particular, the goal for the design of the

evaluation tools is to maintain fidelity to charac-
teristics of high performance as described by en-
gineering experts and to obtain reliable scoring by
graduate teaching assistants (TAs)—i.e., scoring
sample work within one level of an expert’s score
90% of the time.
In this study, the development of the evaluation

tools is embedded in a larger system that involves
course constraints, a large number of students, a
large numbers of TAs who would be evaluating
student products, and training of these TAs.
Therefore, the researchers draw on three educa-
tional research perspectives. A models-and-model-
ing perspective [3] provides a framework for
selecting problem-solving tasks that are specifically
designed to simultaneously serve as sites for
student assessment and for research. Design
research methodology [4–6] provides guidance for
planning iterations of designing evaluation tools,
assessing them, and revising the tools based on
information gathered in the assessment. The multi-
tiered teaching experiment methodology [7]
provides a framework for embracing the dynamic
nature of educational research settings, where
changing conditions, constraints, and perspectives
of various constituencies (students, TAs, instruc-
tors, researchers) are common. Using these three* Accepted 15 October 2009.
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educational research perspectives, the iterations of
designing evaluation tools produce a trail of
evidence and documentation that is available for
study and making subsequent design decisions.

1.1 Selection and design of open-ended problems
Open-ended problems are selected for a required

first-year engineering course that emphasizes prob-
lem solving and computer tools. These problems
share characteristics with those encountered in
professional engineering: problems that exhibit a
high level of challenge; require problem formula-
tion; and can be solved in a number of ways [8].
Further, since the course requires team problem
solving, the problems need to have enough chal-
lenge to require collaboration. Tapping the models
and modeling literature [9], model-eliciting activ-
ities (MEAs) have been selected to fulfill the above
purpose. In addition to the above characteristics,
MEAs require teams to mathematize (e.g., quan-
tify, organize, dimensionalize) information in an
engineering context, and the solutions are mathe-
matical models that reveal information about
teams’ approaches to solving the problem. MEAs
are carefully designed to adhere to six design
principles [3, 9–12]. The model-construction prin-
ciple means that the problem requires students to
create a mathematical system (i.e., model) to ad-
dress the needs of a given client. The reality
principle requires that the problem be based in a
realistic engineering situation for which a mathe-
matical model needs to be created. The self-assess-
ment principle means the problem must contain
information or data that can assist the team in
ongoing evaluation of their progress. The model-
documentation principle requires that the
problem’s solutions will be the teams’ models.
The generalizability principle requires that the
model produced can be shared with others (i.e.,
clearly communicated to other users) and re-usable
(i.e., articulates rationales and assumptions that
facilitate revising the model for use in similar,
although somewhat different, situations). Finally,
the effective prototype or simplicity principle
requires that the problem and solution to the
problem provide powerful metaphors to students
for interpreting future situations, and thus has
clear educational value. For the first-year engin-
eering instantiations of MEAs, the problem is
conveyed to the student teams via a memo from

a fictitious supervisor. The student team responses
are in the form of a memo directed to the super-
visor and contain their procedures for solving the
problem with results from applying their proce-
dures to a given data set.
The MEA used to illustrate the design of evalua-

tion tools is titled Just-in-Time Manufacturing
MEA. This MEA requires students use their know-
ledge of statistics to develop a procedure to rank
potential shipping companies to meet the delivery
needs of a client (here, Devon Dalton) [13]. Using
the number of minutes late for a set of past
deliveries, the students should use statistical
measures beyond the mean, such as standard
deviation, frequency analysis, and range to gener-
ate a procedure that quantifies the potential for
arriving on time. For instance, the students have to
consider consistency and reliability in order to
determine whether a company is more likely to
deliver on time. In particular, the Just-in-Time
MEA requires students to develop a procedure to
rank shipping companies in order of most likely to
least likely able to meet a client’s delivery timing
needs. The motivation for developing the proce-
dure is established by using a realistic context in
which D. Dalton Technologies, a manufacturer of
advanced piezoceramics and custom-made ultra-
sonic transducers, is unsatisfied with their current
shipping service. The manufacturer operates in a
just-in-time manufacturing mode and requires a
shipping service to move materials between two
subsidiary companies. Student teams of four are
required to establish a procedure to rank a number
of alternative shipping companies using a small
subset of a large historical data set. Teams are
provided with data for eight shipping companies in
terms of number of minutes late a shipment arrived
at its destination (Table 1). Students are instructed
to address ways to break ties in company rankings.
A prototypical student team response to this

problem is provided in Fig. 1 to highlight the
characteristics of a solution that are considered
during the evaluation of student work. One
strength of this team’s response is that the team
has explicitly articulated a generalized procedure
for rank-ordering the companies. A second
strength is that the team has addressed the
complexity of the problem; they have realized
that just ranking on the basis of mean is inade-
quate as the means are quite close to each other

Table 1. Number of Minutes Late for Shipping Runs from Noblesville, IN to Delphi, IN (sample data set)

FPS UE BF SC LL NPS SS HC

6 11 15 10 11 24 0 12
11 10 2 8 8 0 6 0
3 18 0 0 6 27 19 5
10 0 16 11 13 5 0 4
17 12 15 8 11 1 33 40
14 14 13 25 15 5 3 2

Note: FPS = Federal Parcel Service; UE = United Express; BF = Blue Freight; SC = ShipCorp; LL = LandLine; NPS = National
Package Service; SS = Swift Star; HC = Highway Carriers
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Fig. 1. Sample Good First Draft Response (Prototypical Student Work).

To: Devon Dalton
From: Team 5
RE: Procedure to rank shipping companies

Our task is to develop a procedure that ranks potential shipping companies from best to least able to meet the needs of DDT.
Historical data for each shipping company that consists of lateness of arrival between subsidiaries is used. It is assumed that
time is the most important factor in determining the best shipping company. It is also assumed that DDT has access to the
program Excel and has the knowledge to use the histogram, skewdness, and standard deviation functions. There should be
adequate data for each shipping company on which to base a decision. No other limitations apply.

Procedure
1. Make a chart of all the shipping times for each company considered. The time entered should be in minutes and it should be

the amount of time each shipment is late.

2. Calculate the standard deviation of each company. The standard deviation is a measurement of the spread of the data. A
higher standard deviation means the data is more spread out. We want to calculate the standard deviation because it
shows us how close each company is to the mean. A lower standard deviation is better because it means the company is
making deliveries at consistent times.
a. To calculate the standard deviation, use Excel.
b. Assign each company a value between one and the number of companies. The company with the lowest standard

deviation is assigned a value of one, the company with second lowest standard deviation is assigned a value of two, etc.
until each company is assigned a value.

c. If two companies have the same standard deviation, assign them the same value.
d. Multiply each company’s assigned value by four. We do this because the standard deviation should be weighted higher

than the other factors being used to rank the companies.

3. Calculate the mean of the times for each company. The mean is the average. We want to calculate the mean of each
company’s delivery time to see approximately how many minutes late each delivery is. The lower the mean, the better,
because that means the company is close to being on time.
a. To calculate the mean, add all of the data points, then divide by the number of data points.
b. Assign each company a value between one and the number of companies. The company with the lowest mean is

assigned a value of one, the company with second lowest mean is assigned a value of two, etc. until each company is
assigned a value.

c. If two companies have the same mean, assign them the same value.
d. Multiply each company’s assigned value by three. We do this because the mean should be weighted higher than the

other factors being used to rank the companies, but lower than the standard deviation.

4. Create a histogram for each company. A histogram is a chart that displays the frequency of data. We want to create
histograms because we want the company to have the highest frequency of data within the lowest time ranges.
a. To create a histogram, use Excel. After creating the histogram, calculate skewdness using Excel (use descriptive

statistics to get the skewdness value).
b. Assign each company a value between one and the number of companies. The company with the highest value for

skewdness is assigned a value of one, the company with second highest value for skewdness is assigned a value of
two, etc. until each company is assigned a value.

c. If two companies have the same skewdness value, assign them the same value.
d. Multiply each company’s assigned value by two. We do this because the histogram data should be weighted higher than

the other factors being used to rank the companies, but lower than the standard deviation and the mean.

5. Calculate minimum shipping time for each company. We want to calculate the minimum shipping time because this is the
closest the company came to delivering on time. If the company was on time the minimum would be zero, which is ideal.
a. To get the minimum shipping time, select the lowest time value for each company.
b. Assign each company a value between one and the number of companies. The company with the lowest minimum is

assigned a value of one, the company with second lowest minimum is assigned a value of two, etc. until each company
is assigned a value.

c. If two companies have the same minimum, assign them the same value.

6. Calculate the maximum shipping time for each company. We want to calculate the maximum shipping time because this is
the latest the company was from delivering on time. We want the company to have a low value for maximum shipping time
because this means the company was not very late.
a. To calculate the maximum shipping time, select the highest time value for each company.
b. Assign each company a value between one and the number of companies. The company with the lowest maximum is

assigned a value of one, the company with second lowest maximum is assigned a value of two, etc. until each company
is assigned a value.

c. If two companies have the same maximum, assign them the same value.

7. Add all of the assigned values given to each of the companies. The company with the lowest value is ranked highest, while
the company with the highest value is ranked lowest.

Results (highest ranked to lowest ranked)
Federal Parcel Service, rank sum 31
Blue Freight, rs 36
Swift Star, rs 43
ShipCorp, rs 44
LandLine,rs 46
National Package Service, rs 51
United Express, rs 57
Highway Carriers, rs 61
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and do address variability and distribution of the
data. Further, the procedure the team has
produced is supported with rationales for the
steps and explanations for implementing the
steps. In addition, the team provides results for
the given set of data, which illustrates how to apply
this procedure to a set of data. The team could
improve this response by imagining they are some-
one else applying this procedure and revising
difficult to interpret steps accordingly.

1.2 Research goal
A curriculum reform effort in the first-year

engineering course at Purdue University has
brought to the surface the problem of developing
valid and reliable evaluation tools for MEAs [14].
Since 2002 over 20 different MEAs have been used
in the first-year engineering course on problem
solving and computer tools. This course serves
1200–1600 students each fall semester, and 300 to
400 teams produce solutions to multiple MEAs in
each course offering. These team solutions are
evaluated by the 15 to 20 TAs employed by the
course. Initially, an assessment guide adapted from
a models-and-modeling perspective [15, 16] was
provided to student teams and TAs to assist
them in understanding what constitutes a high
quality solution. The Quality Assurance Guide
(QAG) is a five-point holistic scoring rubric that
focuses on the usefulness of the product for the
client and has been adapted to the first-year en-
gineering course for scoring team responses. Simi-
larly structured versions of the QAG have been
used in other settings to assess students’ work [e.g.,
15]. A team solution is considered to be of high
quality if it meets the client’s needs, has justified
procedural steps, articulates underlying assump-
tions, and indicates awareness of limitations [16]. It
was found that the TAs scored team responses
inconsistently and that the QAG pays no attention
to conceptual understanding specific to a given
MEA. The goal of the research, therefore, has
been to develop evaluation tools that would be
valid (i.e., maintained fidelity to what is valued by
professional engineers) and reliable (i.e., used
consistently by TAs in scoring teamwork).

2. METHODS, ANALYSIS AND FINDINGS

Four stages of design of the evaluation package
are described in this section. Using a design
research approach [4–6], the researchers have
planned for iterative cycles of producing (and
revising) evaluation tools, implementing them,
and gathering data to inform the next iteration.
Stage I was designed to establish valid criteria by
tapping the expertise of practicing engineers: the
experts identified the characteristics of responses
that would be valued in a professional engineering
setting. Stage II was designed to build towards
reliability by producing initial evaluation tools that
would be usable by TAs while maintaining fidelity

to the expert-identified criteria. Stages III & IV
were designed to begin the iterative process of
implementing, assessing, and revising the evalua-
tion tools as they were used in full-scale imple-
mentation. What is presented here is an illustration
of the design research methodology in action; the
evaluation package that marks the end of Stage IV
is a snapshot in time. These tools continue to be
used and revised using design research methodol-
ogy.

2.1 Building validity (Stage I)
The validity of the evaluation tool was estab-

lished by asking a panel of four engineering experts
to identify characteristics of high performance that
should be used for evaluating team responses to
the Just-in-Time MEA. While the panel was small,
it was comprised of engineers representing a range
of fields, types of practical and educational experi-
ence, and familiarity with MEAs so as to incorp-
orate multiple perspectives and minimize
disciplinary bias. The experts on the panel first
became familiar with the Just-in-Time MEA by
solving it prior to attending a workshop. Activities
at the workshop, and after the workshop, were
planned to ensure that the experts would reveal
what they valued in a good response. The initial
activity required the experts to share their solu-
tions, to compare and contrast their solution with
the others, and to discuss the strengths and weak-
nesses that were noticeable across solutions. The
second activity asked experts to use an adaptation
of the QAG as a starting point for scoring proto-
typical teamwork, along with their own profes-
sional judgment if the QAG did not capture
important characteristics for high quality
responses. Experts individually scored five proto-
typical team responses to the MEA and wrote
notes on the responses indicating why they gave
the score they did. Then, experts were asked to
share their scores and to come to consensus on
each sample solution. The researchers were free to
intervene with questions that would help bring to
the surface what the experts were valuing as they
negotiated a score. This second activity was
repeated on a second set of teamwork, based on
the assumption that the experts would have revised
their thinking in response to interacting about the
first set of teamwork.
After the workshop, the researchers used field

notes and the handwritten notes of the experts on
the teamwork to produce a first draft evaluation
package comprised of a statement of the important
characteristics for high quality work along with a
rubric that captured the general criteria the experts
were apparently using. Three areas emerged:
appropriateness of the mathematical model, atten-
tion to audience, and generalizability of the
product. For the appropriateness of the mathema-
tical model, experts wanted the complexity of the
problem to be addressed and rationalized, and in
particular for the Just-in-Time MEA wanted the
model produced by the team to go beyond using
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just a measure of central tendency—thus ad-
dressing the conceptual understandings imbedded
in this MEA. A high quality solution that attended
to the audience was described as a product that
clearly and effectively communicates the model to
the client. A high quality solution that demon-
strated a generalizable model was described as a
product that goes beyond being useful to its
creators (student team) to being useful for others
(client) and usable on a variety of data sets. These
characteristics were articulated in an independent
statement and then mapped onto the adapted
QAG. A revised evaluation tool was produced
and the most significant change was that it
included MEA-specific criteria related to the
conceptual understandings imbedded in a given
MEA.
The third expert panel activity, completed by

individuals after the workshop, involved grading
10 pieces of prototypical teamwork, writing notes
on the products to explain the score given, and
overall approval and/or feedback on the proposed
evaluation package. The evaluation tools were
approved ‘as is’ by the experts.

2.2 Building reliability (Stage II)
The goal of Stage II was to involve experienced

teaching assistants in applying and revising the
evaluation package, since they could anticipate
issues that might arise with the general TA popula-
tion. Those selected to serve on this TA panel were
graduate students who had experience in the first-
year engineering course and a range of experience
with MEAs. The session began with an overview of
the evaluation package, and then the TAs indivi-
dually applied the evaluation tools to five pieces of
prototypical teamwork. They compared their
evaluation to that of the experts, discussed their
scores, came to consensus, and repeated the
process with five additional team products.
Throughout, the TA conversation flowed freely
back and forth with the researchers and an exter-
nal evaluator, discussing the practicalities of scor-
ing, raising questions for clarification, and making
suggestions for revision.
The practical perspective of the experienced TAs

provided information that led to the greatest
revisions throughout the study. Their comments
and perspectives revealed the need to simplify the
general rubric for application to all MEAs.
However, they also said the general rubric needs
task-specific tools that explain and illustrate how
the general rubric should be applied to a particular
MEA. The input from the experienced TAs,
researcher observational field notes, and review
by the external evaluator (an assessment expert)
led to the development of two evaluation tools:
Instructors’ MEA Assessment/Evaluation Package
(Instructor’s Package) and the MEA Feedback
and Assessment Rubric (Rubric). The major
change in the Rubric was a move from a holistic
to a dimensionalized (more analytical) evaluation
tool, separately addressing the appropriateness of

the mathematical model, the attention to audience,
and the generalizability of the model. The Instruc-
tor’s Package provided MEA-specific guidance for
applying the Rubric to a particular MEA. The
Rubric items represent the learning outcomes for
MEAs as used in the first-year course, whereas the
Instructor’s Package articulates the instantiation
of the learning outcomes with respect to the
specific MEA.
Given the useful feedback by the experienced

TAs, the format of the Instructor’s Package and
the Rubric, as developed at this stage, remained
relatively constant throughout the rest of the
study. (See Appendix A and B for the evaluation
tools resulting after Stage IV.) Additional evalua-
tion tools were designed to enhance TA under-
standing of assessment and evaluation of team
work products, including expert evaluations of
prototypical student work.

2.3 Assessing reliability (Stages III & IV)
In the move to full-scale course implementation,

assessment training was provided for all TAs; this
training was in addition to university and course-
specific training (as described in [17] ). The 2007
(Stage III) and 2008 (Stage IV) training sessions
had similar structure: an initial block of training
emphasizing the Instructor’s Package and the
Rubric as they pertained to the first MEA imple-
mented in the semester (4 hours in 2007 [17], 8
hours in 2008); additional one-hour sessions em-
phasizing the evaluation tools for each additional
MEA implemented; and TA assessment of proto-
typical team responses. The Stage IV increase in
the initial block of training was in response to
faculty concerns about the TAs’ ability to assess
teams’ mathematical models. Stage IV also
included a requirement that TAs apply the
students’ models to the given data sets, summarize
mathematical approaches used by the teams in
their models, and summarize the rationalizations
and assumptions supporting the teams’ solutions.
These techniques were intended to help TAs iden-
tify real problems with the teams’ mathematical
approaches, rationales, and assumptions.
The assessment of the quality of TA scoring for

the purpose of improving the evaluation package
has been based on two sources of data. A measure
of inter-rater reliability involves comparing TA
scores to an expert score on five pieces of proto-
typical teamwork for a given MEA (in this paper,
the Just-in-TimeMEA). In this case, the expert was
a member of the research team, a long-time
instructor for the first-year engineering course, a
member of the original expert panel, and the one
conducting the TA training with MEAs. Inter-
rater reliability data, along with observational
data gathered informally during training sessions,
and an examination of TAs written feedback on
prototypical teamwork has been useful for making
decisions about the nature of the revisions to the
evaluation package.
Inter-Rater Reliability. Measuring reliability in

Using Educational Research in the Design of Evaluation Tools for Open-Ended Problems 811



scoring involves selecting a situation where all TAs
score the same set of student work. This situation
only happens during TA training while the TAs are
in the process of learning to use the evaluation
tools. Thus, the reliability results gathered are
likely to be an underestimate of the quality of the
tools and TAs’ ability to score consistently
compared to what might be found after the TAs
receive formative feedback on their scoring. Note
that between Stage III and Stage IV, the sets of
prototypical work given to the TAs to grade were
different, because the returning TAs had graded
the selected teamwork in the previous year. The
TAs involved also varied in their experience as TAs
in the course, their status as domestic or interna-
tional students, and gender (See Table 2).
To analyze inter-rater reliability, the expert

score for each sample of teamwork is assigned
the label; ‘E’. Then, each of the TAs scores are
compared to the expert score, and labeled in terms
of its difference from the expert score. For ex-
ample, if the expert scored Team A Response as a
‘2’ and a TA scored it as a ‘3,’ the TA data point is
labeled ‘E+1’ (the TA is an ‘easier’ grader than the
expert in this case). Similarly, if another TA scored
the work with a ‘1,’ that TAs data point is labeled
‘E-1’ (indicating that the TA is a ‘harder’ grader
than the expert). An end-in-view [18] is critical in
design research in order to know when the object
under design meets criteria. In this case, the end-in-
view is to have at least 90% of the TAs scores for
each dimension within one point of the expert’s
score, a criteria adapted from Herman, J., Asch-
backer, P. & Winter, L. [19] on each of the
dimensions scored: appropriateness of mathemati-
cal model, attention to audience and generalizabil-
ity.
Scoring for the first dimension, appropriateness

of mathematical model, requires TAs to score each
sample response from 0 to 4. A score of 4 is only
attainable if the student work is deemed to address
the complexity of the problem (demonstrates
conceptual understandings imbedded in the speci-
fic MEA—see Appendix A), use all data types or
justify not using certain data types, and contain
rationales for critical steps. For example, in the
sample response in Fig. 2, a score of 4 would apply
because the students went beyond using a measure
of central tendency to appropriately using mean,
standard deviation, and the distribution of the
data, and justifications were articulated. The TA
scores from Fall 2007 (Stage III) and Fall 2008
(Stage IV) for mathematical model are represented

in Fig. 2. From this graph, a shift toward easier
grading is notable over the two stages (the mean
difference of the TA scores from the expert scores
makes a statistically significant shift from –0.705 in
2007 to 0.180 in 2008, using a two-tailed t-test
p< 0.001) and the grading is more accurate (since
the mean score is closer to 0 in 2008). The spread
of the scores (standard deviation) did not change
in statistically significant ways (0.846 in 2007 to
1.009 in 2008, using a two-tailed F-test p= 0.09).
The consistency in grading (defined as TA scores
being within 1 point of the E grade) stayed the
same (86.4% in 2007 and 85.0% in 2008), still short
of the 90% goal.
TAs scored each sample response for the second

dimension, attention to audience, from 1 to 4 using
the Instructor’s Package. A score of 4 is only
attainable if the model produced by the team
addresses three aspects: (1) the team’s results
from applying the procedure can be replicated,
(2) the procedure is easy for the client to under-
stand and replicate, and (3) the description of the
procedure contains no extraneous information. A
miscommunication and an inadvertent change in
the task used during the Stage IV TA training led
to results that were not interpretable. Thus, the TA
sub-scores for ‘results from applying the proce-
dure’ are not included in this analysis. As a result,
the possible scores for ‘results from applying the
procedure’ range from 2 to 4. As such, for the
sample team response in Fig. 1, a score of 4 would
apply because the procedure is well articulated and
devoid of extraneous information.
The difference in TA scores as compared to the

Table 2. Graduate Teaching Assistant Demographics

Semester TA Status Total Domestic/International Male/Female

Fall 2007 New 9 4/5 7/2
Returning 10 6/4 9/1

Fall 2008 New 13 1/12 8/5
Returning 7 2/5 7/0

Fig. 2. Mathematical Model Score: TA Score Compared to
Expert Score.
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Expert for 2007 and 2008 for the audience dimen-
sion are represented in Fig. 3. From this graph, a
shift from easier to harder grading is notable over
the two stages (the mean TA scores make a
statistically significant shift from 0.023 in 2007 to
–0.210 in 2008, using a two-tailed t-test p < 0.01)
meaning the grading is less accurate (since the
mean score is farther from 0 in 2008). The spread
of the scores did not change over the two stages as
reflected in the standard deviation (0.587 in 2007
to 0.624 in 2008, using a two-tailed F-test p = 0.56).
The end-in-view, 90% of the scores within one
point, could not be applied to this dimension
because the range of 2 to 4 points falls outside
the required 4-point range. Therefore, considering
the exact agreement between TAs and expert
scores revealed some decrease in inter-rater relia-
bility (65.9% in 2007 and 57.0% in 2008).
For the generalizability dimension, the possible

scores on using the Instructor’s Package ranged
from 2 to 4. The difference in the TA scores as
compared to the Expert for 2007 and 2008
concerning aspects of generalizability are shown
in Fig. 4. From this graph, a shift toward the mean
expert score is notable over the two stages (the
difference in the TA scores makes a statistically
significant shift from –0.398 in 2007 to –0.120 in
2008, using a two-tailed t-test p < 0.05) meaning
the grading is more accurate (since the mean score
is closer to 0 in 2008). However, the spread of the
scores increases statistically significantly (0.653 in
2007 to 0.935 in 2008, using a two-tailed F-test
p < 0.001). Hence, the consistency in grading
(defined as TA scores being within 1 point of the
E grade) declined over the two stages (98.9% in
2007 and 89.0% in 2008) due to the increased
spread.
Revisions to the evaluation tools. Using design

research methodology, information about
measures of reliability over the two stages is
combined with informally gathered information
from observations during training sessions, exam-
ination of written comments by the TAs, and
professional judgment to make revisions to the
evaluation package. Identification and examina-
tion of, and reflection on difficulties that TAs

encountered in differentiating among the sub-
score aspects of the dimensions has led to a series
of informed revisions. The revisions to the Instruc-
tor’s Package and Rubric over Stages III and IV
can be summarized as no change to the appropri-
ateness of the mathematical model dimension,
change in language used related to generalizability,
and shifting language from one dimension to
another. Revisions to the TA training included a
change in how TAs were directed to interpret
students responses and a doubling of initial train-
ing time.
No changes were made to the Instructor’s Pack-

age and Rubric for the appropriateness of mathe-
matical model dimension between Stages III and
IV, though more discussion of statistical concepts
embedded in the Just-In-Time MEA occurred
during TA training. This was not sufficient to
improve the reliability of TA scores between
Stages III and IV. Future work is planned to
improve the reliability of TA scoring in response
to evidence that some of the TAs struggle with the
statistical content embedded in the Just-in-Time
MEA. For example, TA written (or lack of writ-
ten) feedback on the prototypical teamwork some-
times fails to (appropriately) comment on teams’
statistical conceptual misunderstandings. Some
TAs have also verbalized a lack of confidence in
their own ability to interpret the quality of team-
work in this regard. This information suggests the
need for more work on this dimension, including
an investigation into TAs statistical preparedness,
which may be followed by revisions to the TA
training or the evaluation tools.
The generalizability and attention to audience

dimensions for scoring were difficult for the
researchers to differentiate, articulate, illustrate
and communicate to the TAs in Stages III and
IV. The characteristics of these two expert-identi-
fied dimensions are confounded because a good
solution (i.e., a model) goes beyond producing
something usable for one’s self to producing some-
thing usable by others—meaning the solution is
simultaneously generalizable and well articulated.
One of the design principles for developing MEAs
described in the literature [3] is that the solutions to

Fig. 3. Audience Score: TA Score Compared to Expert Score. Fig. 4. Generalizability: TA Score Compared to Expert Score.
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the problems under design must be share-able and
re-usable. In Stage III, these terms were adopted
from the literature to characterize the generaliz-
ability dimension. A model was described as share-
able if the client was able to modify the model for
slightly different situations, and a model was
described as re-usable if the client was able to use
the model for new but similar situations.
Implementation during Stage III indicated

problems existed with the use of these terms. The
TAs pointed out that they were giving similar
comments in their feedback to students on both
dimensions, suggesting that there was overlap
between the two dimensions. In Stage IV, the
term modifiability (also a term used to describe
generalizability in the literature [20] ) was intro-
duced. The Rubric (see Appendix B) was revised to
combine re-usability and modifiability to charac-
terize the generalizability dimension. The term
share-ability was then explained in terms of the
model being used by the client to reproduce results,
and thus became synonymous with the attention to
audience dimension. This attention to language
marks the beginning of a journey through itera-
tions of using and describing these terms. This
work to articulate the aspects of the generalizabil-
ity dimension continues.
TA training for Stage IV was revised to address

concerns about their interpretation of teams’
mathematical models. A push was made to get
the TAs to actually attempt to apply the teams’
procedures to the data provided, assuming that
this technique would help TAs understand more
deeply the teams’ solutions. While this revision was
intended to improve scoring and feedback on team
work in the appropriate mathematical models
dimension, there seemed to be a negative impact
on the attention to audience dimension. Specifi-
cally, the TAs began grading harder than the
expert in this dimension perhaps because careful
interpretation of teams’ solutions revealed more
errors, omissions and miscommunications.
Another possible explanation for the harder grad-
ing could be due to the use of prototypical team-
work that contained more rationales and
explanations in Fall 2008 as compared to Fall
2007. Perhaps the work was more challenging to
interpret, and TAs translated that challenge into
identifying more errors, omissions and miscommu-
nications. Another explanation may be related to

the larger number of international TAs during
Stage IV compared to Stage III. Could it be that
language difficulties lent to less lenient grading of
complex answers? Could it be that the interna-
tional students come with different standards of
what constitutes a well-written response? All of
these questions remain open for future research.

3. CONCLUSIONS AND
IMPLICATIONS

The challenge of designing evaluation tools for
open-ended problems embedded in a larger educa-
tional system raises issues that can be addressed by
tapping various educational research methods.
Open-ended problems that reveal authentic
insights into what students know and can do are
necessary for the development of a valid evalua-
tion system; the selection of such problems is
addressed by a models-and-modeling perspective
[9]. Given that in practice the improvement of
educational programs evolves over time, based
on reflection and revision of current practice, a
research methodology formalizes the iterative
process of testing and revising desired evaluation
tools. Thus, design research methodology [4–6] is
used to plan for stages of work, assess outcomes at
each stage, and inform subsequent stages of work.
Finally, because the educational endeavor simulta-
neously involved students, TAs, and researchers in
the context of their work, multi-tiered teaching
experiment methodology [7] ensures the produc-
tion of an informative trail of documentation that
can be used to guide subsequent revisions to the
evaluation tools. As a result of combining these
methodologies, the development of evaluation
tools and training for TA use has grown from an
initial grounding in expert engineers’ perceptions
of important criteria for interpreting work, has
engaged experienced TAs in the design process,
and has led to large scale implementation that
generates information for on-going fine-tuning in
subsequent implementations.
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APPENDIX A
INTRUCTORS’ MEA ASSESSMENT/EVALUATION PACKAGE (I-MAP)

JUST-IN-TIME MANUFACTURING MEA
(Fall 2008 Implementation)

Appropriateness of the Mathematical Model

Looking beyond a single measure of central tendency: This particular MEA is set in a context where patterns
of late arrival are important. Therefore, the data sets are designed so that the differences in the mean are
insignificant. This is intended to nudge students to look beyond measures of central tendency. Therefore,
more than one statistical measure is needed. Teams might use a number of measures simultaneously, or one
following the other. They might also use one measure to produce an answer and another to ‘check’ how well
the answer works, leading to a possible revision. Results from statistical procedures may be aggregated in
some fashion using rankings, formulas, or other methods.

In a high quality model:

� The procedure looks past measures of central tendency and variation to look at the actual distribution of
the data, where attention is drawn to the frequency of values, particularly minimum and maximum
values.

� Final overall ranking measure or method must be clearly defined. Completes the sentence, the ranking
procedure is based on . . .
– This is Part B of the standard introduction:
B. Describe what the procedure below is designed to do or find—be specific (~1- 2 sentences)
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� Critical steps that needs justification / rationale:
– When teams use any statistical measures, these measures must be justified—explain what these
measures tells the user.

– When developing intermediate ranking or weighting methods, these must be justified.

LEVEL 1—
� The procedure described does not account for both the variability or distribution of these data.
Students cannot move past this level if only the mean of the data is used in their procedure.

� Merely computing a series of statistical measures without a coherent procedure to use the results
fall into this level.

LEVEL 2—
� The procedure described accounts for the variability, but not the distribution, of these data.
� Mathematical detail may be lacking or missing.
� Mathematical errors might be present.
� If the solution demonstrates lack of understanding of the context of the problem, this is the highest
level achievable.

� If there is an indication that the team does not understand one or more statistical measures being
used, drop to the next level.

LEVEL 3—
� The procedure described accounts for both the variability and distribution of these data. That is the
procedure includes more than the mean and/or standard deviation. The ranking procedure accounts
for how the data is distributed.

� The procedure provides a viable strategy for how to break tie.
� Some mathematical detail may be lacking or missing.
� Mathematical errors might be present.
� If there is an indication that the team does not understand one or more statistical measures being
used, drop to the next level.

LEVEL 4—
� Clear statement of what defines the overall ranking.
� Mathematical detail should be clear from start to finish.
� Mathematical errors should be eliminated.
� Additional but separate LEVEL 4 criteria:
� Rationales for the critical steps in the procedure must be provided. (If the rationales provided are not
correct, this is FALSE. If they just need minor clean-up/clarification this is TRUE.)

� If all data provided is not used in the mathematical model, this must be explained or justified. (If the
justifications are not correct this is FALSE. If they just need minor clean-up/clarification this is
TRUE.)

Generalizability of the Model: Re-Usability and Modifiability

The mathematical model produced must be Re-usable (the client can use it for new but similar situations)
and Modifiability (the client can modify it easily for slightly different situations). Generally, one would not
produce a mathematical model to solve a problem for a single situation. A mathematical model is produced
when a situation will arise repeatedly, with different data sets. Therefore, the model needs to be able to work
for a variety of data sets. The model may be in the form of a procedure or explanation that accomplishes a
task, makes a decision, or fills a need for a client.

Further, a useful mathematical model is adaptable to similar, but slightly different, situations. For example,
a novel data set may emerge that wasn’t accounted for in the original model, and thus the user would need
to revise the model to accommodate the new situation. Thus, one should strive for clarity, efficiency and
simplicity in mathematical models; as such models are the ones that are more readily modified for new
situations.

At a minimum, the mathematical model should include assumptions about the situation and the types of
data to which the procedure can be applied. Hard-coded quantitative values imbedded in a procedure
require explicit assumptions or explanations.

If the mathematical model is not developed in enough detail to clearly demonstrate that it works on the data
provided, it cannot be considered re-usable and modifiable.

Student teams should state that the procedure is designed to rank shipping companies in order of best to least
able to meet DDT’s timing needs given historical data for multiple shipping companies of time late for shipping
runs between two specified locations.
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Students should also indicate limitations of their procedure. Limitations might be centered around hard-coded
quantitative values imbedded in a procedure. These require explicit assumptions or explanations. Hard-coded
values might include: an indication of what is considered late, ways to parse the data (related to degree of
lateness), weighting factors.

Level 2—Missing all or most of the standard Introduction parts A & C. (Part B is part of the mathematical
model criteria)

I. Introduction
A. In your own words, restate the task that was assigned to your team (~1–2 sentences). This is your
team’s consensus on who the client is and what solution the client needs.
C. State your assumptions about the conditions under which it is appropriate to use the procedure.
Another way to think about this is to describe the limitations of your procedure.

Level 3— ~2–3 things need work, typically from the standard introduction (criteria for success, constraints,
assumptions, or limitations) or implicit assumptions.

Level 4— ~1 thing needs work.

Audience (Share-ability)

Effectively communicating to the client: The mathematical model is share-able—the client can use it to
reproduce results.

Although the client (or an intermediary) has ‘hired’ the consultant team to construct a mathematical model,
the client (or the intermediary) needs and wants to understand what the model accomplishes, what trade-
offs were involved in creating the model, and how the model works. A high quality product (i.e., model
communicated to the client) will clearly, efficiently and completely articulate the steps of the procedure. A
high quality product will also illustrate how the model is used on the given set of data. The description will
be clear and easy to follow; it must enable the results of the test case to be reproduced. Given this type of
information, the client will be able to intelligently use and/or modify the model for new situations. At a
minimum, the results from applying the procedure to the data provided must be presented in the form
requested.

RESULTS: Results of applying the procedure MUST be included in the memo. This must include a ranking of
all shipping companies (or listing of those discarded prior to ranking) and quantitative (possibly intermediate)
results. If results are missing students will receive a Level 1 (D grade) for the MEA.

PROCEDURE: The client requires a relatively easy-to-read-and-use procedure. If this has not been delivered,
the solution is not Level 3 work.

If you, as a representative of the client, cannot replicate or generate results, the solution is not Level 3 work.

Memos left in outline form may only receive a maximum Level 3 audience rating.

EXTRANEOUS INFORMATION might include mentions of specific tools (MATLAB or Excel) to complete
computations or overly describing how to compute basic statistical measures (e.g. mean, standard deviation).

APPENDIX B
MEA FEEDBACK AND ASSESSMENT RUBRIC

(Fall 2008 Implementation)

Overriding Option
& No progress has been made in developing a model. Nothing has been produced that even resembles a

poor mathematical model. For example, simply rewriting the question or writing a ‘chatty’ letter to the
client does not constitute turning in a product. (Level 0)

Mathematical Model

& The procedure fully addresses the complexity of the problem. (Level 4)
& A procedure moderately addresses the complexity of the problem or contains embedded errors.

(Level 3)

Using Educational Research in the Design of Evaluation Tools for Open-Ended Problems 817



& A procedure somewhat addresses the complexity of the problem or contains embedded errors.
(Level 2)

& Does not achieve Level 2. The procedure does not meet minimum requirements for addressing the
complexity of the problem or meeting the clients’ needs. (Level 1)

The procedure takes into account all types of data provided to generate results OR reasonably justifies not
using some of the data types provided. (Level 4)

TRUE &
FALSE &

The procedure is supported with acceptable rationales for critical steps in the procedure. (Level 4)

TRUE &
FALSE &

Provide Written Feedback About the Mathematical Model Here:

Re-Usability and Modifiability

Re-usability = can be used by the client for new but similar situations.
Modifiability = can be modified easily by the client for slightly different situations.

& The procedure not only works for the data provided but is clearly re-usable and modifiable. Re-usability
and modifiability are made clear by well articulated steps and clearly discussed assumptions about the
situation and the types of data to which the procedure can be applied. (Level 4)
& The procedure works for the data provided and might be re-usable and modifiable, but it is unclear

whether the procedure is re-usable and modifiable because assumptions about the situation and/or
the types of data that the procedure can be applied to are not clear or not provided. (Level 3)

& Does not achieve Level 3. (Level 2)

Provide Written Feedback about Re-Usability and Modifiability Here:

Audience (Share-ability)

Share-ability = can be used by the client to reproduce results

Results from applying the procedure to the data provided are presented in the form requested.
TRUE & (Level 4)
FALSE & (Level 1)

& The procedure is easy for the client to understand and replicate. All steps in the procedure are clearly
and completely articulated. (Level 4)
& The procedure is relatively easy for the client to understand and replicate. One or more of the

following are needed to improve the procedure: (1) two or more steps must be written more clearly
and/or (2) additional description, example calculations using the data provided, or intermediate
results from the data provided are needed to clarify the steps. (Level 3)

& Does not achieve Level 3. (Level 2)

There is no extraneous information in the response.
TRUE & (Level 4)
FALSE & (Level 3)

Provide Written Feedback About Audience (Share-ability) Here:
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