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The purpose of this study was to analyze the quality and content of responses to a nanotechnology
modeling task in a first-year engineering course. Student teams had to determine a method for
measuring the roughness of the surface of gold using digital images generated by atomic force
microscopy. This study illustrates how modeling tasks of this type document student thinking, the
variety of measures and methods students used in response to the task, and the range of
performance demonstrating the ability of first-year students to apply their current ways of thinking
to solve complex engineering problems.
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1. INTRODUCTION

THE ABET [1] CRITERIA for engineering
programs include that students should have ‘an
ability to apply mathematics, science and engineer-
ing’, ‘an ability to design a system, component, or
process to meet desired needs’, ‘an ability to
identify, formulate and solve engineering
problems’ and ‘an ability to communicate effec-
tively’, and ‘a knowledge of contemporary issues.’
In addition, nanotechnology (designing and inves-
tigating structures at a molecular level) has been
cited as an emerging field of interest for engineering
research and engineering education [2]. Given these
recommendations, the NanoRoughness modeling
task was designed for a first-year course in engin-
eering. The task was the fourth in a series of
similarly structured tasks designed to elicit and
develop students’ problem solving, model develop-
ment, teamwork, and communication abilities as
well as expose them to a range of engineering
problems and contexts. In the NanoRoughness
task, teams of students designed a procedure for
quantifying the roughness of a material surface
using digital images generated by atomic force
microscopy. The focus of the research was on
students’ understanding, interpretation, and appli-
cation of measures of roughness by examining their
final responses to the NanoRoughness task. This
paper focuses on two questions:

1. How did the modeling process to develop
quantitative measures of qualitative character-

istics for NanoRoughness elicit and document
students’ thinking in an engineering context?

2. How can documentation of students’ thinking
be analyzed for research?

2. PURPOSE OF MODELING ACTIVITES

The theoretical framework of models and model-
ing encompasses a broad view of modeling. Since
there are multiple meanings of modeling in engin-
eering, for this research, a model is a system that
explains, describes, or represents another system
for a purpose. A model has elements, operations,
and relations that allow for logical relationships to
emerge. Many times, the model is insufficient to
completely describe the system it represents, but if
it is useful, it closely approximates the system
without being unnecessarily complex.
A Model-Eliciting Activity (MEA) is a complex

problem solving task set in a realistic context with
a client, characteristics that place MEAs in the
authentic assessment category [3–4]. Solutions to
MEAs are generalizable models, which reveal the
thought processes of students. The models devel-
oped by students include procedures and, more
importantly, metaphors for seeing or interpreting
things. This is one of the unique characteristics of
MEAs. Most problem solving problems in which
students participate require an answer to a prob-
lem, which neglects the process that the students
went through to arrive at the solution. MEAs
require that the solution to the problem is a
process for solving not only the problem at hand,
but also a class of similar problems (i.e., a model* Accepted 15 October 2009.
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for a system). This inherently requires that
students provide their thoughts about how to
deal with the problem without the instructor
having to tell the students to ‘show their work’
or ‘explain their thinking.’ The ABET Engineering
Criteria [1] has increased the need for readdressing
the manner in which engineering is taught. In
addition to eliciting models, MEAs require team-
work, design processes, and communication.
Because MEAs address these criteria and are
accessible to all levels of engineering students,
implementing MEAs in courses where the instruc-
tor wishes to develop these professional skills and
problem solving abilities makes sense.
MEAs are created for teams of three to four

students to express their model, test it using sample
data, and revise their procedure to meet the needs
of their client. This requires that students design a
solution much in the same manner that engineers
in industry address and solve problems. MEAs set
in engineering contexts have been developed
through the NSF-funded Small Group Mathema-
tical Modeling for Gender Equity in Engineering
(SGMM) project [5], the NSF Course, Curriculum,
and Laboratory Improvement funded Modeling:
Elicitation, Development, Integration, and Assess-
ment (MEDIA) project, and are described at
length by Lesh and colleagues [6–7]. The MEA
framework provides a means to not only deliver
more open-ended engineering content problems
but also address multiple ABET criteria, especially
those that are problematic to integrate in engin-
eering courses [8].
Several studies on MEAs were the result of the

SGMM project. Gender interactions were investi-
gated in an online user interface [9]. Small group
interactions were observed to investigate students’
complex mathematical thinking during MEAs [10].
The use of MEAs in a first-year required engin-
eering course have been linked to persistence of
women in engineering [5, 11], and team effective-
ness and its role in solving MEAs have been
researched [12].
MEAs have been the subject of many research

projects with students and teachers in K-12 STEM
fields. Studies of middle school mathematics
students have included investigating proof struc-
tures [13], representations [14], and assessment of
student work [15]. Sriraman [16] studied mathe-
matics education graduate students by investigat-
ing their understandings of the notion of model-
eliciting. Koleza and Iatridou [17] studied preser-
vice teachers using experimentation to solve MEAs
and the factors that prevent the crossing of bound-
aries between day-to-day mathematical function-
ing and school tasks. Hjalmarson [18] studied
teachers’ strategies for implementation of MEAs
in the middle school classroom, and Moore [19]
studied in-service math and science teachers’ solu-
tions to MEAs during master’s level coursework.
MEAs were originally designed as a research

instrument with three purposes: (1) to reveal
student thinking about complex concepts, (2) to

simulate real-world applications of mathematics
going beyond what is typically required in ‘word
problems’, and (3) to characterize students’ know-
ledge and skills not easily assessed. In order to
guarantee alignment with these purposes, there are
six principles that guide the design of MEAs [6, 20–
21], which will be described in the next section. A
well-constructed MEA ensures that students reveal
their thinking as a natural part of the model-
development process. The third purpose is
achieved through identification of students that
have abilities that were not being identified
through other means. Thorough study of students
during the problem solving process and solutions
to MEAs allow researchers to identify people who
can work in teams, complete complex multi-stage
tasks, and adapt to continually changing tools
(spreadsheets with graphs, calculators, etc.).
These qualities emphasize richer mathematics and
engineering than typical problem solving activ-
ities— focused on descriptions and explanations
as much as computation and derivation.
Although MEAs were not originally conceived

as instructional tools, they have been used and
investigated in classroom settings, including engin-
eering [21–22], and are compatible with other
instructional tools and assessments. Instructors
can see student thinking both in the final products
developed by the teams and by listening to teams
as they work. In this sense, MEAs can be a type of
formative assessment allowing an instructor to
shape further instruction or discussion based on
observations of what students already know. In
addition, realistic contexts allow instructors to
bring concrete applications of abstract content
into the classroom. Students can learn how engi-
neers use mathematics or other technical concepts
answering the ongoing question, ‘When will I need
to used this?’

3. SIX PRINCIPLES OF MEA
DEVELOPMENT

Six principles of MEA Development (Table 1)
guide the design of MEAs [6, 20–21]. The prin-
ciples serve as criteria for evaluating whether an
MEA will elicit and document students’ models in
an authentic fashion.
The Model Construction Principle requires that

the activity elicit a model (i.e., a system to describe,
explain, or predict to solve an authentic problem).
Students write a procedure (the model) for a client.
The requirement to design a procedure or model
distinguishes MEAs from other types of problem-
based learning activities. The need for a procedure
is tied to the Generalizability Principle which
requires that students develop a procedure that
can be applied to other similar sets of data (re-
usability) and document the procedure in detail so
it can be interpreted and applied by someone else
(share-ability). Connected to these is the Model
Documentation Principle, which allows the instruc-
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tor to understand students’ thinking about the
model generated to solve the client’s problem.
Because students write their procedure in the
form of a memo, the documentation of the proce-
dure enables analysis and comparison of different
classes of models.
For the Reality Principle, the context for the

problem is essential for motivating students’
engagement in realistic, authentic contexts where
they are naturally drawn to reveal and develop
their thinking about concepts. The students draw
on their own knowledge and intuition about the
context. This principle requires students to clarify
these assumptions as part of their model. The
students need to see the context as authentic,
something engineers would actually be required
to do, even if the information has been simplified
or scaffolded to meet the constraints of the class-
room. Introducing a client as the person to satisfy
adds authenticity to the problem and motivates the
documentation of the model.
The Self-Assessment Principle requires teams to

assess their progress by going back to the problem
statement, the client’s needs, or their own know-
ledge in order to determine if their procedure is
‘right’. Self-assessment of the procedure encourages
successive iterations of the solution to develop a
more refined model. Within the team, students may
ask each other questions about how they are think-
ing that push the model forward [10]. The activity
should be designed such that the problem requires
input from multiple perspectives and is complex
enough to force students to move beyond their
first interpretation.
The Effective Prototype Principle connects all of

the other principles. The model needs to provide a
useful prototype or metaphor for interpreting
other, similar situations. Evidence that this prin-
ciple has been met comes when students can re-
create the general outline of their procedure long
after the task has been completed. Depending on
the context, overly complex models are often not
useful in real-world situations. The Effective
Prototype also requires that MEAs are focused
on big ideas or significant concepts in engineering
that are useful in multiple situations.

MEAs need to be piloted whenever possible
before implementation with students. This helps
detect issues with adherence to the six principles of
MEA development. The MEA in this study was
piloted with groups of students and revised based
on these pilot studies. Moore & Diefes-Dux [23]
describe how the NanoRoughness MEA was
designed to fit the six principles.

4. THE NANOROUGHNESS MEA

The NanoRoughness MEA is separated into 2
parts. First, students work individually to orient
themselves to the context and the problem, then
they work in their teams to develop a solution. In
the individual work, the students orient themselves
to the concept of roughness by answering the
following:

1. How do you define roughness?
2. What procedure might you use to measure the

roughness of the pavement on a road?
3. Give an example of something for which

degree of roughness matters. For your ex-
ample, why does the degree of roughness
matter? How might you measure the roughness
(or lack of roughness) of this object?

The students read a profile about a company for
whom they will work. Then, they individually read
a memo from the teams’ ‘boss’, which outlines the
team task. It has been found that if students work
in teams without processing individually, faster
processing members may start working on the
problem before all have engaged.
The team part of the MEA requires students to

develop a procedure to measure roughness given
Atomic Force Microscope (AFM) images of three
different samples of gold. The students have
previously been given background reading on the
function of the AFM. The motivation for develop-
ing the procedure is established by using a realistic
context in which a company specializing in biome-
dical applications of nanotechnology wishes to
start producing synthetic diamond coatings for
joint replacements. The company intends to

Table 1. Principles for guiding MEA development

Principle Description

Model Construction Ensures the activity requires the construction of an explicit description, explanation, or procedure for
a mathematically significant situation.

Generalizability Also known as the Model Share-Ability and Re-Useability Principle. Requires students to produce
solutions that are shareable with others and modifiable for other closely related engineering situations.

Model Documentation Ensures that the students are required to create some form of documentation that will reveal explicitly
how they are thinking about the problem situation.

Reality Requires the activity to be posed in a realistic engineering context and to be designed so that the
students can interpret the activity meaningfully from their different levels of mathematical ability and
general knowledge.

Self-Assessment Ensures that the activity contains criteria the students can identify and use to test and revise their
current ways of thinking

Effective Prototype Ensures that the model produced will be as simple as possible, yet still mathematically significant for
engineering purposes (i.e., a learning prototype).
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extend its experience with gold coatings for artery
stents to this new application. The teams must
create a procedure to measure roughness using
images of gold because the company currently
only has one image of diamond since diamond
coatings are still in development. Student teams
of three or four are required to establish a proce-
dure for measuring the roughness of gold samples
that could be applied to diamond samples as they
are created. The students then apply the procedure
to three different samples of gold (one sample is
shown in Fig. 1). The team must write a memo to
the company describing their procedure and its
application to the sample AFM images and listing
the additional information needed to improve their
procedure. The entire NanoRoughness MEA can
be found at http://modelsandmodeling.net.

5. STUDY DESIGN

The participants in the study were students
enrolled in a first-year engineering problem solving
and computer tools course at a large, public
Midwestern university. This course focuses on
computer tools such as MATLAB and Excel,
basic engineering economics, engineering funda-
mental statistics, and complex problem solving.
The students (N ~ 1400) were divided into labora-
tory sections of approximately 25 students each in
order to complete the NanoRoughness MEA in
class. Within the laboratory sections, the students
were divided by the graduate teaching assistant
into long-term teams of three to four. The students
were in two different teams for the course, one in
the first half of the semester and one in the second.
Since they were working with their second team for
the semester, the teaching assistants could use
information gathered about students’ prior experi-
ences to generate teams. The only fixed rules (set

by the department) were that a team should have 3
or 4 students total; and, if a team’s membership
consists of female or international students, there
should be no fewer than two females or no fewer
than two international students on that team. 35
responses from teams in different sections of the
course were selected for this analysis. Note that the
unit of analysis in this study was the team, not the
individual. In terms of implementation, this can
lead to issues of individual accountability. In the
classroom, these issues were addressed by having
an individual follow up homework that had
students compare and contrast their team model
to a traditional model and a team MATLAB1

project that had very specific documentation
requirements for individual work.
Coding of student responses happened in two

stages: quality and model type. Different types of
models may be equally ‘good’, and instructors/
researchers may want to describe both the quality
and nature of students’ final products. The Quality
Assurance Guide (QAG), described in the next
section, was used to assign numeric scores from 1
to 5 [15]. Versions of the QAG have been used to
analyze student work [12, 24-26]. To carry out
both the qualitative and quantitative coding, a
team of three researchers with diverse experiences
was assembled to provide validity and reliability in
the coding process. This team included two mathe-
matics/engineering education researchers and one
graduate student in engineering to provide expert-
ise on the technical content. All members of the
team had experience designing MEAs, and two
members had previously used the QAG to score
student work.

5.1 Quantitative analysis with QAG
The QAG has five levels with level five repre-

senting the highest quality responses. Table 2
provides a description and number of responses
in our sample at each level. The primary criteria

Fig. 1. AFM gold sample given to students as data to develop the procedure for roughness.
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for evaluating student work is how well the proce-
dure could be generalized or used in other situa-
tions. The research team focused on the question:
‘Is there enough information provided about the
procedure that a third party could use it easily?’ A
level 5 response is usable both for the current
situation and other situations without revision.
At level 1, the team needs to either start over or
be redirected. Levels 2, 3 and 4 need varying
degrees of revision or modification. The research
team first coded responses individually. Then,
discussed the coding of responses until a consensus
was reached on a score. Student team samples are
provided to illustrate the use of the QAG.

6. RESULTS AND SAMPLE
RESPONSES

To successfully complete the task, a team’s
response needs typically to address two major
questions in a memo to the client. First, how was
a data set going to be generated from the images?
Second, how was that data set going to be analyzed

in order to rank the images by their degree of
roughness? The coding team was looking for clear
answers to these questions within the student
responses. Answers to both questions are necessary
for the client to effectively calculate a measure of
roughness and result in different operational defi-
nitions of roughness. For example, for data
sampling, do peaks and valleys matter or just the
peaks? For the calculations, is roughness measured
only by the average height of the surface or must
deviation from the mean be considered? Is the area
of the peaks important? Engineers have differing
answers to these questions. In order to clarify how
the teams’ responses were scored on the QAG, a
set of responses representing the top three levels of
the guide are included and described in further
detail.

6.1 Samples of student work:
Three teams (Figs 2, 3 and 4) will be referred to

as the codes are discussed. These teams were
chosen to illustrate a variety of solution paths
and, for demonstration, solutions that were on
the right track (QAG Score > 2). Following each

Table 2. The Quality Assurance Guide and Total Number of Responses for each category.

Score Performance Level How useful is the product?
Total Number of
Responses (N=35)

1 Requires redirection The product is on the wrong track. Working longer or
harder won’t work. The students may require some
additional feedback from the teacher.

6

2 Requires major extensions or revisions The product is a good start toward meeting the client’s
needs, but a lot more work is needed to respond to all of
the issues.

16

3 Requires editing and revisions The product is on a good track to be used. It still needs
modifications, additions or refinements.

9

4 Useful for this specific data given, but
not shareable and reusable OR Almost
shareable and reusable but requires
minor revisions

No changes will be needed to meet the immediate needs
of the client for this set of data, but not generalized OR
Small changes needed to meet the generalized needs of the
client.

2

5 Sharable and reusable The tool not only works for the immediate situation, but
it also would be easy for others to modify and use it in
similar situations

2

To determine the roughness of each sample, we would first draw a number of lines across the sample. Obviously, the more lines
drawn would result in a more accurate approximation, but also take more time. The lines should be in a ratio to the scale of each
sample. For example, if we draw a 1 micrometer line on a 2 micrometer by 2 micrometer sample, we would then draw lines of 3
micrometers on a 6 micrometer by 6 micrometer sample. After we had drawn a number of random lines, we would take 10
evenly spaced readings of the height from each. From this recorded data, we could then calculate the mean height across the
line. Having taken the measurements for several different lines, we could assume that to be the mean height of the entire
sample. Once we calculated the mean, we could then figure the standard deviation using the data points we had recorded. The
smoother substance would have a lower standard deviation. Furthermore, if the peaks and valleys that the lines intercept are
graphed using straight lines to connect the peaks and valleys, we could then calculate the area. This allows for correction of
samples that have fewer peaks but the peaks cover a larger area thereby making the sample rougher. To apply this to the
samples we are given, we suggest that five lines be drawn across each sample. In sample A, we would draw lines of 3
micrometers. In sample B, we would draw lines of .5 micrometers, and finally in sample C, we would draw lines of 1 micrometer.
We would then take approximate height measurements at 10 evenly spaced points on each line, and record the data. We would
then calculate the mean height of each sample, and then the standard deviation using the data we recorded. The data could then
be plotted using the distance along the line as the x-axis and the height as the y-axis. If the points are connected, we could then
calculate the area under the graph. By comparing these two values we could come up with the smoother substance. To better
obtain the values, samples with the same scale would have been more useful, along with a more scientific way to determine the
height than judging against a color scale.

Fig. 2. Team Alpha’s response to the NanoRoughness MEA.
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team is a list of the codes given to each of the
responses. All identifiable data have been replaced
by pseudonyms, and grammatical errors have been
corrected for ease of reading.
On the QAG, Team Alpha received a score of

four indicating that the solution was almost share-
able and reusable but required minor revisions.
The team’s description of graphing the peaks and
valleys was not clear to the readers. For instance, is
each line plotted on a different graph or are all the
data plotted on one graph? If each line was plotted
on a graph, they didn’t explain how to aggregate
the information from the graphs. Depending on
the values, the area under the curve for a plot with
more difference between peaks and valleys could
have the same area as a curve with fewer, more
uniform peaks. It is not clear how the standard
deviation would be used to differentiate these two
scenarios.
Team Beta received a score of 3 on the QAG

indicating that the solution required editing and
revisions to be usable for the client. The team
indicated the need to ‘put all the images on the
same scale’ but did not describe a procedure to do

this. They also described using the ‘all the heights
from the AFM image for that area’, however, did
not specify which heights. In the second para-
graph, they implied there is some sample of heights
they plan to use based on the shading. So, it
becomes unclear whether they intended to include
just the heights of peaks in the sample or the height
of the surface at any point. For their derivative
method, it is not clear how the points from a three-
dimensional surface would be plotted and then
converted into a differentiable function. They
mentioned a curve (possibly implying two-vari-
ables) but not how such a curve would be gener-
ated. They presented two methods (finding the
standard deviation and computing the derivative
of the curve created by plotting the heights) but did
not explain when one procedure should be selected
over the other or how they could be aggregated.
What is clear from their solution is that they have
recognized the need to quantify variation or rate of
change in the surface. They have proposed two
reasonable measures (standard deviation and the
derivative), but they need to clarify how they will
generate the data for the procedure.

To measure the roughness of a surface using AFM images, we first need to put all the images on the same scale, so that all
directions are measured in nanometers. This means height, length and width. Then collect all the heights from the AFM image
for that area. Once we have all our data points, we would take the standard deviation of the heights. So that gives us how far the
data points are away from the mean; therefore, if a surface has a high standard deviation, then it has a high roughness, because
there is a greater change in the surface height. Once we have the standard deviation, we divide by the area of the sample, which
gives us the standard deviation per nanometer. We do this because all the samples are different sizes, and if we shrink them
down, the resolution doesn’t change, we just lose data points. Another way to determine the roughness is to plot the data points
and find a curve between them and take the derivative of this curve. That gives us the rate of change in the heights a low
derivative gives us low roughness.

To get the data points, we have to use the shading to determine a sample of heights, using the scale given to us. Then we
take the standard deviation of all these heights, and then divide by the square area of the sample to get the standard deviation
per nanometer. If a sample has a low number per nanometer, then it has a low roughness.

Some information that would be useful to better our results is the actual data points used to create the images, so we have
exact data points instead of determining the height from the shaded regions. Also the more data points, the more accurate our
calculations can be. So we would want a lot of samples and a lot of data points for each of those samples. Also images at the
highest resolution possible would make our determination more accurate.

Fig. 3. Team Beta’s response to the NanoRoughness MEA.

To begin, it is essential to determine a data set of surface heights so that the roughness of each given surface can be quantified.
In order to do this, our team feels that it would be best to divide each of the images into a grid. At this point, it is important to
adjust the scales of each image so that they can be easily compared. Measuring the height of the coordinate points would give
us a data set of surface heights, which could be used to quantify the roughness of a surface.

Once this data set of surface heights was found, we could find the standard deviation, in order to show how much every
portion of the image differs from the mean height. This would show us the varying degrees of height. The lower the standard
deviation, the less inconsistency of the surface there is, and therefore a smoother surface.

It would also be helpful to create a histogram using the data sets we have collected. If it is a normal distribution, a bell graph
could be created to determine the probability of the surface height at a given random point. The higher the probability, the
smoother the surface is, because it is more likely that points are roughly at the same height. Another important factor to consider
are large changes in surface height. To factor this in, it is necessary to look at the minimum and maximum of each image. Using
these, we could find the range of the surface heights. While this is not as important as the standard deviation, it should definitely
be considered to account for large changes in surface heights.

Once these three factors have been determined, it will be necessary to quantify them based on their importance. We felt that
the standard deviation was the most important part of our calculations. The probability of occurrence of a chosen height would
be secondly important, and the range of the data set would be a minor factor. These factors of importance could be used to
quantify the images so that the roughness of the surface can be determined.

Our conclusion will give us a number representing the roughness of a surface, which is simply based on our ranking system.
This quantity can be compared to the other two quantities to determine the smoothest surface. It would be helpful to have clearer
pictures, where the heights can be clearly determined at a given point. Larger pictures on the same scale would greatly improve
the quality of our ranking system.

Fig. 4. Team Gamma’s response to the NanoRoughness MEA.
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Team Gamma used more statistical measures
than Alpha and Beta, but their procedure still
lacked clarity. The Quality Assurance Guide
score of 3 was given to this response indicating
that the procedure needed editing and revisions to
meet the needs of the client. While the solution had
many interesting mathematical and statistical
ideas, it lacked details that would enable a third
party to implement them. In each of the factors
that the team deemed important, they left out
details about how to calculate the measures, lay
the grid, adjust the scale, etc. The most significant
problem with the procedure involved the combin-
ing of factors in a ranking method to quantify
roughness. While they did provide information
about the order of importance of the factors,
they left out how to mathematically combine
them. They also failed to indicate whether the
high or low number represented the roughest
sample.
For level 1 and 2 responses, the students typi-

cally wrote very short responses (only a few
sentences) including statements such as ‘find the
mean of the heights’ without saying anything
about the data sampling process or the subsequent
analysis that would be required.

7. QUALITATIVE ANALYSIS

As a response to the two major aspects of the
model (the sampling process and the data analysis
process), three groups of codes have emerged at
this point for classifying responses to the NanoR-
oughness MEA: sampling, procedural, and statis-
tical measures. Descriptors characterizing teams’
responses were generated after the responses had
been assigned scores. Then, those descriptors were
categorized by type. Sampling codes describe the
teams’ methods for sampling data from the images
(i.e., selecting points to include in their data set).
The teams’ were given just the images without
numerical information about individual pixels.

First, differences in sampling methods are relevant
because they give insight into their use of the scale
of the image. The images were of different scale
with the intention that the teams would have to
quantify the information in order to determine a
ranking of the images by roughness. Not all of the
teams noted the difference in scale of the images in
their method. Some teams did describe how they
built procedures into their method to account for
the scale. Second, differences in sampling method
are important because they reflect differences in
how the teams defined the sample set (e.g., the
whole image? the peaks in the image?) to be
measured. The following sections will discuss
each of the groups of codes: sampling, procedures,
and statistical measures.

7.1 Sampling
The first stage of model development for each

team was designing a method for generating a data
sample from the images provided with the task.
The sampling context used in this task is unique in
the sense that students are not usually asked to
generate a sampling method. Additionally, the
data points are often obviously discrete objects
(e.g., people, trials, measurements). For this task,
students did not have specific quantitative data
about the images, only a scale showing the corres-
pondence between the gray scale shade of the point
and the height at that point. As shown in Table 3,
most teams recognized the need for randomness in
the sample in order to avoid bias. Many teams
used randomly selected points or lines on the
image which could be used to select a sample
data set. Teams also recognized the need to find
a representative sample and included methods that
would take height values from either points on a
grid drawn on the surface or by finding a cross-
section. Table 3 provides an overview and descrip-
tion of the codes used to describe the teams’
sampling methods, as well as the number of
teams whose response to the task received each
code. Team Alpha (Fig. 2) received the following

Table 3. Sampling codes describing students’ method for sampling data from images

Code Description
Number of Responses

(N=35)

Random points Selecting some number of points on the image randomly as data points. 10

Random lines Drawing random line(s) on the image to create a data set. 7

Random area Drawing a random area to create a data set. 1

Drawing a grid over
the image

Draw a grid on the image either to create subsets of data within the cells or along
the gridlines.

8

Cross-section Taking a slice of the image and using height data only from the particular slice and
looked at a cross-section.

2

Whole picture Using every point of data on the image. 4

Eyeball method Just ‘looking’ at the picture (e.g., finding the peaks that look the biggest) to pick
data points.

7

Adjust the scale Making an adjustment in the data set (e.g., by only using a portion of the image) for
the difference in scale between images or convert the scale.

11

Note the scale Noting that the scale is different, but no adjustments within the procedure to account
for the difference.

4

T. J. Moore and M. A. Hjalmarson826



codes for sampling: random points, random lines,
cross-section, adjust scale. Team Beta (Fig. 3)
received whole picture, adjust scale, and Team
Gamma (Fig. 4) received grid, adjust scale.
Even without knowledge of the models used by

engineers, the student-generated models contain
some methods used by engineers to generate
sample sets of data. For example, drawing
random lines can be used to find the height of
the surface along a cross-section and preserves the
relationship of the points along a ‘horizon’. Find-
ing the mean of all the points on the surface can
mask the relationships between adjacent points on
a surface. When measuring roughness, it may be
important to know the difference in heights
between points and their neighbors. In any case,
the students’ models were related to the actual
models used by engineers for generating samples
from a surface. How that sample is generated has
implications for the subsequent data analysis.
The next two sets of codes describe what the

teams did with the data once they had found a
sample. In engineering, designing a procedure for
analyzing quantitative data is as much a design
process as building tangible objects. The engineer
must consider the nature of the context, the needs
of a client (or other audience), and the available
resources for carrying out the task. The engineer
must also integrate scientific, mathematical, and
technical knowledge in order to design and apply
procedures. In the case of the NanoRoughness
MEA, the students needed to integrate their know-
ledge of how the images were generated with their
mathematical and statistical knowledge in order to
generate a procedure for analyzing the available
data.

7.2 Statistical measures
Codes for the statistical measures each team

computed were assigned. As shown in Table 4, a
large majority computed mean or standard devia-
tion. Eighteen of the teams computed both stand-
ard deviation and mean. Their use of the statistics
varied. It was not necessarily the case that teams
determined a sample, computed the mean for the
values in the sample and then computed the stand-
ard deviation. However, teams typically related
greater standard deviation in height values with
greater roughness of the surface of the material.
This finding is consistent with the literature indicat-
ing students know how to compute the mean, and it
is a statistic with which they are very familiar and
comfortable computing [27–28] even if they do not
have a conceptual understanding. For undergrad-
uate students, the standard deviation is a natural
next step in a task where the quality to be measured
could be described as the variability in the surface,
and in particular, the students in this course had
revisited the concept of standard deviation and
variance earlier in the semester.
Computing the mean for this task is a complex

endeavor, which must first start with students’
asking: the mean of what? And, then, is having a

high or low mean a greater indicator of roughness?
The complexity is not in the computation but in
determining what to compute and how to interpret
the results. For instance, what information
obscured by the mean is highlighted by the stand-
ard deviation? As shown in the first coding
schema, the students used various sampling
schemes to develop a data set. Interpreting the
results usually meant they looked for low values
of the mean of the heights in their sample. The
example teams [Team Alpha (Fig. 2), Team Beta
(Fig. 3) and Team Gamma (Fig. 4)] received mean,
standard deviation codes for statistical measures.
Team Gamma also received the codes max, min,
range, histogram.

7.3 Procedures
In addition to understanding what statistics

students computed, the researchers wanted to
understand how the statistics were used and inter-
preted. The students needed to consider the statis-
tics within a context and in relationship to other
values that may be computed. The codes in this
category describe both the types of procedures
(e.g., local and global) and characteristics of
unclear or under-developed procedures (e.g., unne-
cessary steps). Not all the responses received a
code in this category. However, of the teams that
did generate and explain procedures, there were a
variety of methods for applying and integrating the
statistical measures. In addition, developing proce-
dures that are used to describe qualitative char-
acteristics with quantitative information is an
important part of engineering. Table 5 describes
each of the codes in this category and provides the
number of team responses that received each code.
Teams could receive more than one code.
Curve-fitting was used by four teams even

though it probably is not a sensible method for
generating a method of roughness. One plausible
explanation is that curve-fitting procedures had
been covered in the lecture just prior to this
laboratory. So, students may have assumed that
topics covered in lecture would be the ones to use
in the next laboratory. Team Beta (Fig. 3) is an
example of a team that tried to use curve-fitting,
and so was given this code along with the unne-
cessary steps code. Team Alpha (Fig. 2) was not

Table 4. Statistical measures computed as part of the
procedure for data analysis

Code

Number of
Responses
(N=35)

Mean 22
Standard Deviation 23
Mode 2
Median 3
Histograms 6
Maximum/minimum 2
Informal measures of spread (e.g., modified
standard deviation)

3
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given a procedural code, while Team Gamma (Fig.
4) received the codes: height at grid intersections,
unnecessary steps.
Four teams, including teams Beta and Gamma,

received the unnecessary steps code. Both sample
teams computed several measures but failed to
explain how these would result in quantifying
roughness. Hence, it was not clear whether steps
were necessary. For example, Beta described a
procedure for computing area under the curve
generated by the heights but did not describe
how that area would be used in conjunction with
the standard deviation (or other measures the team
could have calculated). Gamma computed a wide
variety of measures. If they had begun to work on
aggregating the measures with a ranking system,
they may have identified some of them as extra-
neous, but their memo is not clear. Part of the
model design process should include analyzing
different types of statistical measures.

8. DISCUSSION ABOUT THE
DOCUMENTATION OF STUDENT

WORK

8.1 Finding a purpose for developing descriptor
categories
When analyzing student work related to

complex problem solving activities, there are a
number of aspects that could be assessed. This
research focused primarily on what mathematical
and statistical constructs students were using in
their responses. However, other types of analyses
are possible for different types of descriptors. For
instance, the students typically complete a warm-
up, introductory activity where they define rough-
ness. The relationship between their initial defini-
tions of roughness and their final product or how
three individual definitions came together into one
definition were not examined here. Students’
procedures could also be analyzed in terms of

their relationship to ‘real’ engineering methods
for measuring roughness. The researchers also
could have qualitatively coded the responses by
overall definitions of roughness (e.g., roughness as
variation in peak height, roughness as difference
from the mean, roughness as highest mean). This
study also did not focus on students’ individual
contributions to the team’s final product. Students
could have been explicitly asked what they felt was
their contribution to the final product, and other
researchers have investigated team interactions
and peer review. In this case, the focus was on
the knowledge developed and methodologies of
analyzing student work that could be extrapolated
both to research and instructional settings inter-
ested in categorizing the content of student work.

8.2 Developing a quality assurance guide and
descriptors in contrast to developing a rubric
The purposes in analyzing student work were

both evaluative (needing to characterize relative
quality) and descriptive (categorizing student work
based on its own merit and analyzing the content
of students’ models). The challenge in analyzing
students’ work for MEAs and other similar activ-
ities where multiple solutions may be equally good
is assessing students’ work for quality while still
allowing room for multiple solution paths. A
predetermined rubric is often not robust enough
to fairly assess all solution paths. This research not
only assesses the quality of students’ work, but
also describes the nature of their models, which is
much richer than just scoring the solutions.
In some sense, MEAs are not open-ended [6] in

that there are criteria that make models good. Not
every model is equally ‘good’, but there are multi-
ple models and variations on model types. This is
why in this study and in other studies of MEAs,
researchers focus on types or categories of models
rather than selecting particular procedures that are
‘correct’. While instructors and researchers can
make some predictions about what students’

Table 5. Procedural codes indicating aspects of the procedure related to the use or application of statistical measures

Code Description Number of
Responses (N=35)

Local and global Carrying out data analysis on subsets of the data and then using that
local analysis to make decisions about the whole data set (e.g., find
mean height in a cell, then find mean of those mean heights).

5

Distance between the peaks Using the distance between peaks as a measure of roughness. 1

Curve fitting Fitting a data set to a curve (often a linear approximation). 4

Heights at grid intersections points Finding the heights at the intersection points of a grid drawn on the
image and using as a data set.

2

Area fraction Finding the portion of the area in the image that is lighter than the
rest.

1

Area Finding the area of the peaks. 1

Restate the problem information Providing no procedure beyond what was given in the problem
statement or background information (e.g., ‘use the heights of the
peaks to measure the roughness’).

1

Unnecessary steps Including steps in the procedure that were not used later to make a
decision about roughness (often includes statistical computations).

4
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responses will be, often students will develop
models that are unanticipated yet still useful for
the situation.

9. IMPLICATIONS FOR TEACHING

ABETs Criterion 3 a–k [1] provide guidelines for
educating engineering students. These guidelines
include ‘an ability to apply mathematics, science
and engineering’, ‘an ability to design a system,
component, or process to meet desired needs’, ‘an
ability to identify, formulate and solve engineering
problems’ and ‘an ability to communicate effec-
tively’, and ‘a knowledge of contemporary issues.’
The NanoRoughness MEA provides engineering
instructors with an activity thatmeetsmany of these
guidelines. In this task, students are immersed in a
meaningful, real-world problem based on actual
images of gold surfaces. Students are engaged in a
task that is similar to problems confronted by
professional engineers. The task requires students
to use or construct appropriate measures of center
and variability, and to build a model from these
measures to address a problem. Sampling schemes
need to be devised in order to deal with the large
amount of information in each image. The task
assesses students’ understanding of statistical
concepts such as center and variability in that
correct conceptions are needed to produce viable
models. And the task, itself, provides a window into
students’ understanding of these statistical
concepts, as well as information that can be used
to remedy misunderstandings and misconceptions.
The NanoRoughness MEA naturally elicits the

use of statistical measures and the need for taking
a sample. It also creates the need to integrate many
of these concepts into a single model. The samples
of gold do not differ with respect to the average
height of the pixels. Yet, the three samples can be
distinguished visually. This requires students to
come up with a measure to estimate roughness
and a measure of variability appears to be a
natural choice. The Nanoroughness task could

follow instructional sessions on the standard
deviation, providing a natural extension of the
concept and measure to a natural setting. It
could also precede these sessions and be used as
scaffolding to teach concepts of variability.

10. CONCLUDING REMARKS

MEAs are impacting engineering education at
the undergraduate level [29]. They are providing
engineering educators with authentic assessments
that can bring upper-level content and problem
solving to students at lower levels in ways that
allow the instructors to see student thinking. It is
important to help our students develop the skills
necessary to be effective and forward thinking
engineers, and we should start this process as
early as possible. The NanoRoughness MEA is a
good example of an MEA that is appropriate for
lower-levels of undergraduate engineering, while at
the same time bringing upper-level material science
content to these students. This study’s results
reveal a variety of measures and methods the
students used in response to the task as well as a
range of performance demonstrating the ability of
first-year students to apply their current ways of
thinking to solve complex engineering problems.
While the solutions are not perfect, they demon-
strate that students have abilities to work on
complex problems even in their first semester of
engineering. MEAs can provide engineering
students with opportunities to see vast engineering
disciplines in motivating ways, which holds the
promise to influence their final career choices.
Currently, research is being conducted through
the MEDIA project aimed at extending the MEA
framework to upper levels of engineering content
disciplines and creating MEAs that elicit miscon-
ceptions and help students make ethical decisions
as professional engineers.
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