Int. J. Engng Ed. Vol. 26, No. 4, pp. 930-937, 2010
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2010 TEMPUS Publications.

SIMAS: A Web-Based Computer System

Simulator®

NENAD JOVANOVIC

Business School of Professional Studies, Blace, Serbia. E-mail: dzivkovic@singidunum.ac.rs

DRAGAN MARKOVIC, DEJAN ZIVKOVIC and RANKO POPOVIC
Faculty of Informatics and Management, Singidunum University, Belgrade, Serbia

This paper describes the web-based educational computer system simulator SIMAS. The simulator
allows one to enter and compile an assembly language program, as well as load and execute the
resulting machine code. Machine instructions can be executed one at a time or in continuous mode.
Currently, the executed instruction is highlighted in the computer memory and every phase of its
execution is presented visually to the user. The simulator enables the user to visualize the whole
execution process of an instruction and to compare assembly and machine language instructions
side-by-side. The software package is written in Java as an applet and thus can be run from within
any Java-enabled web browser.

Keywords: simulation; visualization; computer system organization; distance learning

1. INTRODUCTION

A WEB-BASED educational computer system
simulator, conveniently named SIMAS [1] is
described in this paper. The simulator uses anima-
tion and visualization to express the process of
machine code execution. The software package
enables the user to enter an assembly language
program and to compile it. The user can then load
the resulting machine code into the computer
memory and execute it. During code execution,
the contents of the processor registers and memory
locations are displayed as they change.

Computer system simulators have been widely
used for educational purposes in computer systems
organization and architecture classes as an instruc-
tional aid and a learning tool [11-13]. A represen-
tative sample includes ED21 [2], Very Simple CPU
[3], DigLC2 [4], CPU Sim [5], LMC Simulator [6],
Easy CPU [7], RSIM [8], Logisim [9] and
EDCOMPJ[10].

e ED?21 is an educational computer system with a
simple but adequate programming language
EL21 that visually represents how a program
written in high-level programming language
translates into assembly language.

® Very Simple CPU uses animation to give stu-
dents a more intuitive understanding of how the
CPU fetches, decodes, and executes instructions.
It shows the flow of data within the CPU’s
register section and ALU.

® Digl.C2 is a gate-level simulator that provides a
detailed description of all processor compo-
nents.

* Accepted 12 November 2009.

930

e CPU Sim is a computer simulation package that
allows the user to specify the processor details.

o LMC Simulator performs tasks by following
simple instructions that are described by three-
digit numbers. The LMC instruction set is fun-
damentally similar to the instruction sets of
many different computers.

e Easy CPU is a simplified instruction set Intel
80X86 simulator with an animated presentation
of the internal computer operations. Easy CPU
is developed with the primary objective of
enabling a user to become acquainted with the
functioning of a computer system. The simula-
tors mainly cover the operations of the proces-
sor and show how the instruction fetch and
decode operand address calculation and oper-
and fetch, and the operation execution phases
are performed.

e RSIM simulates concrete systems of great com-
plexity. The Rsim processor also supports the
visual instruction set extensions to the Sparc V9
architecture. The processor supports all instruc-
tions except blocked loads and stores and the
array instruction.

® [ogisim is an educational tool for designing and
simulating digital logic circuits.

e EDCOMP supports the animation of instruc-
tion execution and allows students to write their
own assembly programs, translate them, inter-
actively set and examine values of memory
locations, registers, and input/output units, and
run simulation.

All of these simulators use a graphical user
interface and interactive mode of operation to
actively engage users in the simulation process.
However, there are differences between them in
the simulation approach and thus in their features.

SIMAS: A Web-Based Computer System Simulator 931

The most notable differences are as follows.

e Some simulators support only fixed processor
architecture, while others allow users to design
their own relatively simple architecture.

® Depending on the simulated target system, simu-
lation is carried out on the instruction or clock
level.

® Some simulators can be run from within any
web browser and so they are even suitable for
distance learning classes. Other simulators must
be installed and run only locally.

Table 1 summarizes the features of the above
mentioned simulators according to these criteria.

The primary goal of the SIMAS simulator is to
enhance the learning of computer system organ-
ization and architecture. It visually shows how a
program-controlled processor works, based on
animated simulation. It also aims to enable
students to gain a better understanding of all the
steps that are necessary in the development of an
assembly language program and in the execution
of a machine language instruction. SIMAS is a
simple and effective learning environment for
students who are studying computer system organ-
ization and operation.

The software package is written in Java as an
applet and can thus be run from within any Java-
enabled web browser. Various versions of this tool
have been used as a teaching aid for five years.

The novel aspect of the use of SIMAS in
education is pedagogical: it is based on experience
and the analysis of some factors such as educa-
tional level, learning style, systematic work, expec-
tations of the students, etc. the simulator is
adapted to the three-year professional studies
with an emphasis on practical work.

There are three levels of students (fair, good,
excellent) that are grouped after the evaluation.
The learning material is adapted for a particular
group. Depending on the style of learning, three
groups of students were formed (visualists, audi-
tory and practical). Once again the learning mate-
rial is adapted for a particular group. Our starting
point is the active role of students during the
learning process. We have compared the results
of students who were learning at a distance and
those taught in the traditional way. The aim was
not to show the advantages and disadvantages of

different systems of education: the same teachers
prepared the learning materials and the differences
were not large. We used the experiences of the
students and professors working in mutual coop-
eration and exploration.

The SIMAS assessment strongly suggests that it
is an effective learning tool for all students, even
students with different learning characteristics.

2. SIMULATED COMPUTER SYSTEM
OVERVIEW

Computer system simulated by SIMAS contains
CPU, the main memory, and input/output devices.

The main memory stores input data, auxiliary
data, output data, and program instructions. The
main memory consists of a large number of ad-
dressable locations in which binary values can be
saved. Each memory location has a fixed length of
n bits and thus can store any of the 2" binary
values.

Memory locations are indexed by integers 0 to
(m—1), which are used to efficiently access the
contents of a memory location. The index of a
memory location is its address, and the total
number of locations, m, represents the memory
capacity.

The CPU contains the arithmetic/logic unit
(ALU), control unit, and fast registers. The fast
registers locally store internal CPU data that are
acted upon by ALU performing arithmetic and
logic operations. The CPU registers are divided
into two groups: addressable and internal. The
addressable registers have their addresses and the
programmer can use them to write and read data,
whereas internal registers are ‘hidden’ from the
programmer and serve for internal CPU opera-
tions.

The ALU performs arithmetic and logic opera-
tions. It gets an operation’s operands from the
CPU registers and puts results back into them.

The control unit manages other components of
the system and coordinates their operation. In
particular, it

® directs reading from and writing to the main
memory;

e directs data transfer between the ALU and the
main memory;,

Table 1. Characteristics of the representative simulators

Simulator System architecture Simulation mode level Web
Ed21 Fixed Instruction Yes
Very Simple CPU Fixed Instruction Yes
Diglc2 User-defined Instruction No
Cpu sim User-defined Clock No
Lmc Fixed Instruction Yes
Easy cpu Fixed Clock Yes
Rsim Fixed Clock No
Logisim User-defined Clock No
Edcomp User-defined Clock Yes
Simas Fixed Instruction Yes

932 N. Jovanovi¢ et al.

e synchronizes the operations of other elements of
the system.

The control unit performs these functions by
repeatedly fetching program instructions from the
memory and decoding them. Based on the decoded
type of the instructions, it then generates corres-
ponding control signals to execute the instructions.

During system operation the CPU commun-
icates with the main memory, which stores
program data and instructions. The instructions
tell the CPU which operations should be
performed and on which data.

The various parts of the computer system are
connected by buses, which are sets of conductors
that transfer multiple bits in parallel. The transfer
of data and instructions between the CPU and the
memory is along the bidirectional data bus. It is
connected to an internal CPU register called the
memory data (MD) register. The memory location
to which the CPU writes data or reads data from is
determined by the address stored in another inter-
nal CPU register called the memory address (MA)
register.

The MA register is connected to the unidirec-
tional address bus through the address decoder.
The address bus automatically references the
memory location whose address is stored in the
MA register. The width of the address bus deter-
mines the maximum memory capacity. For ex-
ample, if the width is m bits, then the capacity of
the main memory maybe, at most, 2™ locations.

Another bus that is internal to the CPU, called
the control signal bus, transmits control signals
from the control unit to the ALU. These control
signals direct the ALU to perform a particular
operation, such as addition.

The CPU contains two more internal registers.
The instruction register (IR) stores the instruction
fetched from the main memory that is about to be
executed. The buffer register (BR) temporarily
stores arguments and intermediate results of the
operations.

The addressable registers in the CPU have
specific functions and their number depends on
particular processor architecture. Nevertheless,
common addressable registers found in almost all
CPUs are:

® a Program Counter (PC), which contains the
memory address of the next instruction that
should be fetched and executed;

e a Stack Pointer (SP), which that contains the
memory address of the program stack;

® a Status Register (SR), which contains informa-
tion about the current state of the CPU and the
program being executed; and

® an Accumulator (AC), which stores some value
to which can be added a given value and the
result put back in the accumulator.

2.1 Machine instruction execution
In general, the execution of a machine instruc-
tion by the CPU is made up of the following steps.

1. Fetching the instruction from the main
memory.

2. Decoding the instruction in the CPU.

3. Determining the address of the instruction’s
operands.

4. Executing the specified operation on the oper-
ands.

5. Storing the results.

Computer architecture based on the program
counter that contains the address of the next
instruction to be executed is called von Neumann
architecture. The CPU operation in this type of
computer architecture is divided into two phases
that are carried out continuously:

Phase 1: Fetching the instruction from the main
memory and readying it for execution

® The address of the instruction to be executed is
contained in the program counter register (PC).
This address is moved to the memory address
register (MA), which causes a memory request
to be sent along the memory bus for reading out
the contents of the corresponding memory loca-
tion.

® Once a control signal is sent to read out the
contents of memory location whose address is in
the MA register, the contents is moved along the
data bus into the memory data register (MD),
and then into the instruction register (IR).

® The instruction in the IR register is analyzed
and, if it is found to be incorrect, the execution
of the program is interrupted.

® The contents of the program counter (PC) is
increased by the length of the current instruction
(in memory words), so that the PC now contains
the address of the next program instruction in
memory.

Phase 2: Execution of the instruction

The addresses of operands are determined.

The operands are fetched from memory.

The instruction code is decoded and the ALU
performs the corresponding operation.

The results are stored in memory, if necessary.

3. SIMULATED COMPUTER SYSTEM
DETAILS

The hypothetical computer is chosen so that it is
powerful enough to express main ideas, but not
overly complex to blur the general picture. We
postulate that it is a 16-bit, single-processor, single-
task computer. This means it contains one CPU
based on the von Neumann architectural model.
Also, the length of each machine instruction,
memory word, or CPU register is 16 bits. The
size of the main memory is 2'° = 65536 memory
locations.

SIMAS: A Web-Based Computer System Simulator

opcode X Y Z
Ll [[iln[slslinnnliaza]

Fig. 1. The machine instruction format.

Table 2. The machine instruction set

Instruction Opcode Mnemonic
Data transfer 0000 MOV
Addition 0001, 1001 ADD
Subtraction 0010, 1010 SUB
Multiplication 0011, 1011 MUL
Division 0100, 1100 DIV
Branch if equal 0101 BEQ
Branch if greater 0110 BGT
Input data 0111 IN
Output data 1000 ouT
Program halt 1111 STOP

3.1 Machine instruction format

Each machine instruction has a fixed format
made up of four fields: operation code and three
operand addresses. This is illustrated in Fig. 1.

If the address of an OPerand uses 4 bits, we can
directly address only 2° = 16 memory locations.
However, the first bit of the operand address
indicates whether the address is real or indirect.
That is, if i = 0, the next three bits determine a real
address; if i = 1, the next three bits determine the
address of memory location that contains the real
operand address. In this way we can address all of
the 65536 memory locations.

T avmbim - Microeslt Internet [xphoer
Fie DR e Fovols o Hel
ﬂ_]'_'l.ﬁ'\dﬁ'l.rr?-l hem

SO

' QDD O0I0Z00]
SODMO000IN000

SO0 ODIOGOIH0]

933

The 4-bit operation code field (opcode) allows
for 16 different instructions. The instruction set for
the CPU contains ten instructions. The instruc-
tions are chosen to represent instruction types
commonly found in systems of this level:

® data transfer operation (opcode 0000)

® integer arithmetic operations (opcodes 0001-
0100 and 1001-1100)

® branching operations (opcodes 0101 and 0110)

® input/output operations (opcodes 0111 and
1000)

® program halt (opcode 1111)

3.2 Assembly language instructions

Writing programs in machine language is prone
to error and is time-consuming because the
programmer must remember numeric operation
codes and calculate addresses by hand.

Table 2 lists the mnemonics used for the opera-
tion codes of the machine instruction set.

4. USING SIMAS

The SIMAS simulator is very simple to use. It
can be started from within any Java-enabled web
browser. The opening window (Fig. 2) displays
simulator controls and the simulated system.

The user can specify an assembly language
program by using an editor or by getting its
source code from a text file. The editor is started
by choosing the ‘Source’button, and the source file

i e

Eele e R Iy |

2] sgpiet Baen et

ih.-l.’.'m-mr

Fig. 2. The simulator’s main window.

934 N. Jovanovi¢ et al.

R —

B Editor e

mov ¥, 120
movy, 121

in {x)

in iy}

add z, (x), ()
out z

slup

Fig. 3. The simulator’s editor.

Program view E

~ 0000001000001 000
¥ 2 - |[0000000001111101

z= 4 Iy 3 00000a1100001000
arg 8 | 4 00o000o0001111111
mavy, 125 0111101000010000
mowy, 127 0111101100010000
Im G0 aoo10100101C1011
in 1000010000010000

add z, ¢, 40 [11110000000c0000
outz -

1l
R P 0 Binary o Hex

Java Applet Window

Fig. 4. The simulator’s view window.

is selected by choosing the ‘Open’button. Figure 3
shows the simulator editor’s window.

The source code is compiled into machine
instructions by choosing the ‘Compile’ button.
The button View opens a window (Fig. 4) with
the left part showing the source code of the
assembly language program, the middle part show-
ing the symbol values, and the right part showing
the assembled machine language program.
Depending on the selected radio button, ‘Binary’
or ‘Hex’, the machine code in the right part of the
program view window is displayed in the binary or
hexadecimal number system.

After successfully assembling a program, the
user can load the machine code into the main
memory by choosing the ‘Load’ button.

The animation of the execution of a loaded
program is started by choosing the ‘Start’ button.
The machine code instructions can be executed by
single stepping through each instruction (‘Step by
Step’ checked), or in continuous mode with a delay
between execution of two instructions given in the
‘Delay’ field. If the execution of one instruction at
a time is selected, the next instruction is executed
by choosing the ‘Next’ button. The simulator
marks the instruction currently being executed by
highlighting it in the main memory.

4.1 An example of the use of SIMAS

To illustrate the use of SIMAS as a learning tool
in assembly language programming, consider the
assembly language program in Figure 3. For
instance, the instruction:

mov X, 125

has two arguments. The first argument is the
symbol x whose value 2 is looked up in the
symbol table. The second argument is the literal
value 125. The instruction thus stores the value 125
into the memory location whose address is 2.

This assembly language instruction is assembled
into a machine instruction occupying two memory
words:

0000 0010 0000 1000
0000 0000 0111 1101

The first memory word defines opcode 0000 for the
MOV operation, binary value 0010 for the decimal
value 2 of the symbol x and indirect addressing
mode 1000 for the value contained in the next
memory word (0000 0000 0111 11012 = 12510).
The first argument of the instruction is directly
addressed because the first bit of its address field is
0. The remaining three bits, 010, then determine
the address of the first argument.

Figure 5 shows the contents of the memory and
CPU registers before the instruction is executed.
The program counter contains the address (8) of
the next instruction to be executed; the instruction
register contains that very instruction, and the
memory address register contains the address of
the memory location that receives the value
contained in the memory data register.

Other instructions in the example assembly
language program can be analyzed in a similar
way.

5. SIMAS ASSESSMENT

SIMAS has been used for the last five year in
our web lab. The participants were undergraduate
students from the Computing and Informatics
Department of Business School of Professional
Studies, Blace, Serbia.

We have conducted a qualitative and quant-
itative evaluation of the use of SIMAS in the
classroom. The qualitative evaluation included a
number of student surveys and discussions with
fellow instructors who teach courses that directly
or indirectly include a course using SIMAS as a
prerequisite. The surveys have been aimed at
learning what students perceived to be a good
educational tool and how they assessed the overall
effectiveness of this approach. The majority of
students praised the graphical representation and
found it user friendly. Fellow instructors have
reported that students using SIMAS were better
prepared and had a deeper understanding of the
basic concepts. The environment is interactive and
is applicable in laboratory exercises. Each exercise
has four components: prelab preparation, in-lab
knowledge assessment, in-lab assignment, and a
written report. To prepare for a particular lab, the
students must review related material from lectures
and the textbook, and read the related sections
from the lab manual. Students can interact with
the simulators asynchronously at any time for as

SIMAS: A Web-Based Computer System Simulator 935

Sim - Macroenlt Internet [Kplaver

M EE Ve FPivoel lesl Hel
&) £ kT b

BI0MO0S00S00 DD
-

DI 00000 003D

X

EO0EDG30011 1100

CODD0DI0 00D

i

DO0500 1 HOS00E D
DOOOI00a0 11110
EXCIC 1 1 DS 8 O
DOGEa0MI0TT Vi 1T
i3 00110100507 500
13 011 17001 D501 S

14 nIgIa ot

5 10000 HOD501 SO0

Gercd | Opsni | Commpila § Laad [Ve | Reis | Gl Flid | bialg | ol

Fig. 5. A snapshot of the memory and CPU.

long they want. Each lab assignment is preceded
by a short computer-based test designed to verify
whether the students understand the topic covered
in the assignment. After passing the test, the
students select a predefined experiment. Based on
the observations made during the experiment, they
answer questions relevant to the topic and turn in a
written report.

More importantly, the quantitative evaluation
substantiated this subjective perception: the
percentage of students passing the exam increased
steadily from below 50% before 2005 when we
started using SIMAS (Fig. 6).

Starting assumptions and objectives are based
on pedagogical principles, experience and analysis
of some parameters such as level of education,
learning style, systematic work, the expectations
of the students, etc.

Learning styles represent different approaches
or ways of studying. Every student, when acquir-
ing knowledge, takes in the information that he or
she receives through a certain modality and there-
fore, by using that information, learns in the most
efficient way. According to that modality, the basic
typology of learning styles is as follows: visual,
auditory and tactile/ (practical activity) learning
styles. Visual learning is dominant in those who
acquire information when it is presented visually in
the form of text (graphical-visual) or a picture.
They mostly prefer individual learning. Those who
find it easier to learn by listening to lectures,
discussions, exchanges of ideas, use the auditory
learning style. This is the reason why it is char-

acteristic of this learning style for students to work
in pairs or groups. Those who take notes, draw
pictures and diagrams during the learning process,
in order to memorize the information more easily
use the tactile/kinesthetic learning style. They learn
best through movement, games, acting or concrete
action, actively exploring the physical world
around them.

According to the previously mentioned learning
styles, we have tested a group of students (over 300
students) and arrived at the following results.

First, a preliminary test was performed. This
was carried out in order to determine the particular
learning styles of students and the best way to
express knowledge.

The results of the test were as follows: 24% of

90
80 y 1

70 /
80 /
o /

30
20

2005 2006 2007 = 2008

Fig. 6. Percentage of students who passed the exam on the first
try.

936

the students prefer to study based on seeing—the
visualists, 36% prefer to study by listening—the
auditory and 40% of the students prefer to study
by practical activity.

Based on this, the students were divided into
three groups: visualists, auditory and practical.

Testing showed that the system described in this
paper proved to be accessible to the three groups of
students.

6. CONCLUSIONS

We have presented a web-based educational
environment whose main goal is to be an effective
instructional and tool in learning assembly
language programming. We strongly believe that
the visualization it offers enhances the student’s
understanding of the basic logical structure of a
general computer system. By animating the execu-
tion phases in the CPU, the simulator provides
students with a more intuitive understanding of
how the CPU fetches, decodes, and executes
instructions. The SIMAS simulator is written in

N. Jovanovi¢ et al.

Java as an applet so that it can be run from within
any Java-enabled web browser, which makes it
suitable even for distance learning classes.

We can conclude that:

® simulation is increasingly being used as a tool to
support the teaching of assembly language pro-
gramming and computer organization;

® when simulators are combined with visual-
izations they become an even more effective
teaching tool.

We believe in the potential of visualization to
improve the teaching process. This has motivated
us to share our experiences. We plan to continue
this collaboration with the aim of better designing
evaluation methods and formulating appropriate
visualization concepts. This project is not fully
complete, as several other features are being
designed or under development, such as new
assessment tool, students profiles, etc.

The positive experience of the educational model
based on the SIMAS simulator applied in a
computer system course led us to adapt the simu-
lator model to other courses that we also teach.

—_

10.

1.

12.

13.

REFERENCES

. SIMAS demo version: http://weblab.vpskp.edu.rs/osovi/simas/index.htm
. Y. Miura, K. Kanekoand and M. Nakagawa, Development of an educational computer system

simulator equipped with a compilation browser, International Conference on Computers in
Education, 2004.

. J. D. Carpinelli, The very simple CPU simulator, 32nd ASEE/IEEE Frontiers in Education

Conference, Boston MA, USA, 2002.

. A. Cohen and O. Temam, Digital LC-2: From bits & gates to a little computer, WCAE, Alaska,

2002.

. D. Skrien, CPU Sim 3.1: A tool for simulating computer architectures for computer organization

classes, ACM JERIC, 2001, pp. 46-59.

. W. Yurcik and L. Brumbaugh, A web-based little man computer simulator, Technical Symposium

on Computer Science Education (SIGCSE), Charlotte NC, USA, 2001, pp. 204-208.

. C. Yehezkel, W. Yurcik and M. Pearson, Teaching computer architecture with a computer-aided

learning environment: state-of-the-art simulators, Proc. 2001 Intl. Conf. on Simulation and Multi-
media in Engineering Education (ICSEE), Phoenix AZ, USA.

. C. Hughes, V. Pai, P. Ranganathan and S. Adve, RSIM: Simulating Shared-Memory Multi-

processors with ILP processors, IEEE Computer, 35(2), 2002, pp. 40-49.

. C. Burch, Logisim: A graphical system for logic circuit design and simulation, Journal of

Educational Resources in Computing, 2(1), 2002, pp. 5-16.

J. Djordjevic, B. Nikolic and A. Milenkovic, Flexible web-based educational system for teaching
computer architecture and organization, IEEE Transactions on Education, 48(2), May 2005,
pp. 264-273.

Y. Imai, K. Kaneko and M. Nakagawa, A web-based visual simulator with communication
support and its application to computer architecture education, Seventh IEEE International
Conference on Advanced Learning Technologies (ICALT 2007), 1EEE, 2007.

K. Nakano and Y. Ito, Processor, assembler, and compiler design education using an FPGA, 14th
IEEE International Conference on Parallel and Distributed Systems, 2008.

H. Yanagisawa, M. Uehara and H. Mori, Evaluation of automatic generation of an instruction set
simulator for educational use, Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems Workshops (ICDCSW06), IEEE, 2006.

Nenad Jovanovi¢ received his M.S. and Ph.D. degrees in electrical engineering from the
University of Pristina, Serbia. He is currently an Assistant Professor with the Department
of Computer Engineering, School of Professional Studies, Blace, Serbia. His research
interests include operating systems, computer networks, distributed systems, programming
languages, multimedia and distance learning.

Dragan Markovi¢ received his M.S. and Ph.D. degrees in electrical engineering from the
University of Belgrade, Serbia. He is currently an Assistant Professor with the Department

SIMAS: A Web-Based Computer System Simulator

of Computing and Informatics, Faculty of Informatics and Management, Singidunum
University, Belgrade, Serbia. His research interests include digital image processing, user
interfaces, multimedia, and information retrieval.

Dejan Zivkovi¢ received his M.S. degree in computer science from the University of
Belgrade, Serbia and his Ph.D. in computer science from the Wesleyan University, USA.
He is currently an Associated Professor with the Department of Computing and Infor-
matics, Faculty of Informatics and Management, Singidunum University, Belgrade, Serbia.
His research interests include complexity theory, algorithms and programming systems.

Ranko Popovi¢ received his M.S. and Ph.D. degrees in electrical engineering from the
University of Pristina, Serbia. He is currently an Associated Professor with the Department
of Computing and Informatics, Faculty of Informatics and Management, Singidunum
University, Belgrade, Serbia.

937

