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This paper introduces a novel approach to building virtual laboratories of embedded control systems
using TrueTime and Easy Java Simulations. TrueTime is a freeware MATLAB/Simulink based
tool commonly used to simulate embedded control systems. Easy Java Simulations is a popular
authoring tool that facilitates the creation of pedagogical simulations. According to the proposed
approach, authors use TrueTime to develop the simulation of an embedded control system and then
move to Easy Java Simulations to link the system to a sophisticated graphical user interface that
provides the visualization and user interaction of the virtual lab required for pedagogical purposes.
The combination of these two tools conforms a powerful, yet simple, approach to the creation of
effective pedagogic simulation of real-time control systems.
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1. INTRODUCTION

REAL-TIME SYSTEMS AND CONTROL
THEORY both have long, but separated, tradi-
tions. Since the beginning of the 1970s, there has
been extensive research on real-time scheduling.
However, very little of this work has focused on
control tasks. Also, digital control theory, with its
origins in the 1950s, has not addressed the problem
of shared and limited resources in the computing
system until very recently [1, 2, 3]. Instead, it is
commonly assumed that the controller executes as
a simple loop in a dedicated computer [4]. This
misunderstanding has frequently led to wrong
assumptions, such as that the computation delay
of the controller is fixed or that the controller
deadline is always critical. On the contrary, many
control algorithms have a varying computation
time (e.g. model predictive controllers), and a
single missed deadline does not necessarily cause
system failure.
A new interdisciplinary approach is currently

emerging where control and real-time issues are
discussed at both design levels. The development

of algorithms for this co-design of control and
real-time systems requires new tools. One of
these new tools is TrueTime, a freeware
MATLAB/Simulink based simulator for
networked and embedded control systems that
has been developed at Lund University since
1999. However, simulations of Simulink models
typically lack interactivity and visualization, two
crucial features from a pedagogical point of view
[5, 6]. Without these features, simulations can be
hard-to-understand learning objects.
Indeed, in engineering, a typical analysis of the

system response comes from the features of its
output signals (waveform, periodicity, etc.), and
this analysis is usually neither direct nor intuitive
because output signals are actually not human-
readable. Therefore, instead of using only signal
plots, teachers should add a richer level of graphi-
cal content to their pedagogical simulations in
order to produce more intuitive and natural learn-
ing objects. A second important issue is the fact
that much of the analysis is usually done in an off-
line way. That is, signals are obtained and
observed only when the simulation has finished,
with students rarely interacting with the system,
changing parameters or inputs, while the simula-* Accepted 15 February 2010.
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tion runs. On the other hand, an on-line (or on-the-
fly) interaction provides users with the possibility
of modifying some inputs or parameters of the
system in run-time, which allows students to
understand input/output relationships more
quickly and also to appreciate the degree of
influence that any input has in the global system
response [7].
Nowadays, fortunately, information and com-

munication technologies let us apply all these
interesting features to the field of control educa-
tion. Some interesting applications on engineering
education can be found in [8–10]. However adding
visualization and interactivity to an existing simu-
lation can be a technical challenge for teachers who
are not experts in computer programming: we
introduce in this context the Easy Java Simulations
(EJS) authoring tool. EJS is an open source soft-
ware program that allows authors who do not have
advanced programming skills to produce virtual
laboratories (labs for short) with a high level of
interactivity and visualization.
This paper focuses on providing a new approach

for teachers who want to use advanced simulations
of embedded control systems as part of their
courses on control engineering. This approach
proposes the creation of virtual labs (pedagogical
simulations) with a high level of interaction and
visualization using both the TrueTime and EJS
software tools. Here the authors use TrueTime to
develop the simulation of an embedded control
system and then move to EJS to build the Graphi-
cal User Interface (GUI), which provides the
required visualization and user interaction. These
interactive virtual labs can significantly reduce the
learning curve of the study of embedded control
systems.
The paper is organized as follows. Section 2

briefly discusses core concepts of embedded
control systems and introduces the TrueTime and
EJS tools. Section 3 describes how these tools can
be combined to create virtual labs of advanced
embedded control systems. Section 4 presents two
such virtual labs in detail. Section 5 discusses the
pedagogical evaluation of the created virtual labs.
Conclusions and further works are finally
discussed in Section 6.

2. BACKGROUND

This section briefly introduces the main concepts
of real-time systems. The TrueTime and Easy Java
Simulations software tools are also presented.

2.1 Embedded control systems
An embedded control system consists of a

computer whose specific task is to apply a control
algorithm to keep a signal of a process within
prescribed safety margins, despite disturbances.
The control task typically executes periodically
and under limited implementation resources
(CPU time, communication bandwidth, energy,

etc.). A system is said to be real-time if the total
correctness of the operation depends not only
upon its logical correctness, but also upon the
time in which it is performed [11]. Real-time
systems can be classified into two subcategories:
hard real-time systems, in which the completion of
an operation after its deadline may lead to a
critical failure of the complete system, and soft
real-time systems, which tolerate such lateness and
may respond with decreased service quality (such
as a slower reaction time or a longer settling time).
The stabilization of an inverted pendulum by

moving its base back and forth (the academic
version of how the Segway Personal Transporter
keeps its verticality) is a simple example of a real-
time system. Suppose our operation requirements
specify that the pendulum must recover its verti-
cality as soon as possible after suffering any
moderate perturbation. If the sampling period of
the vertical angle of the pendulum is 80 ms, with a
time delay of 20 ms for the engines to act on the
base, a reasonable design could require that the
control algorithm is executed every 80 ms and has
a worst case execution time of 60 ms. To prevent
the pendulum from falling, the control algorithm
must be both correctly designed and applied in
time.
Real-time tasks such as our control of verticality

can be periodic, aperiodic or sporadic, and are
characterized by different parameters, among
which are:

. the deadline, which indicates the maximum
execution time allowed to ensure correct execu-
tion. It is common to take the period of a
periodic task as its deadline;

. the release time, which indicates the next time
instant to execute a task;

. the finish time, which signals when a task has
finished its execution;

. the execution time, which is the duration of the
execution of a task;

. the period, which indicates the amount of time
after which a periodic task has to be released.
For periodic tasks, the release time is always a
multiple of the period;

. the priority, which defines the preference of
execution of a task with respect to other tasks.

Typically, a control task executes in parallel with
several other tasks, including other control tasks.
This coexistence gives relevance to the scheduling
policy of the system, which is the algorithm that
decides which task executes at a given time. The
presence of a scheduling policy introduces the
priority parameter of a task: its preference with
respect to the other tasks in the system.
In our example, the control of the pendulum’s

verticality would typically be a top-priority, peri-
odic task, with a period of 80 ms and an execution
time smaller than 60 ms, which makes a deadline of
80 ms reasonable. Under a scheduling policy, tasks
may be in one of the three following states:
running, pre-empted or blocked, and sleeping.
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Running means that the task is actually executing.
Pre-empted means that the task needs to be
executed, but it is not being executed because
another task is running (usually one with higher
priority). Sleeping indicates that the task has
finished and is waiting for its next release time. A
scheduling plot, such as the one shown in Fig. 1, is
a graphical representation that is commonly used
to illustrate the evolution of the states of the tasks
in time.
The scheduling policy can be either static or

dynamic. For instance, Rate Monotonic (RM) is
a popular static scheduling policy that assigns the
priorities of the tasks on the basis of their period:
the shorter the period, the higher the priority of the
task. Earliest Deadline First (EDF) is a dynamic
scheduling policy that places tasks in a priority
queue. Whenever a scheduling event occurs (e.g.
when a task is released) the queue is searched and
the process closest to its deadline is scheduled for
execution.

2.2 TrueTime
TrueTime [12, 13] is a MATLAB/Simulink [14,

15] based simulator for networked and embedded
control systems that has been developed at Lund
University since 1999. The simulator software
consists of a library of Simulink blocks and a
collection of MEX files. The TrueTime Kernel
block simulates a computer node that contains a
real-time kernel that executes user-defined tasks
and interrupt handlers. The TrueTime Network
block is capable of simulating a variety of wired
and wireless networks. TrueTime can be down-
loaded from http://www.control.lth.se/truetime.
To create a simulation using TrueTime, the

plant dynamics are first modelled using ordinary
Simulink blocks. Then, kernel and network blocks,
which represent the computer implementation of

the controller, are added to the model. For each
kernel block, a set of MATLAB functions (M-files)
have to be written: one function to initialize the
kernel (and possible network interfaces) and one
MATLAB function for each task and interrupt
handler in the real-time system. To model the
execution time of a task or interrupt handler, a
special code function format is used.
A code function is divided into code segments as

shown in Fig. 2. The execution of user code is done
non-pre-emptively at the start of each segment.
The code function returns the simulated execution
time of the segment. Inside code functions, users
can access the kernel block inputs and outputs
using kernel primitives (such as ttAnalogIn and
ttAnalogOut).

2.3 Easy Java simulations
EJS is a free software tool for fast creation of

Java simulations with a high level of graphical
capabilities and an increased degree of interactivity
[16, 17]. EJS is different from most other authoring
tools in that EJS is not designed to make life easier
for professional programmers, but it has been
conceived for science students and teachers. That
is, for people who are more interested in the
content of the simulation, the simulated phenom-
enon itself, and much less in the technical aspects

Fig. 1. Scheduling plot. Three periodic tasks are running on the same CPU: tasks 1 and 3 having the highest and lowest priority,
respectively. Up arrows in a task plot indicate the release times of that task, down arrows indicate the task finish times. The initials R, P

and S indicate the possible states of the tasks. Note that task 1 in this plot is never pre-empted.

Fig. 2. TrueTime code model. The execution of task code (or
user code) is modelled by a sequence of code segments that are

executed in sequence by the kernel.
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needed to build the simulation. EJS can be down-
loaded from http://www.um.es/fem/Ejs. EJS struc-
tures a simulation into two main parts: the Model
and the View. The Model can be described by
means of pages of Java code, ordinary differential
equations, or by interfacing to other programs
(external applications) such as MATLAB/Simu-
link [18], Scilab [19] and Sysquake [20]. The View
provides the visualization of the simulated system
and the user interface elements required for user
interaction. The view of the simulation is
constructed using elements from a set of prede-
fined components to build the tree-like structure of
Fig. 3. Model and View are then easily intercon-
nected so that any change in the state of the model
is automatically reflected by the view, and vice
versa, in order to provide a dynamic and inter-
active visualization of the system.

3. COMBINING TRUETIME AND EJS

The approach proposed in this paper for the
implementation of pedagogically effective simula-
tions of real-time control systems divides the
process into two phases. Authors first use True-
Time to design the embedded control system,
defining the scheme of the system, the plant to be
controlled, the tasks code (e.g. the controller), the
tasks features (e.g. periods and priorities), the
scheduling policy, the network (if needed), etc.
Authors then move to EJS to build the Graphical
User Interface (GUI) of the simulation, providing
the required visualization and user interaction
through a suitable combination of the visual
elements offered by EJS. Creating simulations

using either TrueTime or EJS separately is widely
described in detail in the literature [2, 3, 12, 13, 16,
17]. This section describes the combined use of
both tools to create virtual laboratories. The next
section analyses a complete example to show the
main steps that authors must complete to create an
interactive simulation using our approach.

3.1 Using MATLAB/Simulink as external
application for EJS
As mentioned above, EJS offers a direct link to

MATLAB/Simulink. For the case of Simulink
models, the link consists in allowing the connection
of EJS variables to signals (such as inputs, outputs
or parameters) of the blocks of the Simulink model.
To set these connections between variables and
signals, EJS provides a special column labelled
Connected to in its panels of Variables. EJS also
provides the _external Java object, which has a set
of built-in methods that allow authors to read and
write variables from and to the MATLAB work-
space, and to execute MATLAB commands. These
methods are based on the functions defined in the
MATLAB Engine Library [14], which interacts
with MATLAB at a low level. The three most
important built-in functions are:

. _external.eval(String cmd): Executes a command
in MATLAB as given by the cmd parameter
(similarly to the MATLAB eval function)

. _external.getDouble(String name): Retrieves the
value of a double variable from the MATLAB
workspace

. _external.setValue(String name, Object value):
Sets the value of a variable in the MATLAB
workspace.

Fig. 3. Graphical user interface of Easy Java Simulations.
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The _external object also has methods to advance
one or more integration steps of a Simulink model
(step(int times)), to get the value of an array
(getArray(String name)) or a matrix (getAr-
ray2D(String name)) from the MATLAB work-
space, etc.
A more detailed description of the connection

between EJS and MATLAB is presented in [18]
and [21]. Reference [22] shows a complete example
of a simulation created using this approach.
The procedure to connect EJS and MATLAB/

Simulink can be summarized in the following four
steps.

1. Set MATLAB/Simulink as an external applica-
tion for EJS.

2. Connect EJS variables with MATLAB/Simu-
link variables.

3. Control the execution and access to MATLAB/
Simulink variables.

4. Define the desired visualization and interactiv-
ity.

3.2 Integration of TrueTime and EJS
To build simulations that use the TrueTime–EJS

combination, authors just need to follow the
procedure described above for EJS–MATLAB/
Simulink connections. The first two steps, setting
the external application and connecting the vari-
ables, are relatively simple and are completed with
a few mouse clicks. The control of the execution of
MATLAB/Simulink is implemented using the EJS
built-in functions described above. This step
frequently consists in advancing the simulation
time of the Simulink model, evaluating some
MATLAB commands, and reading or writing the
MATLAB variables of interest. Since there are
normally many interesting variables declared for
local use in the M-files of a TrueTime simulation,
accessing the MATLAB variables from EJS
requires re-declaring them as global variables.
Probably, the last step of the connection proce-
dure, defining the required visualization and inter-
activity, demands most of the design time. For this
reason, authors should thoroughly evaluate all the
requirements of the virtual lab from a pedagogical
point of view before concentrating on the technical
aspects of the connection process.
The described connection procedure guarantees

that True-Time simulations (Simulink models and
M-files) can be linked to EJS in a very direct way.
However, to improve the visualization and perfor-
mance of the virtual labs, authors need to consider
two particular aspects of TrueTime simulations:
zero crossings evaluations and scheduling data.
The first aspect is important because TrueTime

models use scheduling algorithms that involve a
great deal of zero crossing evaluations, which can
slow down simulations considerably. To improve
performance, authors need to indicate EJS that the
link to the TrueTime models should update the
connected variables only at fixed time intervals.
This configuration will make the simulation run at

a faster and also smoother way. Otherwise, there
could be too much exchange of information
between EJS and TrueTime, causing undesirable
delays in the simulation. This update time is
specified in the first step of the connection proce-
dure.
The second aspect is related to the scheduling

data. The information of the scheduling data is
crucial for a successful analysis of a real-time
system, because it indicates the states (running,
sleeping or waiting) of a task. For this reason,
authors must instruct EJS to get all samples from
the scheduler to make sure that these signals are
shown correctly in the virtual lab. This instruction
is necessary because, by default, EJS tries to get
MATLAB variables only a finite number of times.
Authors must then use the external.setWaitForE-
ver(true) built-in method to force EJS to wait for
those particular MATLAB variables (the schedul-
ing data) as much as needed, until they are finally
available for reading from the MATLAB work-
space.

4. EXAMPLES OF VIRTUAL LABS

Two virtual labs using the TrueTime-EJS inte-
gration are shown in this section. The first one
simulates a periodic task that controls a simple
system, and its purpose is to exemplify how to use
the combination of both tools to create a virtual
lab. The second virtual lab is a complete example
that shows the potential of our approach to obtain
sophisticated interactive simulations of embedded
control system for pedagogical purposes.

4.1 Simple PID servo controller
This virtual lab uses one of the sample simula-

tions distributed with TrueTime [13]. This example
simulates a periodic PID-controller [23] embedded
in a computer that controls a DC-servo process (a
second-order system). The controller is the single
task executing on the computer. This task is
divided into two code segments: one segment to
compute the control algorithm and another to
send out the control action.
The TrueTime simulation uses a Simulink model

that represents the complete system, and some M-
files to initiate the system and to describe the code
function to be executed as control algorithm. Four
different implementation modes of the task are
provided by this example: Built-in Task, Simulink
Block, Sleep Until, and Trigger Task.
From a pedagogical point of view, the virtual

lab can be used mainly to show how control
performance can be affected by the computing
time of the control algorithm [2]. Besides this key
concept, the virtual lab also allows students to
specify the implementation mode of the task, to
modify the PID parameters, to change the refer-
ence, to view the output and control signals, and to
control the period and the computing time of the
control algorithm.

G. Farias et al.942



The Simulink model is shown in Fig. 4(a). Note
that the feedback control is done by the Computer
submodel, and that the DC-servo process is
described by a Transfer Fcn block. The Computer
submodel, shown in Fig. 4(b), uses the TrueTime
kernel block to simulate a computer. The para-
meters of the TrueTime kernel block (see Fig. 5(a) )
are used to indicate the initialization function (an
M-file) that initiates the configuration of the
computer, and also to provide an argument that
represents, in this example, the implementation
mode of the task. The parameters of the block
schedule (see Fig. 5(b) ) have been slightly modified
from the original one, by adding the ScopeData
variable. This modification will save the scheduling
data of the task to the MATLAB workspace after
every integration step.
To link the TrueTime simulation with EJS, the

first step consists of selecting the Simulink model
and connecting the signals to suitable EJS vari-
ables. There is a total of five EJS variables
connected. The time and mode variables are
connected to Simulink parameters to get the simu-
lation time and to set the configuration mode. The
reference variable is connected to the first input of
the Computer block to set the reference or set point

value from EJS. Finally, the control and output
variables are connected to the outputs of the
Computer and DC servo blocks to read the control
and servo-output signals, respectively.
The selected input and outputs signals are

displayed as squares and circles, respectively, in
Fig. 4(a). The result of the connection process is
shown in Fig. 6.
The text ‘<matlab(0.01)> servo.mdl’ states that

the Simulink model servo.mdl will be used as an
external application, and that the fixed time inter-
val for updating data (in order to improve the
performance of the simulation) is 0.01.
Once the connection step has finished, and in

order to control and access MATLAB/Simulink,
some modifications of the M-files are needed. The
main requirement is to adapt the code functions
for accessing MATLAB variables from EJS. Since
the M-files of TrueTime simulations are mainly
functions, the simplest way to access the local
variables is to redeclare them as global variables.
The first M-file thus modified is the initialization

function, shown in Listing 1. This M-file is used to
initialize the computer where the controller (the
task) is executed. The script is divided into two
parts: the initialization code and the switch code.

Fig. 4. An example of TrueTime simulation: (a) Simulink model; (b) blocks of the Computer submodel.

Fig. 5. Parameters of the TrueTime kernel block (a) and parameters of the Schedule block (b).
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Listing 1. initialization function

1 function servo_init ( mode )
2 % Initialize TrueTimekernel
3
4 % nbrOfInputs, nbrOfOutputs, fixedpriority
5 ttInitKernel (2, 1, ‘prioFP’);
6
7 % Link To EJS
8 global period;
9 global data;
10
11 % Taskattributes
12 deadline = period;
13 offset = 0.0;
14 prio = 1;
15
16 %Create task data (local memory)
17 data.K = 0.96;
18 data.Ti = 0.12;
19 data.Td = 0.049;
20 . . .
21
22 switch mode ,
23 case 1 , % IMPLEMENTATION 1
24 % using the built -in support for periodic tasks
25 t tCreatePeriodicTask ( ‘pidtask ‘, offset,

period,
26 p r i o , ‘ pidcode1 ‘ , d a t a ) ;
27 case 2 , % IMPLEMENTATION 2
28 . . .
29
30 end

The initialization code comprises lines 1 to 21. This
code uses ttInitKernel(2, 1, ‘prioFP’) to configure
a computer with two inputs (reference and DC-
servo output), one output (control signal), and a
fixed priority policy. The initialization also defines
and initializes some variables. Observe that the
period and data variables are declared as global
in lines 8–9 in order to be able to access them from
EJS. The period variable indicates the period of the

task, and the data variable is used by the task as a
local memory to save parameters such as the gain,
the integral time, and the derivative time of the
PID controller.
A switch construction is used in lines 22–30 to

execute one of the four different modes to imple-
ment the periodic task. The selected implementa-
tion depends on the mode argument of the
initialization function. The first implementation
mode is shown in lines 23–26, where the TrueTime
ttCreatePeriodicTask function is used to create the
periodic task. Note that the pidcode1 M-file is the
code function to be executed by the computer in
this mode. Every implementation mode has a code
function associated to it, but we focus only in
pidcode1 because the modifications required are
quite similar for the other files.
The pidcode1 M-file is displayed in Listing 2.

The script has two parts: the declaration section
and the code segment section. The first section,
lines 1–4, has been modified to redefine the output
of the function and to redeclare the data and
exectime variables as global. The exectimeAux
auxiliary variable is used to return to TrueTime
the simulated computing time of a code segment.
The second section, lines 6–19, describes the two
code segments of the task.
The first code segment (lines 8–12) is used to

compute the control algorithm and the second
segment sends out the control action. Note that
the pidcalc M-file is called (line 10) to compute the
PID control algorithm [23], and that one of the
arguments of this function is the data global
variable. Note also that only the execution time
of the first code segment can be modified from EJS
(by using the exectime global variable) because in
the second code segment (lines 15–17) the execti-
meAux variable has a fixed value. The negative
value of the execution time means that the code
segment is the last segment of the task and its
computing time is zero. This modified listing
shows that students can modify parameters such

Fig. 6. Setting a link between EJS and a TrueTime model; note that the fixed time interval updating is used and that the EJS variables
are connected to inputs and outputs of the Simulink blocks.
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as the gain, the derivative and integral time, and
the execution time of the first code segment from
the EJS generated interface.

Listing 2. Code function modified to set a link
between EJS and TrueTime. Lines with comments
correspond to the original lines of the function.

1 function [exectimeAux,data] =
pidcode1(seg,data)

2 % function [exectime,data] =
pidcode1(seg,data)

3
4 global data exectime; %EJS
5
6 switch seg,
7 case 1,
8 r = ttAnalogIn(data.rChan); % Readreference
9 y = ttAnalogIn(data.yChan); %
Readprocessoutput

10 data = pidcalc(data,r,y); % CalculatePIDaction
11 % exectime=0.002;
12 exectimeAux = exectime;
13
14 case 2,
15 ttAnalogOut(data.uChan,data.u); %

ControlSignal
16 % exectime = –1;
17 exectimeAux = –1;
18
19 end

Once the M-files have been properly modified,
authors move to EJS to control and access the
MATLAB/Simulink model. As mentioned above,
EJS simulations have two main parts: the Model
and the View. Authors use the Model part to
describe the behaviour of the system, and use the
visual elements provided by the View part of EJS
to build the GUI of the virtual lab. There are five
sections in the Model that help authors to system-
atize the system description process: Variables,
Initialization, Evolution, Constraints, and Custom
(see Fig. 6). Here we explain only the first three
sections (the other two are empty in our example).
The Variables section is used to declare the EJS

variables. In our case, the main variables of the
virtual lab were defined when we established the
link between EJS and the TrueTime simulation
(Fig. 6).
The Initialization section is normally used to

prepare the simulation before it runs. For instance,
in our virtual lab we used the code of Listing 3 to
initiate TrueTime, to execute some MATLAB
commands, and also to set the initial values of
some variables. Note that the _external.setWait-
ForEver(true) function is used in this section to
make sure that all the variables will be read from
the MATLAB workspace after every simulation
step.

Listing 3. Initialization code in EJS.

1 //Initiate TrueTime

2 _external.eval
(‘addpath( [getenv(‘TTKERNEL’)] )’);

3 _external.eval (‘inittruetime;’);
4
5 //Wait to recover Matlab variables
6 _external.setWaitForEver (true);
7
8 //Declare Global Variables
9 _external.eval (‘globalperiod’);
10 _external.eval (‘globaldata’);
11 _external.eval (‘globalexectime’);
12
13 //Setinitialvalues
14 _external.setValue (‘exectime’, 0.002);
15 _external.setValue (‘period’, 0.012)
16 _external.eval (‘data.K=‘+0.96);
17 _external.eval (‘data.Ti=‘+0.12);
18 . . .

The Evolution section contains the actions
executed by EJS in every simulation step. Listing
4 shows the code used for the Evolution of our
example. Two important actions are required in
this virtual lab: stepping the Simulink model and
retrieving the scheduling data.
The first action (line 3) is done invoking the

_external.step(int n) built-in method. This method
sends the values of the connected EJS variables to
MATLAB, steps the Simulink model as many
times as the argument indicates, and finally
retrieves the values of all connected EJS variables
from MATLAB. The second action (lines 6–9)
reads the values of some particular variables,
such as ScopeData, which is updated by the
Schedule block (Fig. 5(b) ) after each simulation
step. To get this information, the _external.get-
DoubleArray() built-in method is used. Note that
this information is retrieved separately in two EJS
variables (two arrays), scopeT and scopeS. These
two variables are then used by the EJS Polygon
visual element.

Listing 4. Evolution code in EJS.

1 . . .
2 // Stepping the Simulink model
3 _external.step (1);
4
5 // Getting the Scheduler Data
6 _external.eval (‘scheT=ScopeData(end
–49:end,1)’’);

7 _external.eval
(‘scheS=ScopeData(end–49:end,2)’’);

8 scopeT = _external.getDoubleArray (‘scheT’);
9 scopeS = _external.getDoubleArray (‘scheS’);
10 . . .

The final step of the TrueTime-EJS combination
approach concerns visualization and interactivity.
To create the graphical user interface of this virtual
lab, we used the visual elements provided by the
View of EJS (Fig. 3) to build the user interface
shown in Fig. 7.
To add interactivity to the virtual lab, we needed
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to define what happens when end users interact
with the visual elements. For instance, note that we
added sliders to allow manipulation of the PID
parameters (kp, ti and td) and of the execution time
of the controller. Sliders allow end users to change
the values of variables in a very natural way while
the simulation runs.
Figure 8 shows the procedure required to add

interactivity to our GUI. The figure displays the
property inspector of the slider that controls the
execution time of the task.
We add interaction to this visual element by

inputting the code to invoke when the slider is
pressed, dragged or released. For instance, in this
virtual lab, if the slider that controls the execution
time is moved and then released by the user, then
the value of the MATLAB exectime variable will
be updated to the new value using the following
sentence: _external.setValue(‘exectime’,exectime).
Other sliders of the interface also invoke this
action.
The virtual lab thus created allows end users to

modify a great number of parameters of the

system, such as the reference type, the control
settings, the execution time of the controller, and
the implementation mode of the tasks, among
others. As an example of this interaction, Fig. 9
shows the performance of the controller for execu-
tion times of 5 ms and 9 ms. In both cases, the
period is 12 ms and the control parameters are the
same. However, the control performance of the
first case is better than that of the second one.

4.2 Distributed servo control
The example of this subsection simulates the

distributed control of a DCservo [13]. The example
contains four computer nodes, each represented by
a TrueTime kernel block, connected by a network.
A time-driven sensor node samples the process
periodically and sends these samples over the
network to the controller node. The control task
in this node calculates the control signal and sends
the result to the actuator node, where it is subse-
quently actuated. The simulation also involves an
interfering node sending disturbing traffic over the

Fig. 7. Graphical User Interface of our first example. Note that it is possible to use the sliders provided to change the control
parameters on-the-fly.

Fig. 8. Parameters of the slider that control the execution time of the task.
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network, and a disturbing high-priority task
executing on the controller node.
This system is a bit more complex than the

previous example. The main difference is that,
here, we have many more M-files and also a bigger
Simulink model to modify. However, the connec-
tion process required to create a virtual lab is quite
similar to the previous example and, although a bit
longer, the integration between both tools is still
easy.
The virtual lab created is shown in Fig. 10. The

main view (Fig. 10(a) ) allows end users to modify
the parameters of the network and the nodes. There
are also three auxiliary dialogues that display a
histogram of the end-to-end latency (Fig. 10(b) ),
show the scheduling data of the four tasks (Fig.
10(c) ), and allow the user to modify the controller
code (Fig. 10(d) ). This last possibility gives the
virtual lab great flexibility because users can test

different control strategies to face the effects of the
disturbances due, for instance, to the network. Note
also that the controller code is written inMATLAB
code, which means that end users can use any
MATLAB toolbox available on their computers.
In the main view, end users can modify control

parameters and also add a dummy disturbing high-
priority task with different execution times. In the
Sensor section of the same window, users can
modify the measurement time and the package
size. This last parameter is important in order to
see the effect of the size of the package on the
performance of the control. The Interference
section allows end users to increase the bandwidth
used by the interference node, which adds some
disturbances to the network. The network para-
meters, such as the transmission rate or the loss
package rate, can be modified in the TrueTime
Settings section of the main window.

Fig. 9. Reference, control and output signals when the execution time is (a) 5 ms and (b) 9 ms.

Fig. 10. Graphical user interface of the second example. Figuress show: (a) the main view, (b) histograms of sensor–actuator time, (c)
the scheduler data for the four nodes, (d) the dialog window where users can read and modify the code of controller.
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5. EVALUATION

The approach presented in this paper has been
used to build several virtual labs of embedded
control systems. Three of these labs, the two
described in this article and an extended version
of the first example, are in a course on Automatic
Control at the National University for Distance
Education (UNED). In the course, the students
have to send in a report according to the required
activities defined in the user’s guide of the virtual
lab. The students have reported that the simula-
tions have enabled them to learn the theory at their
own pace.
The course evaluation has been very satisfac-

tory, and the students have acquired a new qual-
itative and practical view of their theoretical
knowledge about real-time control systems. The
EJS models are freely available at http://lab.dia.
uned.es/ejstruetime.

6. CONCLUSIONS AND FUTURE WORK

Information and communications technologies
open new possibilities for control education. Simu-
lations with a high degree of interactivity and

visualization provide a more natural way of learn-
ing and teaching engineering. This article intro-
duces a new approach that combines TrueTime
and Easy Java Simulations (EJS) to build this kind
of virtual labs for embedded control systems.
TrueTime is a MATLAB based tool that has

particular functionalities that are well suited for
the simulation of embedded control systems.
However, from an author’s point of view, creating
simulations with rich visual content using only
MATLAB features demands a lot of work. We
then make use of EJS because it facilities the
creation of interactive simulations in Java to
non-programming instructors. The combination
of both tools offers teachers a powerful, yet easy
to use, platform to build virtual labs of embedded
control systems with a high level of interactivity
and visualization.
Future work will involve the development of

other virtual labs, new performance improve-
ments, and the creation of a link between EJS
and the Scilab version of TrueTime. Simulations
discussed here can be found on-line at http://
lab.dia.uned.es/ejstruetime.

Acknowledgements—The authors wish to thank Professor J.
Sánchez Moreno (UNED) for his constructive and pertinent
comments.

REFERENCES

1. A. Cervin, Integrated control and real-time scheduling, Ph.D. thesis, Lund Institute of Technology,
2003.

2. A. Cervin, D. Henriksson, B. Lincoln, J. Eker and K. Årzén, How does control timing affect
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