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This paper describes an innovative educational approach taken at the University of Colorado for
teaching a senior-level undergraduate controls course. The students were able to do all of the
control system design and programming by themselves using the LabVIEW Control Design and
Simulation Module. The advantages of this approach over “canned” lab approaches are many. The
students feel more responsible for the final product and they are able to apply control techniques
learned in class in a more fundamentally creative way. We present evidence from the class taught in
the fall term, 2005 and 2006, that suggests that students will often use tools from beyond the scope
of the class to solve problems in creative and occasionally unexpected ways.
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1. INTRODUCTION

AN INNOVATIVE APPROACH TO TEACH-
ING how to use a controls laboratory aimed at
upper division undergraduate students is
described. We use a less structured approach to
the laboratory than is typical. In particular, the
students are in charge of all programming and labs
are more open-ended than typical controls labs;
also the students work in rotating groups (which
forces them to incorporate ‘legacy’ code from
previous groups). This course structure gives the
students a sense of the difficulties and ambiguities
often associated with solving real problems. The
basic thesis of this paper is that if students use
graphical programming, LabVIEW [1], which
includes a built-in model of computation for
signal flow, the LabVIEW Control Design and
Simulation Module [2, 3], a course can be designed
to give students much more control by allowing
them to do all the programming and giving them
more open-ended assignments. The consequence of
this is a deeper understanding of the application of
controls to real problems, which we illustrate using
in-class assessment and through the students’ abil-
ity to generalize what they have learned in class.
LabVIEW has been successfully used in outreach
[14] and in helping student understand mathema-
tical representations of physical models [15]; this
success has been largely due to the transparency of
graphical programming.

Traditional control courses often involve pre-
written, or ‘canned,” software. Moreover, partially
because of the constraints imposed by the pre-
written software, labs are highly regimented. This
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choice is made largely because it is not feasible for
the students to write all the code—there simply is
not enough time during a one-term course for
students to cover as much material as we would
like as well as do all the programming themselves
in an intermediate-level language.

Several previous papers have discussed the use
of LabVIEW in a controls course or tutorial but
these have all involved control programs that were
developed by the instructors before the start of the
course [4-6, 17]. The students may make adjust-
ments to LabVIEW front panels or provide the
control gains for the experiment but the students
do not actually write any LabVIEW code them-
selves to prototype control systems. This sort of
laboratory set up is common in virtual laboratories
(see [16], for instance), but software design and
classroom use can facilitate other important skills
like team-building [19] and problem solving
capabilities [18].

In the course described by this paper, students
wrote their own code for experiments using the
LabVIEW Control Design and Simulation
Module. This module augments graphical data-
flow programming with graphical signal flow
programming for both the simulation and deploy-
ment of controllers and dynamic system models.
The signal flow can be used to represent both
feedback and feedforward control. The code can
run on desktop computers or real-time targets. The
LabVIEW Control Design and Simulation Module
also provides a plug-in for the LabVIEW Math-
Script RT Module [2] so that students can inter-
actively develop .m file scripts and also use them in
textual nodes within their LabVIEW program.
Figure 1 shows example code given to students in
their lab manual.
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% Define system parameters

% Use interactive root locus tool

= rlocfind{sys);

[z efiormn Chartl

Fig. 1. VI uses the interactive root locus plot to choose a gain and simulates step response for that gain.

By using a graphical development environment,
it is possible to create a course where students do
nearly all of the design and programming them-
selves. This prepares them well for jobs where they
will be expected to know how to integrate software
and hardware, and it additionally helps them learn
control concepts more deeply by allowing them
more flexibility in exploring control designs. More-
over, this course structure has other advantages as
well. In particular, it is possible to give students
more open-ended labs (that do not include step-by-
step instructions), which is typically more engaging
for the students. This also leaves more room for
creative application of concepts the students are
learning.

The decision to let students write all of the code
was inspired by noticing that graphical program-
ming environments (such as LabVIEW, Matlab/
Simulink™, and others) are faster environments
for programming. We used LabVIEW for all
laboratory development and students used
LabVIEW for analysis, simulation, and experi-
mental implementation.

Over the course of the term, the students learned
to write all of their own code, both for simulation
and for hardware experiments. They quite literally
started with blank code, or would incorporate
student-created code from previous labs. They
used LabVIEW in a manner similar to that
reported in [7]. However, instead of the instructor
and teaching assistant writing the code for the
students, the students were given very short tutor-

ials on graphical programming and wrote the code
themselves.

Assessment of the course is addressed using two
modalities—student questionnaires and generaliza-
tion. These two assessment modalities are both
appropriate (and common) for small classroom
sizes, but are nevertheless not statistically signifi-
cant. The use of generalization as a measure of
assessment can be particularly useful when looking
at small numbers of students, and has already been
used by the first author in [8]. In fact, as a
consequence of the present work, we have obtained
funding from the National Science Foundation for
formal assessment of this laboratory teaching
strategy using an Expert/Novice criterion that is
appropriate for small class sizes [9]. This is the
main focus of our future work.

This paper is organized as follows. Section 2
discusses the hardware setup, the lab organization,
the tasks the students were expected to complete,
and the general level of background students had
coming into the course. Section 3 has evidence that
this structuring of the class led to more internaliza-
tion of control techniques as well as more creative
approaches to open-ended problems. It addition-
ally describes student reactions to the course,
including course evaluation results. Section 4
discusses the necessary trade-offs made when
teaching a course using the described approach.
Section 5 discusses the various advantages and
disadvantages to the instructor using this
method. We end with conclusions in Section 6.
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2. LAB ORGANIZATION

The Electrical and Computer Engineering
Department at the University of Colorado offers
two senior elective control courses: Control
Systems Analysis (ECEN 4138) and Control
Systems Laboratory (ECEN 4638). Both courses
typically have 20-30 students. This last autumn
was the first time in the last several years the
laboratory was offered use of hardware, made
possible through funds provided by the university
and National Instruments. Typically students take
both courses concurrently, although they may take
only the lab if they have taken the lecture course
previously.

The goal of the class was twofold. First and
foremost, the class aimed to reinforce the students’
understanding of introductory controls concepts—
Modeling, PID, Root Locus, Bode, Nyquist, and
state-space techniques. A secondary goal of the
class was to reinforce the fact that the models we
write down do not actually reflect the true
dynamics of a system; they only approximate
them. We wanted to see students discover control
designs that work in principle but fail in practice.
The more students are in charge of discoveries of
this sort, the more we expect they will retain key
concepts after the class.

All the students worked in randomly selected,
rotating groups of three people. These groups
changed five times over the course of the term.
This structure forced the students to combine and
use legacy code from each member’s previous
group. One of the byproducts of this was that by
the end of term, all the students had very good,
stable code for running experiments. Moreover,
they typically understood the code and could
replicate it as needed.

The course included the following topics:

(1) Modeling

(2) System Identification
(3) PID tuning

(4) Lead/Lag Controllers
(5) Root Locus Analysis
(6) Bode/Nyquist Analysis

Moreover, the students did a final project.

2.1 Student background before this laboratory

Students were predominantly seniors with a
standard electrical engineering background. All
but one student was taking the lecture course
(ECEN 4138) concurrently (the one student had
taken it a year previously). Most had never seen
any more controls than a PID controller.

Hardly any of the students had any graphical
programming experience, but several had seen
Matlab/Simulink and LabVIEW in demonstra-
tions in other classes. Hence, students view these
languages more as interfaces than computer
languages. Because of this, the students had some-
what of a predisposition against using the soft-
ware, but this was overcome by pointing out that it

would be nearly impossible to have them write all
the code in C or C++.

2.2 Hardware

The experimental set-up used in the laboratory
comprised a torsional disk system from Education
Control Products, seen in Fig. 2. These experi-
ments are relatively robust, which was particularly
important given the level of control we gave the
students. The software used was LabVIEW [1] and
the LabVIEW Control Design and Simulation
Module [2, 3]. Our input/output capabilities were
all provided by a National Instruments FPGA
device (NI PCI-7831R) [10, 11]. The students
modeled the system, performed system identifica-
tion, and applied the basic techniques of PID
tuning, Lead/Lag, Root Locus, Bode, and Nyquist
analysis. The course ended with a final project and
competition.

This system has a 2 Nm DC motor at the bottom
that drives the first disk. Two more disks are
connected via a torsional spring that allow for
torsional displacement between disks with an asso-
ciated torsional spring constant. Thus, the
dynamics of this system are sixth order, making
this a nontrivial control system. Moreover, weights

Fig. 2. ECP Model 205a Torsional Plant [12]
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(also seen in Fig. 2) are included/ that allow the
user to change the inertia of each disk. This system
is basically linear, making it a good choice for a
linear controls laboratory. The biggest downside
to this experiment is that it is neutrally stable,
unlike other classic control systems such as an
inverted pendulum. (For a description of using
these plants with LabVIEW, see [13].)

2.3 Programming from the ground up

As previously mentioned, the students wrote all
of the code for the course. Hence, for simulation
and analysis, the students wrote their own simula-
tion code from scratch and integrated analysis
tools (such as root locus, bode, and Nyquist
plots) into their simulation. With the exception
of some basic hardware safety (such as turning the
system off if the torsion between two disks became
too high), the students also wrote all of the
experimental code for control implementation.
The communication and hardware safety was
given to them in the form of a template, an
example of which is seen in Fig. 3.

The template provided the signals going to the
DC motor and coming from the encoders, as well
as a halt feature to gracefully reset the FPGA if
needed. This was all the students were provided
with—everything else needed for the laboratory
they created themselves.

Labs were generally open ended. They focused
on problem solving rather than following instruc-
tions. In particular, all labs were divided into high-
level tasks (known in the education community as
“authentic” tasks), most of which were not math-
ematically defined for the student.

2.4 Examples of assigned tasks

In designing the tasks for this lab, we were trying
to avoid the more traditional approach of giving
students a long series of steps to follow. Instead,
we tried to give them tasks that were more similar
to verbal tasks they might be asked to accomplish
in a job, but that nevertheless required the techni-

cal detail and insight generally learned in the
lecture course.

Examples of assigned tasks included the follow-
ing:

(1) Model the ECP system as a single-input-single-
output system first using the bottom disk as an
output and then using the top disk as an
output. Simulate this using both the symbolic
transfer function and symbolic state-space
model representations in LabVIEW. (Note to
reader: The sample code given to students
regarding how to create state space models in
LabVIEW consisted of what is contained in
Fig. 4—more than enough to solve the prob-
lem, but in no way a “canned” solution for
them to use.)

(2) Design a controller that is stable for all pos-
sible locations of two weights on disk 3. Is it
possible to do this and guarantee a rise time of
0.5 second?

(3) Run the experiment and your simulation
simultaneously. What are the differences? If
there are differences, where are they coming
from and can you fix them?

(4) Consider the system with the bottom disk as an
output and with the top disk as an output.
Which is “more” stable using a PID or Lead/
Lag controller? Why? You may approach this
problem in whatever way you find most con-
venient—just detail it in your writeup.

(5) Plot the root locus for the parameter you think
introduces the largest amount of uncertainty.
You may wish to “lump” some uncertainties
together. Does a parameter variation neces-
sarily give a valid root locus? (The answer to
this is “no” because the root locus may have
higher order dependencies, depending on how
the parameter enters the transfer function.)

(6) We know that using a PID controller with the
top disk as the output requires a very low gain
on the controller. Design a higher performance
controller that allows you to push the overall
system gain up higher while not destabilizing.

SHIEECCN =
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Fig. 3. One of the templates the students used for communicating with the hardware.
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The labs generally became shorter and shorter as
the term progressed and the students required less
and less guidance in the labs. This, it seems, is a
good indication that the students were becoming
more competent. By the time the end of term drew
near, and it was time to do the final project, it was
possible to give the final project using the follow-
ing four bullets:

(1) Make the bottom disk go from 0 to 180 degrees
and stabilize back to 0 as quickly as possible,

(2) Accomplish the same task for the top disk,

(3) Do so without breaking the ECP unit,

(4) Do so knowing that the instructor will move the
weights up to three centimeters away from their
nominal position on the ECP machine (Hence,
introducing uncertainty into the system).

3. CLASSROOM ASSESSMENT

There were several different elements of this
endeavor that we consider substantial successes.
These include the increasing quality of computer
code the students were writing, the improved under-
standing of block diagram representations (that was
a clear consequence of having to create block
diagrams repeatedly while programming in the
graphical environment), and the creativity shown
in the final projects. By the end of the term, the
students were treating control problems as actual
problems to be solved, and were using an appro-
priate balance of physical intuition and analysis
skills from the control analysis lecture course.

Often, because of the lack of structure in the
teaching of this laboratory, students would come
up with controller designs that worked in principle
but not in practice. This, too, is a valuable aspect
of the open-ended nature of the way the laboratory
was designed.

3.1 Final project—generalization of concepts

This section describes anecdotal evidence, based
on this one class, that the “programming from the
ground up” teaching philosophy does indeed have
positive consequences. As noted above, the final
project was very simple. Students were to make the
bottom disk go from 0 to 180 degrees and stabilize
back to 0 (within 2 degrees or 0.035 radians) as
quickly as possible and then were to do a separate
design with the same goal for the top disk. The
students then competed on the final day of class
for who had the best performance for the bottom
disk and who had the best performance for the top
disk. In addition, the students knew that on the
day of the competition the instructor would move
the weights to introduce some plant uncertainty
(although not of a particularly malicious type).

Using the bottom disk as the output, of course,
did not present much difficulty. All the students
knew that they should go with some version of a
PID or Lead/Lag controller. However, using the
top disk as the output generated surprisingly cre-

ative approaches. This is because the top disk is the
“noncollocated” problem (where the actuation is
not located at the same place as the sensing), which
is substantially more challenging than the collo-
cated problem. Moreover, we believe that some of
the approaches students used would have been
impossible to expect in a class that gave the
students “canned” software for control design.

A few notable designs (using the top disk as the
output) by students:

(1) The noncollocated problem has a transfer
function with six poles and no zeros. One
student tried a controller that had five poles
and no zeros. This controller worked in simu-
lation (with terrific performance and stability)
but did not work on the experiment. He dis-
covered that the controller was requiring 10*
Nm while the DC motor we had could only
provide 2 Nm. Fortunately, he introduced a
saturation into his simulation after this.

(2) Some groups decided that despite the fact that
we had not covered state-space control in the
laboratory, they would use a state-space design
for the final project. They learned LabVIEW’s
tools for doing so and used both an LQR and
pole placement technique for their designs.

(3) Another group also chose to use a state-space
design. However, they noticed that in fact the
ECP unit has all three outputs available. This,
they reasoned (correctly), implied that they
could get a much better estimate of the
system using all three outputs rather than
getting an estimate only using one output and
using a sixth order estimator. Their perfor-
mance ended up being nearly twice as fast as
any other group. This is an excellent example
of the groups choosing a perfectly valid control
strategy that creatively applies what they have
learned in class and in lab, but nevertheless
goes beyond the scope of what they have
explicitly learned. Moreover, this strategy
would have been impossible to implement,
much less conceive of, in a more structured
lab where all the code was provided a priori.

(4) The second best performance came from a
group that realized that the top disk was
passively stable with respect to the bottom
disk. Hence, they chose to use a PID controller
on the bottom disk and allowed the natural
dynamics of the system to stabilize the top
disk. Hence, they were using a form of passiv-
ity control (certainly without ever even having
heard the phrase). There is no question that
this solution was somewhat outside the
intended approach, but this does not mean
that it does not reflect real insight and learning
on the part of the students.

3.2 Student reactions

Students were asked to fill out a traditional
survey, where they ranked items related to how
much they perceived they had learned, as well as
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Table 1. Table of student responses. Students were asked how much they perceived they had learned and how much they agreed
with some statements about the effectiveness of the course. Notably, even though some of the students did not like the open-ended
nature of the laboratories, they nevertheless uniformly recommended the course to other students.

Strongly Strongly
Question Disagree Disagree Neutral Agree Agree
1 I gained valuable hardware experience in this class 0 0 1 10 7
2 The labs were appropriately open-ended 0 2 S 8 3
3 1 would recommend this class to someone looking for 0 0 0 7 11

a laboratory class next year

other aspects of the class. Some of these questions
and student responses, are in Table 1. Basically
students almost uniformly believed they had
learned more in this class than they had in an
“average” course, and moreover uniformly recom-
mended the course for others.

Students reacted positively to nearly all portions
of the course. Our university administers manda-
tory course evaluations at the end of every course,
with the most important metrics being “Course
Rating” and “Instructor Rating.” In the Autumn
of 2005, the students gave the course an average
overall rating of 3.3 out of 4.0 and an instructor
rating of 3.6 out of 4.0. After the second time that
the course was taught in Autumn 2006, the
students gave the course an average overall
rating of 5.2 out of 6.0 and an instructor rating
of 59 out of 6.0. (Our university changed its
administration of the rating system between the
two years.)

These course ratings can also be examined in
comparison to the averages for the College of
Engineering (COE) in the University of Colorado
at Boulder. The course ratings were in the 79th
percentile for the department and college, while the
instructor ratings were in the 92nd percentile for
both the department and college. Thus, the course
was uniformly above average in its ratings both
years. Although this does not indicate how much
the students actually learned, it does indicate that
the programming from the ground up approach
did not alienate the students.

Students specifically mentioned the fact that
programming was a valuable experience (partially
because many of them were asked in job interviews
whether they were familiar with graphical
programming techniques). Moreover, the majority
of students felt that they had learned control
techniques that they would feel comfortable apply-
ing in realistic settings. (One student (out of 22)
complained that the labs were not “industrial”
enough.) Roughly two-thirds of the students
mentioned that the open-ended labs were more
interesting and fun than previous lab courses
they had taken.

The only part of the course that the students did
not like was the rotating, assigned groups. This is
because of the fact that they had to incorporate
legacy code into their projects at the beginning of
each new rotation. Although they viewed this
negatively, the authors feel that the uniform
improvement in the quality of code over the

course of the term is an indication that this was a
useful part of the course. Therefore, despite the
fact that students disliked the practice, we will
continue to have rotating, assigned groups in
future versions of the course.

Lastly, as part of our future work in this course,
we have obtained funding from the National
Science Foundation for formal assessment of this
course and the pedagogical style taken here.

4. WHAT IS LOST IN THIS APPROACH?

As with all choices in teaching, some things were
lost because of having students write their own code
in the graphical environment. One of the most
significant of these losses is that the students never
had to concern themselves with digital control—
LabVIEW took care of all the translation of contin-
uous time design into digital control on the FPGA.

Moreover, students did not learn anything
about the embedded systems (in particular, the
FPGA) they were using. This is because LabVIEW
automatically compiled all the code they were
writing to the FPGA. Whether or not this is
actually a negative or a positive aspect of the
class is up for debate, particularly since the
course is not aimed at embedded systems. Such a
course would, in all likelihood, not allow students
to actually implement much more than a PID
controller by the end of a one-term course.

Another downside is the fact that there was only
one experiment. The motivation for this was that
the students had to derive all the equations of
motion themselves, and this was reasonably time
consuming. Moreover, obtaining and maintaining
additional hardware units creates added expense.
However, there were several times during the
course when the laboratory was substantially
ahead of the lecture course. Therefore, what is
needed are substantially simpler (e.g. lower-
order) systems that are reasonably easy to model
but that have different properties from the ECP
unit. In particular, we would like to use a plant
that is unstable, such as an inverted pendulum.

5. PROS/ICONS OF TEACHING THIS WAY

This method of teaching is easier for the instruc-
tor before a course starts and harder once it has
started. The instructor must be competent at
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programming in the chosen graphical program-
ming language. This is because the students are
actually learning not just how to program in the
graphical environment, but they are simulta-
neously improving their more generic program-
ming skills. Another advantage to having
students do the majority of the programming is
that software upgrades are much easier to integrate
into the classroom because there is little to no
legacy code from previous versions of the course.

Another aspect of a course like this is that
students get to see the instructor solving problems
in class. Although in principle this can undermine
the instructor’s authority, the first author’s experi-
ence teaching this class is that the students gener-
ally appreciated the spontaneous nature of the
interaction, even when it occasionally produced
enigmatic results that were not immediately resol-
vable.

6. CONCLUSIONS

This paper describes an approach to teaching a
hardware-based controls laboratory that allows
students to be in charge of all the programming
required for the course. This was made possible
through the choice of a graphical programming
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Design and Simulation Module, although any
graphical programming language would accom-
plish the same goal. We found that students were
more involved in the course and offered more
intrinsically creative solutions to problems than
they would in a course where the software is pre-
written for them. Additionally, the laboratory used
open-ended labs, which was facilitated by the fact
that the students wrote the software themselves.
We are going to revise the course again to involve
more experiments, to cover state-space methods,
and to make the assignments more open-ended.
Moreover, we are going to engage in more formal
assessment of the course, partially supported by
the US National Science Foundation. This formal
assessment will use the correllation of concept
maps between the students and control systems
experts.
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