
Design and Implementation of a Linear
Axis Rapid Development System for
Education*

MICHAEL A. FLEMING AND ROBERT G. LANDERS
Missouri University of Science and Technology, Department of Mechanical and Aerospace Engineering,

400 West 13th Street, Rolla, Missouri 65409–0050. E-mail: maf7d7@mst.edu and landersr@mst.edu

It is difficult to experimentally implement a controller in a typical semester-long course after the
theoretical work is complete due to the time required to interface the controller with the physical
hardware. A concept for a Rapid Development System (RDS) is introduced in this paper to
automatically generate an interface between the student controller and physical hardware based on
controller specifications input by the student. This provides the student with a tool to explore
aspects of control design and implementation within the time constraints of a typical semester–long
course. The RDS concept is applied to a linear axis system to create a Linear Axis RDS, which is
utilized by a group of sixteen manufacturing automation and mechatronics students. Little specific
knowledge about the interface is required to successfully implement a controller. The time required
to simulate and implement a controller using the Linear Axis RDS is significantly shorter
compared with the traditional simulation and implementation process. The controller performance
results show that students were able to spend the majority of their time in the controller tuning
process, as opposed to spending their time configuring hardware when it is not part of the course
material. The students were successful in implementing their controllers in a typical semester-long
course utilizing the Linear Axis RDS.

Keywords: control simulation; emulation and implementation; rapid development learning
environment

1. INTRODUCTION

A CRITICAL PART of controller design is the
implementation of the controller in a physical
hardware system. Typically, students design a
theoretical controller algorithm using a simple
model of a physical system. The controller perfor-
mance is analyzed theoretically and the closed–
loop system is simulated. Simulating the closed–
loop response requires time to encode the control-
ler and system model and does not expose students
to the limitations involved when implementing a
controller on physical hardware. The difficulty in
students implementing a controller on a physical
system during a semester long course lies in the
time required to implement the controller. Tradi-
tionally, after spending time to simulate the
closed–loop system, students must design an inter-
face to connect the controller to the physical
hardware. For many students this process is
tedious and time consuming because they must
learn specific interface details. While a valuable
exercise, this leaves less time for controller design
and detailed analyses. A software program which
greatly reduces the amount of effort required by
the student to simulate and implement a controller
is proposed in this paper. This software program is
referred to as a Rapid Development System

(RDS). There are three controller operation
modes used to analyze the controller performance:
simulation, emulation, and implementation. The
RDS provides the interface needed to quickly
operate the controller in these three modes and
allows the students to focus on controller design
and analysis, as opposed to hardware configura-
tion when it is not part of the course material.
The development of assistive tools used to simu-

late, emulate and implement controllers has
stemmed from efforts in industry to simulate
manufacturing processes. Examples include a vari-
ety of CNC tool path simulators, each are devel-
oped as an aid in machining and manufacturing
process planning [1–3]. These simulators are
primarily concerned with tool path planning and
prediction, and are not designed for rapid insertion
of controllers. Further work in simulating specific
machining processes, such as milling, has been
performed; however, these specific process simula-
tors do not provide users with the option of
simulating or implementing their own controller
[4]. A method for rapidly reconfiguring a controller
in a real–time system is introduced by McDuffie
[5]. A sliding mode controller is encoded in Simu-
link (a user friendly graphical syntax), converted
using Beacon into MetaH syntax, and integrated
into an embedded hardware platform for real–time
flight control testing. This method reduces the
amount of coding required to integrate a controller* Accepted 15 October 2009.

1249

Int. J. Engng Ed. Vol. 26, No. 5, pp. 1249–1265, 2010 0949-149X/91 $3.00+0.00
Printed in Great Britain. # 2010 TEMPUS Publications.

but does not focus on the application of instruc-
tional use. Tools for controls instruction such as
Simulink, used to encode and simulate closed–loop
systems, have been utilized to allow students to
design and simulate their own controllers [6]. These
tools require the student to manually insert their
controller in the encoded closed–loop system,
which can be tedious and requires extra effort to
implement the controller on a physical system. A
network application, Second Best to Being There
(SBBT), has been developed to enable students to
remotely implement a controller in a controls
engineering laboratory [7]. The SBBT is used to
implement a student designed controller in real–
time on a robotic arm. The motion and sounds of
the robotic arm are sent to the student with the goal
of projecting the experience of implementing their
controller in the laboratory. The controller imple-
mentation process does not include simulation or
emulation of the controller. A comprehensive two–
axis turning simulator has been developed for
instructional purposes [8]. The turning simulator
allows students to design the dynamic models and
controllers of the linear axes, spindle, and machin-
ing force process. The turning process is animated
on a visual display after which the students can
access the controller performance results for analy-
sis. No emulation or implementation of the student
controller is performed. A Hardware in the Loop
environment utilizing microcontrollers and
MATLAB xPC Target was developed in [9]
where a virtual dynamic system was controlled. A
Direct Current motor was controlled using
MATLAB Simulink in [10]; however, embedded
simulation and emulation capabilities were not
provided. The RDS aims to provide students with
the ability to simulate their dynamic model of a
physical system and controller, emulate their
controller on the target processor, and implement
their controller on a physical system, all with little
effort in a relatively short amount of time.

2. GENERAL RDS

A RDS is designed to connect the physical
hardware, controller, and student, as shown in

Figure 1. The RDS uses an operating environment
to send commands from the controller and receive
measurements from the physical hardware. The
RDS uses a graphic user interface (GUI) to receive
controller information and commands from the
student, and provide the student with status and
performance data from the programmable operat-
ing environment.
The connection between the controller and

physical hardware is established using the operat-
ing environment as shown in Figure 1. The
student uses a specific syntax which is recogniz-
able by the RDS to encode the controller. Specific
information about the controller, such as the
controller operation mode, is used to program
the controller interface algorithm in the operating
environment. The RDS inserts the student
controller into the controller interface algorithm,
thereby connecting the controller to the operating
environment. The controller calculates digital
controller commands in the operating environ-
ment. The operating environment sends corres-
ponding analog controller commands to the
physical hardware using a physical hardware
interface. The physical hardware interface is also
used to convert measurements into digital data,
which are manipulated by the student controller in
the operating environment.
The connection between the student, controller,

and physical hardware is established through the
operating environment using the GUI as shown in
Figure 1. Specific information about the controller
is input by the student using the GUI. Based on the
student input, the RDS automatically creates the
controller interface algorithm of the operating
environment. When the programming is complete,
the student can input operation commands, such
as starting and stopping the controller operation,
into the GUI. The student can also manually
manipulate the physical hardware using the GUI,
which is often necessary before implementing the
controller. An animation of the physical hardware
displays the corresponding physical action of the
hardware through the GUI. This is useful when
the student cannot see the physical hardware. The
status of the controller insertion process, the
controller tracking performance, and the status

Fig. 1. General RDS structure.

M. A. Fleming and R. G. Landers1250

of the physical hardware are sent to the student
through the GUI.

3. APPLICATION TO A LINEAR AXIS
SYSTEM

The general RDS concept is applied to the x–
axis of the mini–CNC machine system shown in
Figure 2. The physical hardware is the x–axis, and
is referred to as the linear axis system. A RDS is
designed in two major components, the operating
system and the GUI, specifically for the linear axis
system and is called the Linear Axis RDS.

3.1 Operating Environment
The connection between the controller and the

physical hardware is made using a host–target
operating environment. This operating environ-
ment consists of software and hardware compo-
nents. The two computers shown in Figure 3,
called the host computer and the target computer,
comprise the operating environment hardware.

The host computer is used to operate the GUI
and build the controller interface algorithm, which
governs the communication between the controller
and the linear axis system. The target computer is
used to operate the controller interface algorithm
sent from the host computer via a TCP/IP connec-
tion. Unlike the host computer, the target compu-
ter operates in real–time. Digital command signals
from the controller, computed on the target
computer, are converted to analog signals by
holding the digital value constant for each
sample period. This conversion is preformed by a
National Instruments (NI) 6711 digital to analog
(D/A) output board installed in the target compu-
ter. The D/A board allows the target computer to
send continuous control signals to the linear axis.
Conversely, measurements sent from the linear
axis hardware to the target computer are converted
into digital signals by an NI 6602 counter–timer
(C/T) board. These digital signals, as well as the
status of the real time operation, are sent from the
target computer to the host computer and
displayed on the GUI. The software used in the
host–target operating environment includes
MATLAB Simulink, used on the host computer,
and MATLAB xPC Real–Time environment, used
on the target computer. The MATLAB Simulink
syntax is displayed to the student through the GUI
on the host computer in a visual diagram, called a
Simulink model, containing blocks and connectors
used to encode the student controller. The control-
ler interface algorithm used to connect the control-
ler to the operating environment is also encoded in
a Simulink model. The student controller is
inserted into the controller interface algorithm
Simulink model and converted into machine code
syntax by the MATLAB compiler. This machine
code syntax is then sent to the target computer,
where it is executed. The MATLAB xPC Real–
Time environment operates the target computer
with a finite sample period, i.e., in real–time, using
machine code to operate the physical hardware.
The contents of the controller interface algo-

rithm depend upon the controller operation mode.
Each operation mode is used for the purpose of
iteratively evaluating the performance of the
controller. The controller is not recoded for each
operation mode, but simply adjusted until theFig. 2. Mini–CNC system containing the linear x–axis.

Fig. 3. Experimental setup with eye tracker, host–target environment, and linear axis.

Design and Implementation of a Linear Axis Rapid Development System for Education 1251

desired level of performance is achieved. The first
controller operation mode (i.e., simulation mode)
allows the student to execute the Simulink model
on the host computer with a model simulating the
linear axis response. Physical hardware interface
limitations from the D/A and C/T conversions are
included in the simulation. These limitations
include saturation, which is the finite analog
output range, and quantization, which are the
finite analog output and measurement resolutions.
The student controller does not need to be
connected to the target computer and physical
hardware to perform simulations. This allows the
student to quickly implement changes to their
controller. The Simulink model for simulation
mode, shown in Figure 4, consists of four basic
blocks called subsystems. The first subsystem
contains the Reference Generator which calculates
the linear axis reference position (i.e., desired
position). The reference position and the measured
position of the simulated physical hardware are
input into the second subsystem containing the
Controller. This subsystem is specified by the
student in Simulink syntax. The controller calcu-
lates the control voltage given the reference posi-
tions, measured positions, and previous control

signals. The control voltage is sent to the third
subsystem, called the Computer–System Interface,
shown in Figure 5. The Computer–System Inter-
face subsystem contains the simulated physical
hardware interface effects, i.e., saturation and
quantization, for both the D/A and C/T conver-
sions. The control command is converted from a
digital signal into a simulation of a saturated and
quantized analog signal, which is sent to the fourth
subsystem, called the Linear Axis Model. The
Linear Axis Model contains a dynamic model of
the physical hardware and calculates the simulated
linear axis position response. The simulated posi-
tion is sent to the Computer–System Interface
where it is converted from a simulated analog
position into a quantized digital measured posi-
tion. This measured position is then sent to the
Controller, thereby closing the interface system
controller loop.
The second controller operation mode (i.e.,

emulation mode) allows the student to execute
their controller on the target computer in real–
time without moving the physical hardware.
Therefore, no action is commanded to the linear
axis hardware and the physical measurements are
disregarded. Instead, a model of the linear axis
response, including the physical hardware interface
effects, is simulated on the target computer. This
allows the student to determine if the target
computer is able to perform all calculations and
execute send and receive communication tasks to
the linear axis hardware within the requested
sample period. The Simulink model for emulation
mode contains the same four subsystems found in
the simulation Simulink model. The contents of
the Reference Generator, Controller, and Linear
Axis Model subsystems are the same. The differ-
ence between the emulation and simulation Simu-
link models lies in the Computer–System Interface
subsystem. In the emulation Simulink model
shown in Figure 6, the Computer–System Interface
subsystem contains not only the simulated satura-
tion and quantization effects, it contains the physi-
cal hardware interface communication blocks. The
communication blocks enable the emulation Simu-
link model, converted to machine code and down-

Fig. 4. Simulation mode Simulink model.
Fig. 5. Contents of Computer–System Interface subsystem for

Simulation mode.

M. A. Fleming and R. G. Landers1252

loaded to the target computer, to communicate
with the linear axis hardware. No action, i.e., zero
voltage, is sent to the linear axis and other compo-
nents of the mini CNC to ensure the physical
system does not move. The physical measurement
received from the linear axis hardware is termi-
nated, i.e., the value is not used.
The final controller operation mode (i.e., imple-

mentation mode) allows the student to operate the
physical hardware using their controller. The
implementation Simulink model is converted to
machine code and downloaded to the target
computer. There is no simulation of the linear
axis dynamics or physical hardware interface
effects because the linear axis and physical inter-
face hardware, i.e., D/A and C/T boards, are
utilized. The Simulink model for implementation
mode, shown in Figure 7, contains three subsys-
tems: Reference Generator, Controller, and
Computer–System Interface. The contents of the
Reference Generator and Controller subsystems
are the same as in emulation and simulation
modes. The difference lies in the Computer–
System Interface subsystem shown in Figure 8,
which contains only the communication blocks

found in the emulation Simulink model. The
analog control signal is sent through the D/A
board to the linear axis amplifier and the physical
encoder measurements are sent through the C/T
board to the controller. No action, i.e., zero
voltage, is sent to the other components of the
mini CNC to ensure only the linear axis is acti-
vated.

3.2 Graphical User Interfaces
The student is connected to the host–target

operating environment through a series of Graphi-
cal User Interfaces (GUIs), created using the
MATLAB program GUIDE. The GUI programs
operate in MATLAB on the host computer. The
student uses three interlinked GUIs called Build,
Operate, and Jog to build the controller interface
algorithm in a Simulink model, operate the Simu-
link model containing the controller interface algo-
rithm, and manually manipulate the linear axis
hardware, respectively. A fourth GUI, Help, is
interlinked to the other three GUIs and provides
the student with step by step directions for
completing each action. Each GUI consists of
two components: the visual display and the call-
back code. The GUIDE program provides basic
buttons and drop down lists which are positioned
on the visual display as selectable options. The
order in which the options appear, the location of

Fig. 6. Contents of Computer–System Interface subsystem for
Emulation mode.

Fig. 7. Implementation mode Simulink model.

Design and Implementation of a Linear Axis Rapid Development System for Education 1253

the options on the host computer screen, and the
content of the options are designed in a way to
allow the student to easily make their selections.
An animation of the linear axis and the operation
status of the controller interface algorithm are
located on the visual display. The visual display
is linked to a callback code generated by the
GUIDE program in MATLAB syntax. The call-
back code is modified to perform various selec-
tions, such as starting or stopping the controller
operation, and to provide visual confirmation of
any completed or ongoing tasks, such as changing
the position of the animation corresponding to the
linear axis motion. Each GUI is now described in
detail.

Build. The Build GUI is used to create the Simu-
link model containing the controller interface algo-
rithm. The student selects the specific details of the
controller interface algorithm, such as the control-
ler operation mode, in the Build GUI visual dis-
play. These selections are used by the Build GUI
callback to generate the corresponding Simulink
model containing the controller interface algo-
rithm. The Build GUI visual display is shown in
Figure 9. The Operate and Jog toggle buttons
located on the top left are pushed to navigate
from the Build GUI to the Operate and Jog
GUIs, respectively. The Help pushbutton on the
top center is used to open the Help GUI. Tips are
displayed on the top right, giving a summary of
how to use the Build GUI. The information
required to create the controller interface algo-
rithm is arranged in five selections. First, the
controller domain type is specified, using radio
buttons, as either discrete or continuous. The
discrete domain is selected for a controller
designed in the Z–domain and encoded using
discrete domain Simulink blocks. Continuous
time domain is selected for a controller designed
in the Laplace domain and encoded using contin-
uous domain Simulink blocks. Second, the con-
troller operation mode is specified. A popup menu
containing the three mode options: simulation,
emulation, and implementation, is positioned
below the domain type option. Next, the linear
axis model is specified. This model is used to
simulate the linear axis dynamics for simulation
and emulation modes and is encoded using discrete
or continuous blocks in Simulink, depending upon
the domain type. Students may encode their own
model in a Simulink subsystem or select a pre–
existing model. This selection is unnecessary for
implementation mode and is disregarded if a
selection is made. A popup menu containing the
default model option or the student defined model

Fig. 8. Contents of Computer–System Interface for Imple-
mentation mode.

Fig. 9. Build GUI.

M. A. Fleming and R. G. Landers1254

Fig. 10. Controller subsystem text based syntax.

Design and Implementation of a Linear Axis Rapid Development System for Education 1255

option is positioned below the mode popup menu.
If the student defined model option is selected, the
location of the Simulink model file is specified
using a browse box. Next, the controller is selected.
Students may encode their own controller in a
Simulink subsystem or select a pre–existing con-
troller. A popup menu containing the option to
insert a student controller or select a pre–existing
controller is positioned below the model popup
menu. Finally, the reference signal is specified.
Three reference signals, sinusoidal, triangle, and
square, are used to generate the desired reference
position of the linear axis and to analyze the
controller tracking performance. A popup menu
containing the three reference signals is positioned
below the controller popup menu. A text field
displaying each option the student specified is
positioned to the right of the field of five popup
menus. A status text displays ‘‘Ready to Build’’

indicating to the student when all selections have
been specified. The five selections are displayed in
the selection text field to the left of the status text
and can be reset to ‘‘not specified’’ by pushing the
Reset pushbutton located under the selection text
field. The student initiates the generation of the
Simulink model containing the controller interface
algorithm by pushing the Build pushbutton posi-
tioned below the reference popup menu. The status
text indicates when the Simulink model has been
generated and the View Simulink Model pushbut-
ton is enabled. The student may open the Simulink
model visual display by pushing the View Simulink
Model pushbutton.
When the Simulink model is created graphically,

a corresponding text file is also created containing
the graphical information. Each block and signal
contained in the Simulink model is represented by
text based syntax. For example, the text based

Fig. 11. Process for building new Simulink model.

M. A. Fleming and R. G. Landers1256

syntax used to represent the Controller subsystem
in the three operation mode Simulink models is
shown in Figure 10. The name, location and
default parameters of the Controller subsystem
appear first, followed by the graphical components
of the controller, such as the gain block. A diagram
of the text based syntax structure for the simula-
tion mode Simulink model is shown in Figure 11.
The structure is similar for the other Simulink
models. The general Simulink model parameters
appear first. Next are the block default parameters
contained in the Simulink model, followed by the
content of the four subsystems listed in alphabe-
tical order, as well as the connections between
them.
The Build GUI callback generates the Simulink

model by piecing together text based syntax
segments from pre–existing source Simulink
models. A source Simulink model is created for
each available selection from the Build GUI visual
display and contains a subsystem with the select-
able contents. An example of a source Simulink
model is the Reference Generator subsystem
shown in Figure 12 with the selectable sinusoidal
wave content. Each source Simulink model is
saved as a text file and stored on the host compu-
ter. The Build GUI callback reads the desired
content from each selected source Simulink text
file and combines the content into a new Simulink
text file. In order to locate the selected subsystem
content within the syntax of the source Simulink
text files, standard subsystem names and connec-
tion labels are used. This standard also applies to

the Simulink model containing the student control-
ler and student linear axis model. The student
encodes the controller or physical hardware
model in a subsystem named ‘‘Controller’’ or
‘‘Model,’’ respectively. An example of a student
Controller subsystem is shown in Figure 13. The
Build GUI callback combines the selected source
Simulink text file content, first, by collecting the
selected contents of the Reference Generator,
Controller, and the Physical System Model subsys-
tems. This is done by finding the location of the
subsystem in the source Simulink text file by
searching for the standard name of the specific
subsystem, such as Controller. From this location
the start and end of the subsystem content is
determined. The Build GUI callback reads the
content and stores it as a text segment. The same
procedure is used to obtain the text of the default
block parameters for each subsystem. Next, when
the selected content text segments, i.e., selected
subsystem content and default block parameters,
are stored the Build GUI callback reads the text
syntax of the selected operation mode Simulink
model as shown in Figure 11. Each selected
subsystem has a corresponding insertion point in
the operation mode Simulink model. The default
block parameters also have an insertion point. The
Build GUI callback reads the text syntax of the
operation mode Simulink model before and after
the selected content insertion points and stores the
syntax as text segments. The first text segment
starts at the beginning of the operation mode
Simulink model and ends where the default block
parameters of the desired subsystems are inserted.
The next text segment starts after the default block
parameters insertion point and ends where the first
selected subsystem, i.e., the Controller subsystem,
is inserted. The insertion point of the Controller
subsystem is below the location information of the
corresponding operation mode Controller subsys-
tem. This allows the operation mode Simulink
model to maintain the original location of each
subsystem. The default content in the operation
mode Controller subsystem is replaced by the
selected subsystem content. Additional text
segments are read between the remaining subsys-
tem insertion points in the same manner. A final
text segment starts at the last subsystem insertion
point and ends at the end of the operation mode
Simulink model. The text segments are combined
in consecutive order and saved as a Simulink file
corresponding to the new Simulink model contain-
ing the desired controller interface algorithm.

Operate. The Operate GUI is used to operate the
Simulink model containing the controller interface
algorithm and to analyze the controller perfor-
mance. Operation commands from the Operate
GUI callback are sent to the Simulink model on
the host computer for simulation mode and to the
target computer for emulation and implementation
modes. The visual display of the Operate GUI is
shown in Figure 14. The Build and Jog toggle

Fig. 12. Reference Generator subsystem and contents.

Fig. 13. Standard student Controller subsystem.

Design and Implementation of a Linear Axis Rapid Development System for Education 1257

buttons located on the top left are pushed to
navigate from the Operate GUI to the Build and
Jog GUIs, respectively. The Help pushbutton on
the top center is used to open the Help GUI. Tips
are displayed on the top right, providing a sum-
mary of how to use the Operate GUI. The first
input is the reference signal parameters. The refer-

ence signal amplitude (mm) and frequency (Hz) are
entered in the text boxes. These values are stored
on the MATLAB workspace and are input into the
Reference Generator subsystem to create the refer-
ence signal. The second input is the Simulink
model operation parameters. The duration of the
controller operation and the sample period are

Fig. 14. Operate GUI.

Fig. 15. Jog GUI.

M. A. Fleming and R. G. Landers1258

entered in the text boxes below the reference
parameters. These values are stored and used by
the Simulink model solver during operation. The
student initiates the operation by pushing the start
pushbutton labeled ‘‘Simulate,’’ ‘‘Emulate,’’ or
‘‘Implement,’’ corresponding to the respective
operation mode. If the operation mode is emula-
tion or implementation, then the Simulink model is
converted into machine code and downloaded
from the host computer to the target computer.
This process is initiated by pushing the ‘‘Load
Model to Target’’ pushbutton positioned below
the Simulink model operation parameters and
above the start pushbutton. If the host computer
is not connected to the target computer, the Oper-
ate GUI will prompt the student to connect by
specifying the TCP/IP connection between the host
and target computer using the MATLAB connec-
tion program xPC Real–Time Explorer. A three–
dimensional animation of the linear axis, located
to the left of the Operate GUI visual display,
illustrates the linear axis motions. During the
operation, the measured position from the linear
axis hardware in implementation mode, or linear
axis model in simulation or emulation modes, is
used to update the position of the linear axis
animation. The operation is terminated when the
operation is complete or by pushing the Stop
pushbutton. The recorded data is displayed on a
graph or saved in a text file using the ‘‘Plot’’ or
‘‘Save’’ pushbuttons, respectively, positioned
below the ‘‘Stop’’ pushbutton.

Jog. The Jog GUI is used to manually position the
linear axis. Jog commands are sent from the Jog
GUI callback to a Simulink model on the target
computer containing a controller interface algo-
rithm designed specifically to receive jog com-
mands. The jog Simulink model includes a pre–
existing controller and communication blocks sim-
ilar to the communication blocks in the emulation
and implementation Simulink models. The Jog
GUI visual display is shown in Figure 15. The
Build and Operate toggle buttons located on the
top left are pushed to navigate from the Jog GUI
to the Build and Operate GUIs, respectively. The
Help pushbutton on the top center is used to open
the Help GUI. Tips are displayed on the top right,
providing a summary of how to use the Jog GUI.
The student initiates the jog action by pushing the
‘‘Load Jogger to Target’’ pushbutton. The same
connection procedure in the Operate GUI is used
for the Jog GUI. The jog Simulink model is
compiled in machine code and loaded to the
target computer. The status of the jog Simulink
model is displayed above the ‘‘Load Jogger to
Target’’ pushbutton. When the Jog GUI is ready
for commands the status displays ‘‘Online.’’ Next,
the linear axis is selected by pushing the x–axis
radio button located under the ‘‘Load Jogger to
Target’’ pushbutton. The linear axis is incremen-
tally repositioned, i.e., jogged, in the positive or
negative direction by pushing the ‘‘+’’ or ‘‘–’’

pushbuttons, respectively. Three incremental
motion magnitudes can be selected: course (5
mm), medium (1 mm), and fine (0.1 mm). A
three–dimensional animation of the mini–CNC
system, located to the right of the Jog GUI
visual display, illustrates the motion of the com-
ponents of the mini–CNC system. The linear axis
position measurement from the jog Simulink
model on the target computer is used to update
the position of the linear axis in the mini–CNC
animation.

Help. The Help GUI provides information that
guides the student through the use of the Build,
Operate, and Jog GUIs. This information is avail-
able for students who misunderstand the use of the
three GUIs. The Help GUI visual display is shown
in Figure 16. Step by step directions for performing
different actions, such as connecting the host and
target computers, are displayed in a scrollable text
box on the right of the Help GUI. The topics are
arranged in a vertical field of toggle buttons to the
left of the scrollable text box and are labeled
according to the corresponding topic. The Help
GUI is dynamic, meaning that when the student
pushes the Help pushbutton in any of the three
GUIs the relevant information is automatically
displayed in the scrollable text box when the
Help window appears. Figures correlating to the
information provided in the scrollable text box are
displayed using pushbuttons on the bottom or by
double–clicking the text referring to the figures in
the scrollable text box. An example is shown in
Figure 16 where the xPC Explorer connect figure is
displayed by pushing the ‘‘xPC Connect’’ push-
button or double–clicking the corresponding
‘‘<Double Click>’’ text.

3.3 Linear Axis Hardware
The linear axis hardware, shown in Figure 3, is

connected to the host–target environment through
the physical hardware interface consisting of D/A
and C/T boards. The target computer operates the
downloaded Simulink model in real–time, sending
a digital controller voltage command to the D/A
output board where it is converted into an analog
voltage command. The D/A output voltage range
is ±10 V and is amplified before reaching the linear
axis DC motor by a factor of 2.4. The motor has a
gear ratio of 5.9 from the motor shaft to the output
shaft. The output shaft is connected to a lead screw
with a pitch of 0.787 rev/mm, which translates the
linear axis in the positive or negative direction,
depending on the motor rotational direction. The
motor encoder counts the rotations of the motor
shaft with a resolution of 500 counts/rev. Quad-
rature encoding is utilized for an effective resolu-
tion of 2000 counts/rev. The C/T board converts
the encoder counts into a corresponding digital
signal sent to the controller interface algorithm on
the target computer where it is converted into a
linear displacement measurement.

Design and Implementation of a Linear Axis Rapid Development System for Education 1259

3.4 Linear Axis Model and Controllers
Source Simulink text files used to construct the

Simulink models are created specifically for the
linear axis system. The linear axis dynamics are
modeled in the discrete and continuous domains
and saved as separate files. The linear axis is
subjected to a series of step voltage inputs and
Recursive Least Squares estimation is used to
determine the dynamic model parameters. The
continuous domain model used to describe the
linear axis is a nonlinear second order differential
equation

�x₠x tð Þ þ _x tð Þ ¼ KxVC tð Þ � Kx fC sgn _xð Þ ð1Þ

where tx = 8.00 ms is the system time constant, Kx

= 1.72 (mm/s)/V is the steady–state gain, and fC =
0.10 V is the Coulomb friction voltage offset. The
parameter fC is determined by finding the mini-
mum voltage required to move the linear axis. The
linear axis model is used in simulation and emula-
tion modes. The discrete model, encoded in Simu-
link syntax, is shown in Figure 17. The physical
hardware interfaces are modeled in simulation and
emulation modes with a D/A quantization of 4.88
mV and an encoder quantization of 0.108 mm.
Four Controller subsystems are added to the
Simulink text files. These include proportional,
proportional plus integral plus derivative (PID),

Fig. 16. Help GUI with open figure.

M. A. Fleming and R. G. Landers1260

modified PID, and general tracking controllers.
The student selects one of the four controllers or
their own controller, to regulate the linear axis
position.

4. RESULTS

A group of sixteen manufacturing automation and
mechatronics students learning the basics of
controlling manufacture processes and interfacing
mechanical, electrical, and computer systems is
given the assignment to implement a general track-
ing controller on the linear axis system using the
Linear Axis RDS. The students are given the
general tracking controller design [11], the linear
axis model in equation (1), and the standard names
of the subsystem and connections used to encode
their controllers. The students design and encode

their controllers in Simulink before the experi-
ment. They are given four tasks requiring them
to use the Jog, Build, and Operate GUIs. The tasks
are: jog the linear axis such that it is centered,
simulate your controller, emulate your controller,
and implement a pre–existing controller. An eye
tracker is used to record the student’s eye move-
ments on the host computer screen during the jog
task and the pre–existing controller implementa-
tion task to analyze the design of three GUI visual
displays. The Think Aloud Protocol is used during
controller simulation and emulation tasks to eval-
uate the students’ spoken thoughts and actions.
The eye tracking and Think Aloud Protocol results
are combined to analyze the usability of the Linear
Axis RDS [12]. The controller tracking results for
the simulation and emulation tasks are recorded.
At the end of the four tasks the students are given
an additional task to implement their controller.
The controller tracking results for the implementa-
tion task are also recorded. Post experiment inter-
views are conducted to obtain student evaluations
of the Linear Axis RDS.
The controller implementation process used by

one of the sixteen students is given as an example.
The student designed a general tracking controller
for the linear axis prior to using the Linear Axis
RDS. The equation the student used to calculate
the commanded control voltage is

u tð Þ ¼ �x
Kx

₠r tð Þ þ 1

�x
_r tð Þ � g1 _e tð Þ � g0e tð Þ

� �
ð2Þ

where u(t) is the control voltage, r(t) is the refer-
ence position, g1 and g0 are the controller gains,
and e(t) is the position error. The student control-
ler gains, g1 and g0, are determined by selecting the
desired closed loop time constants, t1 and t2, and
are given, respectively, by

g0 ¼ � 1

�1�2
ð3Þ

g1 ¼ � 1

�x
� 1

�1
� 1

�2
ð4Þ

The student controller is encoded in Simulink and
shown in Figure 18. The controller is simulated,
emulated, and implemented on the linear axis
using the Linear Axis RDS. A triangle reference
signal with a magnitude of 5 mm and a frequency
of 0.125 Hz is used for all of the controller
performance tests. The controller performance
test results are shown in Table 1.
The simulated controller tracking results from

Test 1, given in Table 1 and Figure 19, show the
initial controller performance test had poor track-
ing results, as indicated by the comparatively large
value of the mean and standard deviation of the
absolute error. The desired closed–loop time
constants are reduced for Test 2, dramatically
improving the simulated controller tracking results
as shown in Table 1 and Figure 20. The student

Fig. 17. Linear axis model contained in Linear Axis Model
subsystem.

Fig. 18. Student controller encoded in Simulink syntax.

Design and Implementation of a Linear Axis Rapid Development System for Education 1261

again reduced the closed loop time constants in Test
3. This improved the simulated controller tracking
results, shown in Table 1 and Figure 21, yielding a
bounded steady–state error of ±7 � 10–3 mm and a
maximum absolute error of 14 mm. The emulated
controller tracking results from Test 4 are similar to
the simulation results from Test 3 and are shown in
Table 1 and Figure 22. The method used by the
Simulinkmodel solver for emulation mode is differ-
ent from the method used by the Simulink model
solver for simulation mode, causing minor differ-
ences between the results. The implementation
controller tracking results from Test 5, shown in
Table 1 and Figure 23, have a steady state error of
±1.6 mmand amaximumabsolute error of 19 mm. In
Test 6, the student made a final reduction to the
desired closed–loop time constants yielding results,
shown in Table 1 and Figure 24, with a steady state
error of ±1.1 mm and a maximum absolute error of
19 mm. The difference between the linear axis model
and the physical linear axis is evident when the
implementation results are compared to the simula-
tion and emulation results. The student controller is
limited by the inaccuracy of the model used in the
design. Friction was included in the linear axis
model, but no friction compensation was included
in the student controller design, resulting in a
constant offset in the steady–state errors from
zero. Themaximumerrors in the controller tracking
results are caused by the discontinuity at the peaks
in the triangular reference signal. These errors could
be reduced by designing the reference signal to slow
the linear axis velocity near the triangular peaks.

The primary mode the student used for controller
tuning was the simulation mode. This is expected
because simulationmode is themode used for initial
tuning, where several adjustments are made to the
controller. Emulation mode was used solely as a
check to verify the ability to operate the controller in
real–time. Students used implementation mode to
fine tune their controller, i.e. small adjustments to
the closed–loop time constants. This is also expected
because of the differences between the simulated
and implemented closed–loop responses.

Table 1. Student Controller Tracking Results

Test # Operation Mode t1 (s) t2 (s) g0 (1/s
2) g1 (1/s) |e|ave (mm)

1 Simulation 0.1 0.5 –20 1.1 � 102 63
2 Simulation 1 � 10–2 5 � 10–2 –2.0 � 103 5.0 0.70
3 Simulation 2.5 � 10–3 7.5 � 10–3 –5.3 � 104 –4.1 � 102 0.72
4 Emulation 2.5 � 10–3 7.5 � 10–3 –5.3 � 104 –4.1 � 102 0.72
5 Implementation 2.5 � 10–3 7.5 � 10–3 –5.3 � 104 –4.1 � 102 0.94
6 Implementation 2.5 � 10–3 5 � 10–3 –8.0 � 102 –4.8 � 102 0.63

Fig. 19. Test 1 simulation controller tracking results with emax
= 243 mm and |ess|ave = 25.8 mm. Fig. 20. Test 2 simulation controller tracking results with emax

= 31.2 mm and |ess|ave = 7 � 10–3 mm.

Fig. 21. Test 3 simulation controller tracking results with emax
= 13.5 mm and |ess|ave = 7 � 10–3 mm.

M. A. Fleming and R. G. Landers1262

The usability results of the Linear Axis RDS are
qualitative and reflect a good design. The average
time for a student to complete the four tasks was
35 min, with a standard deviation of 21 min, a
maximum time of 91 min, and a minimum time of
10 min. The post experiment survey revealed that
the Linear Axis RDS experiment was the first time
several of the students implemented a controller on
a physical system. The students confirmed the
Linear Axis RDS was a valuable tool in the
controller implementation process. An evaluation
of the Linear Axis RDS was performed and
recommendations for improvement were provided
[12]. All of the students were able to build the
Simulink model containing the controller interface
algorithm using the Build GUI. Multiple attempts
to build the Simulink model were required by 9 of
the 16 students due to confusion regarding the
labeling of the popup menu options. A recommen-
dation to improve the Build GUI is to change the
label ‘‘model’’ on the model popup menu to refer
to the linear axis model, which was confused with

the Simulink model containing the student control-
ler. Another recommendation is to eliminate the
selected option text on the right of the Build GUI,
shown in Figure 9, to reduce redundancy and
increase room for more tips. All of the students
were able to operate the Simulink model using the
Operate GUI. Several students made multiple
attempts to start and stop the Simulink model
due to confusion regarding the operating status
of the Simulink model. A recommendation to
improve the Operate GUI is to provide more
active visual confirmation, such as flashing the
status text, when the operation of the Simulink
model is complete. Of the 16 students, 13 were able
to jog the linear axis using the Jog GUI. Recom-
mendations to improve the Jog GUI include
increasing the size of the jog status text and
including a visual status update, such as a progress
bar, while students are waiting for the jog Simulink
model to convert into machine code and download
to the target computer. The tips box and the Help
GUI were beneficial in providing information to
guide the students through the use of the Linear
Axis RDS. Pre and post questionnaires revealed
that the Linear Axis RDS helped the students to
learn the course material and their interest in
science and engineering increased after using the
Linear Axis RDS.

5. SUMMARY AND CONCLUSIONS

A Rapid Development System provides a con-
nection between a student, their controller, and the
physical hardware, and is implemented on a linear
axis system. MATLAB GUIDE, Simulink, and
xPC Real–Time Environment are used to create
the Linear Axis RDS. The Linear Axis RDS
consists of three GUIs; Build, Operate, and Jog,
which allow the student to automatically create a

Fig. 22. Test 4 emulation controller tracking results with emax =
13.5 mm and |ess|ave = 7 � 10–3 mm.

Fig. 23. Test 5 implementation controller tracking results with
emax = 18.7 mm and |ess|ave = 1.60 mm.

Fig. 24. Test 6 implementation controller tracking results with
emax = 19.1 mm and |ess|ave = 1.09 mm.

Design and Implementation of a Linear Axis Rapid Development System for Education 1263

connection between a controller and linear axis,
operate the controller and linear axis, and jog the
linear axis, respectively. A group of sixteen manu-
facturing automation and mechatronics students
created controllers and used the Linear Axis RDS
to implement their controllers on the linear axis. A
usability study of the Linear Axis RDS was
included in the test. A student example of the
controller implementation process illustrated the
steps the student used to tune the controller.
The Linear Axis RDS is successful in automati-

cally creating a connection between a student
controller and the linear axis system. The time
required for a student to simulate, emulate, and
implement a controller on the linear axis system
using the Linear Axis RDS is, on average, 35 min,
with a minimum time of 10 min. Little specific
knowledge regarding the controller interface or
linear axis physical interface is required to success-
fully implement a controller. The students were
able to spend the majority of the time on the
controller tuning process, as opposed to spending
their time configuring hardware when it is not part
of the course material. No friction compensation
was included in the student controller design,
resulting in an offset in the steady–state errors of
the example student controller tracking results.
The students were able to achieve satisfactory

controller performance results, with the best
having an average absolute error of 0.63 mm.
From observations of the 16 student tests it was
determined that the simulation mode was the
primary mode used in the controller tuning process
because it was the mode most used to make the
initial adjusts to the controller. The emulation
mode was used solely to check the controller
real–time performance. Implementation mode
was used to fine tune the controller due to the
differences in the simulated and implemented
closed–loop responses. The three GUIs are well
designed with minor recommendations for
improvement provided by the usability study.
The reduced time to simulate, emulate, and imple-
ment a controller allows students to focus on
controller design and experience the controller
implementation process in a typical semester–
long course. Pre and post questionnaires revealed
that the Linear Axis RDS helped the students to
learn the course material and their interest in
science and engineering increased after using the
Linear Axis RDS.

Acknowledgements—This material is based upon work sup-
ported by the National Science Foundation under Grant
Number DUE–0736731. The results from the Linear Axis
RDS usability study are the work of Vedant Jain, Dr. Hong
Sheng, and Dr. Richard H. Hall.

REFERENCES

1. Y. Huang and J. H. Oliver, Integrated Simulation, Error Assessment, and Tool Path Correction for
Five–Axis NC Milling, Journal of Manufacturing Systems, 14(5), 1995, pp. 331–344.

2. R. Uptal, 3–D Object Decomposition with Extended Octree Model and its Application in
Geometric Simulation of NC Machining, Robotics and Computer Integrated Manufacturing,
14(4), 1998, pp. 317–327.

3. A. D. Spence and Y. Altintas, A Solid Modeler Based Milling Process Simulation and Planning
System, ASME Journal of Engineering for Industry, 116, 1994, pp. 61–69.

4. Machine Tool Agile Manufacturing Research Institute (MTAMRI), http://mtamri.me.uiuc.edu/,
accessed 2009.

5. J. H. McDuffie, Using the Architecture Description Language Metah for Designing and
Prototyping an Embedded Reconfigurable Sliding Mode Flight Controller, AIAA/IEEE Digital
Avionics Systems Conference, Irvine, California, October 2002, pp. 8B11–8B17.

6. C. D. Vournas, E. G. Potamianakis, C. Moors and T. Van Cutsem, An Educational Simulation
Tool for Power System Control and Stability, IEEE Transactions on Power Systems, 19(1), 2004,
pp. 48–55.

7. A. Burcin, C. A. Bohus, L. A. Crowl and M. H. Shor, Distance Learning Applied to Control
Engineering Laboratories, IEEE Transactions on Education, 39(3), 1996, pp. 320–326.

8. J. Liu and R. G. Landers, Integrated Modular Machine Tool Simulation for Education in
Manufacturing Automation, International Journal of Engineering Education, 20(4), 2004,
pp. 594–611.

9. A. A. Wahyudi and M. J. E. Salami, Development of a Microcontroller-Based Control System
with a Hardware in–the–Loop (HIL) Method for Control Education using MATLAB/Simulink/
xPC Target, International Journal of Engineering Education, 21(5), 2005, pp. 846–854.

10. A. Tornambe, Analysis and Synthesis in the Simulink Environment of Control Laws for DC
Motors: A Real–time Implementation with the Microcontroller BASIC Stamp II as a Simple Tool
for an Education Control Laboratory, International Journal of Engineering Education, 21(5), 2005,
pp. 814–837.

11. X. Zhao, R. G. Landers and M. C. Leu, Adaptive Control of Freeze–form Extrusion Fabrication
Processes, ASME Dynamic Systems and Controls Conference, Ann Arbor, Michigan, October 20–
22, 2008.

12. V. Jain, H. Sheng, R. H. Hall and M. Higlers, Introduction of an Iterative Approach to Evaluate
Computer–Mediated Learning Technology, Proceedings of the Interactional Conference on
Information Systems, Phoenix, Arizona, December 15–18, 2009.́

M. A. Fleming and R. G. Landers1264

Michael A. Fleming is a former graduate student from the Missouri University of Science
and Technology (Missouri S&T) where he received his M.S. in mechanical engineering in
2009. He received his B.S in mechanical engineering from the University of Missouri—
Rolla in 2007. He is currently employed as a manufacturing engineer for Alliant
Techsystems, an aerospace and defense company. His research interests primarily focus
on control systems, specifically dealing with control implementation in machining
processes. he is a member of the International Mechanical Engineering Honor Society,
Pi Tau Sigma. He was a recipient of the Chancellor’s fellowship at Missouri S&T.

Robert G. Landers (landersr@mst.edu) is currently an Associate Professor of Mechanical
Engineering at the Missouri University of Science and Technology (Missouri S&T). He
received his B.S. degree from the University of Oklahoma in 1990, M.E. degree from
Carnegie Mellon University in 1992, and Ph.D. degree from the University of Michigan in
1997, all in Mechanical Engineering. His research and teaching interests are in the areas of
modeling, analysis, monitoring, and control of manufacturing processes (namely, metal
cutting, friction stir welding, laser metal deposition, and freeze extrusion fabrication),
control of alternative energy systems, and electro–hydraulic systems, integrated design and
control, and digital control applications. He has over ninety technical refereed publications,
including four book chapters, and has received funding from the National Science
Foundation, US Department of Energy, Air Force Research Laboratory, US Department
of Education, Society of Manufacturing Engineers, Missouri Research Board, and various
companies. He received the Society of Manufacturing Engineers’ M. Eugene Merchant
Outstanding Young Manufacturing Engineer Award in 2004, has received nine faculty
research and teaching excellence awards from Missouri S&T, and is a member of ASEE,
ASME, IEEE, and SME. He is currently an associate editor for the IEEE Transactions on
Control System Technology and the ASME Journal of Dynamic Systems,Measurement, and
Control.

Design and Implementation of a Linear Axis Rapid Development System for Education 1265

