Int. J. Engng Ed. Vol. 26, No. 6, pp. 1365-1377, 2010
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2010 TEMPUS Publications.

Increasing Student’s Participation in a

Memory Hierarchy Course: Design, Use
and Analysis of the MNEME Simulator*

L. MORENO, E. J. GONZALEZ, B. POPESCU, J. TORRES, J. TOLEDO
Dpto. de Ingenieria de Sistemas y Automatica y ATC, Universidad de La Laguna.
Av. Astrofisico Fco. Sanchez, SIN. CP 38206. La Laguna, Spain. E-mail: ejgonzal@ull.es

Using simulators in engineering disciplines is widespread. Memory Hierarchy is no exception.
However, the process of its design and analysis as an educational resource has not been sufficiently
explored. On the one hand, student motivation in the course could improve if they were invited to
take part in the design of the simulator. On the other hand, this participation implies a deeper
knowledge in the topics of the course. In this paper, this process is described about a simulator
called MNEME, which includes a complete vision of memory hierarchy topics. This simulator has
been validated and improved using feedback from students during three academic years.

Keywords: student’s motivation; memory hierarchy; simulation

1. INTRODUCTION

USE OF SIMULATORS is a tested valuable tool
for the teaching of engineering disciplines, since
students can test how different elements work with
a detail that it is impossible to reach by other
techniques (the elements to study are difficult to
access, expensive, etc.). A clear paradigm of this
situation is Computer Architecture, where the
elements to study, that is, the different processors,
memory units and so on, cannot be accessed in an
isolated way. Nevertheless, although simulators
are widely used in Computer Architecture courses,
simulators by themselves are not enough to signif-
icantly improve the learning process. It is necessary
to carry out other activities which allow the
students to gain knowledge, comprehend theore-
tical concepts and apply those concepts to the real
world [1].

This paper proposes a methodology based on
the process of designing and analysing a simulator
as an educational resource in a Computer Archi-
tecture course. On the one hand, student motiva-
tion is supposed to improve if students are invited
to take part in the design of the simulator. On the
other hand, this participation implies a deeper
knowledge in the topics of the course, since these
topics have to be included in the simulator
features. Many studies and efforts have been
carried out regarding the improvement in student
motivation in Engineering [2-4] since it has been
identified as a key factor in course success [J].
Motivation clearly influences the quality of learn-
ing; since it acts as an enabler for learning and
academic success [6, 7]: motivation affects effort,

* Accepted 8 May 2010

1365

effort affects results, positive results lead to an
increase in ability [8].

In particular, this paper applies the aforemen-
tioned methodology to memory system organ-
ization and architecture, designing and
implementing a simulator called MNEME (for
the Greek muse of the memory) for a Computer
Architecture course in a Computer Engineering
degree. This subject has been identified as a core
topic by the joint IEEE Computer Society and
Association for Computing Machinery (ACM)
Computer task force, when defining Computer
Curricula recommendations [9]. Due to its impor-
tance, Memory Hierarchy is taught in several
subjects and degrees, with different level of depth
and related to different topics. It is important to
remark that this approach can be applied to every
discipline where simulators are a useful tool, since
students do not write any code line, as it is
described in the following sections. Nevertheless,
the authors consider that this approach is better
applied to Engineering students since they have a
clearer perception of what the programming
process implies; in other words, Engineering
students are able to evaluate properly the work-
load for including a modification in the simulator
and the possibility of carrying it out.

The paper focuses on both the proposed
approach and the MNEME simulator. On the
one hand, the approach is considered to be useful
when it is applied with other simulators or other
areas. On the other, the MNEME simulator itself
is a valuable tool for Memory Hierarchy teaching,
being included in other course activities (adaptable
to other simulators). This is the reason for describ-
ing MNEME in depth in the Presentation section.
As can be shown, the need for a simulator is born

1366 L. Moreno et al.

from the application of the methodology itself.
Therefore, the proposed methodology can be
applied to other fields with their own simulation
needs.

2. PRESENTATION

2.1 Context of the Computer Architecture course

A first point to state is the academic background
of the user, since this knowledge will help in the
design of the course.

A last-year computer science student has
previous experience in computer structure and
operative system. Regarding to computer struc-
ture, topics from digital electronics, including
binary code, to computer functional units are
explained. The principal functional units explained
in the subject are: memory, interrupt system,
control unit, arithmetic logic unit, etc. The main
functionalities of these units are presented. The
subject does not include a deep functionality
description of the units, only a simplified descrip-
tion without upgrades or algorithms details. Cache
levels, memory description, etc. are not included in
the topic.

With respect to operative system, the hardware
to high level software connection is presented. The
topic presents the software interface to access the
hardware, so any computer student (software and
hardware specialist) needs it to understand the
computer structure. In the topic it’s not necessary
to know deeply the hardware function, only pres-
ent main units. In contrast, multitask, virtual
memory, segmentation, pagination, are presented.
The operative system is presented as a uniform
layer to the programmers.

Other necessary aspect consists of expliciting the
topics to be taught in the course. Table 1, adapted
from [1], gives a detailed description of these topics
and the order in which these contents are presented
in the Computer Architecture course: fundamen-
tals of computer design, memory hierarchy design,
Internal structure of the processor and Intercon-
nection networks for multiprocessors/multicompu-
ters. Concerning memory hierarchy design, this
course conforms to the above Computer Curricula
recommendations.

2.2 Previous steps and first results

Before a major modification in the learning-
teaching process methodology, it is recommended
that its implication in the course be analysed. For
this reason, the authors have developed an action-
research-based process in order to improve the
teaching of memory hierarchy process. This
process can be divided into four phases (as
shown in Table 2) that will be described in the
remainder of this section.

Action research process [10-11] is a well-known
reflective process that allows for inquiry and
discussion as components of the research. That
usually implies a collaborative activity among
colleagues searching for solutions to everyday,
real problems or looking for ways to improve
instruction and increase student achievements. In
a first step, the authors—teachers and researchers
working at a University Department related to
Computer Science Engineering subjects—pursue
application of the action research process to their
subjects. These subjects share many topics, so the
action research approach can be applied. In this
process, the authors have undertaken several meet-
ings in which participants have examined their own

Table 1. Topics in Computer Architecture course

Topics Contents

Course Sequence

Fundamentals of computerdesign

Memory hierarchy design

Internal structure of the processor

Measuring and reporting performance

Virtual memory and cache memory

Instruction set, pipelined processors, vector

October (8 hours)

October—November
(30 hours)

November-May (100

processors, Instruction Level Parallelism, Thread- hours)
Level Parallelism

Interconnection networks for multiprocessors/

Buses, direct and indirect networks, cache

May-June (12 hours)

multicomputers coherence

Table 2. Phases of action research results
Phase Educational resources Description
1 Concept Maps Global concept map,

Refinement of the concept map

2 MNEME Students take part in the design /debugging of the tool
3 MNEME Procedures using MNEME
4 Wiki, Moodle, etc. Other complementary activities

Increasing Student’s Participation in a Memory Hierarchy Course 1367

educational practice systematically and carefully,
using the techniques of research, looking to
improve the teaching and learning process by
reinforcing, modifying or changing perceptions
based on informal data and non-systematic obser-
vations.

One of the topics that the authors have analysed
in this action research process is that of the
memory hierarchy, since this topic continuously
appears in subjects such as Operative Systems,
Computer Architecture and Computer Structure.
The characteristic steps of action research are
followed [10-12]:

1. Identification of problem area. This is usual to
summarize a problem in a higher-order concise
and meaningful question. In our case, the
selected question has been: ‘Which resources
can we design and implement in order to get
better results in memory hierarchy teaching?’

2. Collection and organization of data. Several
sources of data can be used: interviews, jour-
nals, tests, etc. In the case presented in this
work, the authors have based their work on
samples of student work, projects and logs of
meetings. The authors are implied in several
subjects, with different student profiles, thus the
collected data offer diversity and richness.

3. Interpretation of data. Due to the nature of the
collected data, these data are mainly qualitative
in the work presented in this paper. Thus, their
interpretation should be carried out carefully.
In this case, it has been deduced that students in
the mentioned subjects miss any kind of com-
puter-based resource that could help them in
their learning process. As mentioned above, the
analysed students are from a Computer Science
degree course, so software is considered an
important tool for the learning process.

4. Action based on data. From the interpretation
sketched in step 3, the review of papers
appeared in educational journals and collabora-
tion with many experts in education, the
authors have designed a plan based on the
design and implementation of computer-based
tools. This plan, detailed below, will follow the
seven principles identified by Chickering and
Gamson [13] for good practice in undergradu-
ate education (encouraging contact between
students and faculty, reciprocity and coopera-
tion among students, active learning, prompt
feedback, emphasizing time on task, commun-
ication of high expectations and respecting
diverse talents and ways of learning).

5. Reflection. The logical final step in this process
is evaluating the results and considering if the
process needs to be revisited. Action research is
usually an iterative process. Some of the rea-
sons for the need of iteration can be found in
the literature: sensitising the researcher to the
many variables at play in the hectic, chaotic and
multi-faceted classroom environments typically
studied [14], enabling real-time and retrospec-

tive data analysis to feedback into the study as
it progresses, taking the role of systematic
variation in traditional experimental designs
[15] providing opportunities for researchers to
notice and capitalise on interesting and unanti-
cipated events during a study [16], enabling
researchers to generate and select design deci-
sions regarding methods, theories, innovations
and interventions in response to empirical find-
ings and enabling critical reflection on the part
of practitioners during the fast-paced fieldwork
phase of a study [17].

As can be deduced from this description, teachers
are interested in going a step beyond this process,
adopting some aspects from design-based research
(DBR) [17,18]: looking for reducing the ‘credibility
gap’ of the students when learning theory, colla-
borating with experts in education and researchers,
taking the initiative in the research process as both
researchers and designers. In this phase an
approach for the improvement in student motiva-
tion is critical. A variety of activity types is
strongly recommended for this purpose. Thana-
soulas [19] states the need of a motivational
repertoire of strategies, including those of increas-
ing the learners’ self confidence and creating
learner autonomy, and Crookes [20] states that it
is important to provide variety and avoiding too-
regular patterns of classroom routines at the same
time that the learner should ‘perceive that impor-
tant personal needs are being met by the learning
situation’. The authors consider that participation
of students in the feedback and refinement phases
helps in this variety of activity types.

A first result of the action-research process
consists of the use of concept maps [21, 22] related
to the desired learning field, in this case memory
hierarchy. It has been demonstrated that concept
maps enhance comprehension and the retention of
ideas, helping memory at the same time that they
offer the possibility to personalize learning, share
knowledge and reinforce learning to acquire skills.
Nevertheless, the authors have used this tool after
another approach different from the traditional one
of asking the students to create their own concept
map. In particular, and after several meetings
(where students from the implied subjects have
shown a great activity) a concept map involving
concepts about the memory hierarchy (as seen in
every implied subject) was developed. On the one
hand, this concept map would allow teachers to
determine clearly the boundaries of their subjects,
avoiding possible overlapping in some concepts—
that is, the same concept should be taught only once
to the same student, unless it would be needed to
acquire a deeper knowledge about it. Thus, the
learning process is improved through coordination
among teachers. On the other hand, the students are
asked to refine the concept map, including new
concepts, and completing them, filling each concept
with the theoretical material they have been
presented with in a few lessons. In addition to

1368 L. Moreno et al.

these lessons, students are encouraged to read about
memory hierarchy from [23]. With this activity,
students receive a clear direction about their studies,
one of the factors that is usually identified as key for
the improvement of the student’s motivation. Doing
this, students may respond in a more positive way
[3, 24].

For the mentioned task—carried out in a colla-
borative way—the students have used an Open
Source tool called Compendium. With this tool,
the entire concept map can be exported to HTML
format in such a way that students can access
theoretical content just by clicking on the corres-
ponding concept. Thus, working on the designed
concept map helps students to study the subject,
organize their notes and prepare educational mate-
rial that can be used by other students in the
future. Moreover, the generated HTML code can
be included for its access in an e-learning platform,
like Moodle [25].

Using the designed concept map makes it pos-
sible to explore strategies in order to improve the
teaching/learning process. In particular, the
authors have observed three statements:

1. There are many concepts defining themselves
many parameters to establish in a practical way:
global/local memory, execution/wait queues,
eviction algorithms, bus size between the differ-
ent cache levels, cache memory size, allocation
page size, page size in virtual memory, line size
in cache memory, write allocate/non write allo-
cate, TLB size, mapping functions, etc.

2. Memory hierarchy teaching process should
include every characteristic existing in actual
machines: cache levels, page table implementa-
tions, eviction algorithms, etc.

3. It would be desirable, even more in a nearly
DBR approach, to make experiments on the
hardware. Nevertheless, due to technical limita-
tions, experiments are often executed on a
relatively old processor, with a simple cache
organization, damaging the learning process
extensibility. In addition to this, concerning
the other alternative, existing simulators, espe-
cially trace-driven oriented ones, are often too
simple and show how caches work in an iso-
lated way. In contrast, execution-driven simu-
lators are usually too complicated and without
a friendly interface, becoming inappropriate for
undergraduate students [26]. A survey of simu-
lators can be found in [27, 28].

2.3 Simulators as a result of proposed
methodology

A second major iteration of the action-research
process consists of the design and implementation
of a simulator covering the statements above. In an
initial effort, a simulator called SITEM was devel-
oped. It was designed for a basic course of Compu-
ter Architecture, thinking in a monoprocessor
system, based on address trace and including
virtual memory and three cache levels. Looking

for simplicity, some important simplifications have
been made:

® An only one-level page table.
e [ack of TLB.
® Three cache levels have the same block size.

Nevertheless, using SIJEM was soon shown insuf-
ficient for a strict action in the proposed metho-
dology. As a new phase of the proposed
methodology, students were involved in the
design and implementation of a more powerful
simulator, called MNEME (Fig. 1), which reflects
those three premises shown at the end of the
previous subsection and takes advantage from
the flexibility of the software.

The debate about simple or complex simulators
is out of the scope of this paper. Nevertheless, the
authors will state that a simulator should not carry
out an excessive simplification in order to make it
simple. In other words, developers should not
oversimplify their design because doing this, they
could lead to new misconceptions. In contrast, if
the real context is complex itself (that is, with many
parameters and many concepts to be monitored
for a pedagogical purpose), the simulator needs to
be complex. In this last case, implementers must
include some kind of mechanism in order to make
the simulator useful from a pedagogical point of
view. Thus, MNEME will result in a complex
simulator, and this is its main strength: its
complexity will cover a wide and complete range
of architectures and examples.

Although the simulator is a valuable tool in and
of itself (for example, when it is used in laboratory
procedures), the proposed action-research imple-
mentation has taken pedagogical aspects from the
design phase. For this phase, researchers have
assumed the roles of teacher and observer.
Students (from different degrees and subjects)
were asked to take part actively in this process,
looking for information in technical papers and
journals like IJEE, testing successive versions of
the simulator, documenting its use through tutor-
ials and help files, detecting possible bugs, propos-
ing new features/machines to be included, etc.
These iterative activities will allow students to get
a deeper knowledge of the subject in a social
constructivist way, since they are encouraged to
share their impressions and work together. In this
way, several principles identified by Chickering
and Gamson [§8] are reached. It is important to
remark that students have not written any code for
the simulator, since it is not the goal of the
exercise. For these activities, Moodle platform
has been used as a collaboration framework by
students and teachers. These activities affect the
motivation of the student through team work,
reward and recognition and social pressure and
competition factors, since there is an external
performance evaluation with corresponding
rewards.

This refinement process has been carried out for
two years, obtaining a complete version of

Increasing Student’s Participation in a Memory Hierarchy Course 1369

MNEME. Nevertheless, the authors have observed
the benefits of this student participation and
decided to repeat it as a learning procedure. For
this purpose, the students will work in this phase
with incomplete/old versions of the simulator and/
or including some novelties, such as a new
commercial machine configuration.

Due to the complexity of the simulator (high
number of parameters, different devices involved
in memory hierarchy, use of complex concepts),
the students themselves have developed three
different tutorials, helping their classmates to
take advantage from the features offered by
MNEME. For these tutorials, the students cele-
brated several meetings with the course teachers in
order to detail the objectives of these tutorials.

® The first tutorial studies exclusively the virtual
memory concept, avoiding the use of the three
possible cache levels.

® The second tutorial implements the Intel Cen-
trino processor with two cache levels L1 and L2,
inhibiting the page aging technique, and a page
table with a 2-level top-down search, a TLB and
several replacement algorithms for cache and
TLB.

® The last tutorial analyses an implementation in
MNEME of multiprocessing and page aging,
based on two processes, and how these processes
change their location from one context to the
other when there are fails in the TLB and in the
cache.

In the meetings, the possible extensions of
MNEME were also considered, since MNEME

offers some limitations in multiprocessor and/or
multicore systems. A new version of the simulator
is currently being developed. For that, the authors
have adopted the AMD HyperTransport, which
allows the point to point connection among the
nodes of a multiprocessor system. This protocol
extends the possibilities of shared memory systems
to systems that were previously developed using
only message passing. The system includes a
coherence system (to be chosen from a set of
them), and allows the inclusion of TLB memories,
cache levels for each node CPU, sharing as it is
desired the memory structure with other node
CPUs. The simulator analysed the performance
of the multiprocessor system, and allows to
compare it with the performance of other
memory sharing system.

In subsequent subsections, the complete version
of the MNEME is described, together with the
third phase of the learning process: designing
procedures for using MNEME itself as a learning
resource. It is important to note that the metho-
dology is independent from the particular field and
from the proposed type of simulator.

2.4 Description of MNEME

MNEME [29-30] is a multiplatform simulation
tool developed in Java Swing as an Applet, so it
can be run in any Internet browser window. This
fact does not mean that the simulator cannot be
run locally, since MNEME can be downloaded
free of charge and the users can access its features
by opening a HTML file, called sj.html. A screen-
shot of the tool is shown in Fig. 1.

n view.comp.run.App

Config Trace Actions Help
| conf |

o \ prev Hmh‘l |

virtual memory size : 2'* (32 |B

max number processes; 2°* |2

Jpage aging
enabled
® yes ~imo
ref inc units Z
will run after |5 | mem ref
| Main Memory

‘ number pages : 2** ?_ |
| page size:2'* |12 |B
‘ bus size: 20 |

‘ access time units |4

]
disk access TU: [10
mem alloc
alloc policy
® local _/ global
minPFE 3|
maxPFE [|
will run after E evnodes
* eviction policy
() random
L) HFO
® LRU
O LR
NRU
) NFU
) OPT
MRU

Fig. 1. MNEME main window.

1370

Due to the complexity of the field to model,
MNEME results in a complex but complete simu-
lator since its complexity will cover a wide and
complete range of architectures and examples. The
main features of MNEME can be summarized as
follows:

Multithread

Hiperpaging

Direct and reverse mapping
TLB with levels

Age paging control

Data loading from server
Eviction policy definition
Sizeable buses

Control of the simulation speed.

Interaction with the simulator can be defined by
the following sequence:

1. Loading a configuration file. The configuration
file is a XML file determining the configuration
structure of the simulator. In this way,
MNEME allows to visualize this configuration
in an easy and interactive way. As example, the
following excerpt:

<config>

<mainMemoryConfig>
<numberEntriesNBits>2</number
EntriesNBits>
<blockSizeNBits>12</blockSizeNBits>
<evictionPolicy>FIFO</eviction

L. Moreno et al.

Policy>

<busSize>20</busSize>
<accessTimeUnits>4</accessTimeUnits>
<numberSetsNBits>0</numberSetsNBits>
<dataInstrSeparated>false</
dataInstrSeparated>
</mainMemoryConfig>

</config>

defines diverse parameters concerning to the
configuration of the main memory.

The names of the tags are pretended to be auto-
explained, thus students can define their own
configuration files. The complete information
about the tags and their meaning is added in the
simulator help.

Confirmation/changes of MNEME configura-
tion. Configuration files are supposed to be an
easy way to define new memory hierarchy
configurations; users can modify the para-
meters they have just loaded from the simulator
GUI (as shown in Fig. 1) without editing any
XML file. Fig. 2 and 3 detail the configuration
parameters.

. Loading a trace file. This file contains a set of

read/write/fetch instructions. An excerpt of an
example is the following:

003d49b0 MEMREAD
116£49a0 MEMWRITE
212ba3c0 MEMREAD

Each line represents the address to be accessed

B3 view.comp. run.App EHEWE
Config Trace Actions Help
conf
| ok | prev || next |
TLB
lenabled
® yes O no
number entries:2** 3| A has pocY
L random
) FIFO
data instr separated 3
] i ® LRU
® yes ~/ no i
LR
number sets : 2** iL) NRU
. NFU
access time units |1 © oPT
) MRU
mapping type
& direct
inverse
D , | searchmethod 7**777
number of levels |2 config
@ top-down
lengths : 10 10 e
() hottom-up

Fig. 2. MNEME configuration features.

Increasing Student’s Participation in a Memory Hierarchy Course

B2 view.comp.run.App
Config Trace Actions Help

conf
[ok _J { prev ‘ | next J
fcachers cache L2 . leacers
enabled enabled enabled
@ yes Cino @ yes i no || @ yes Cino
] M= [| = i
number entries : 2+ viction policy number entries : 2+ [eviction policy number entries : 2+ | @viction policy
B I“—-_‘ | © random b) random 6|) random
data instr separated - — :
@ys Ono |OWO blocksize:2" [+ || @ pro block size : 2**
| blocksize:2 [t || @ 1Ry .) LRU | O LRU
GHOLR SILEf £ number sets: 2** number sets : 2**
1 " m— |
number sets:2** | LFU E O LFU D O LU
la size: |10 16
——ONRu bus size: [10 |) NRU bus size; [16 |) NRU
bus size : E
f | NEU accesstimeunts | ' NFU access time units | ' NFU
access time units D ,3—
1 [& oPT : O oPtT < oPT
(2 MRU) MRU) MRU
write hit policy \write misspolicy | writehitpolicy |writemisspolicy | write hit policy write miss policy
@ write-through @ write-allocate ® write-through () write-allocate) write-through) write-allocate
| O write-back | © no write-aliocate | |) write-back ® no write-allocate || ® write-back ® no write-allocate |

Fig. 3. MNEME configuration details (cache levels).

view.comp.run.App

Config Trace Actions Help
conf | findPages | pageTable | bp | proc | bkthr |
VPN B: 00001110000000110111 D: 57399
L - — B 0000111000 0000110111
[i _pid | VAL | type |not..| | 56 55
0 0 0 D |3 =
1 3 —[Level : 0 Root0
7 [| i | P I
3 o @ 10
(e S = 1
i _ K 2 il
-1 -1 i3 X
-1 1|5} : |
= hd
Main Memory L] lLevel: 1 Process 0 | LLevel: 1Process 1
i KEY | m pid_|notUs..] [I i
0 0 1 0 3 - |58 2 3
1 1 i 1 3 _ (157 - -
2 2 [1 1 E| |58 -1 -1
13 3 0 0 1 |59 -1] il
T F T |6 g 8 -
15 5 I 1 0
- -1 5] E1 -1
-1 A] K] o ’ ;
5 i I i 5 | leveizzeTt i | e
A 4 R = B mem I |1 p P]
= T P sl ff £ 2
1 Kl] 1 K || |50 i | |5
-1 -1 =l -1 -1 = [E05 -1 b
T = T = T = A S o1 1 |18
T T S R ST ~| 507 ! jE
T T T = S
-1 -1 5] <1 -1 had|
st 4] | i |»

Fig. 4. MNEME pageTable tab.

1371

1372

and the type of access. As can be seen, the
address to be accessed is expressed in hexa-
decimal format. This address, composed of
eight digits, is not shown directly in the simu-
lator. The address is divided into three frag-
ments: the first five digits (20 bits), the next two
digits (8 bits) and the last digit (4 bits).
. Simulation. Once the two files have been loaded,
simulation starts. MNEME offers a set of tabs
where a complete list of parameters can be
visualized by the students. Before describing
each tab, it is important to remark that
MNEME provides a colour code that allows
the user to detect in an easy and visual way
every effect on the code trace. For each event,
the colour of implied code lines will change.
Before an object is removed (for example,
when a page is replaced in the main memory
and so does not need to be referenced in the TLB)
or replaced, there is a delay (about 2 seconds)
that allows the user to follow the changes prop-
erly.
. findPages tab. In the findPages tab, MNEME
offers in a visual way, the actual status of the
diverse memories of the configured machine.
Figure 2 shows three cache levels and the main
memory. Data are represented by tables, where
each column is an attribute (number of inputs i,
KEY, pid of the referred process, etc.) and each
file represent a memory address.

L. Moreno et al.

6. PageTable Tab. In this tab, MNEME shows the
different memories that take part in the table
pages. Fig. 4 shows the main memory TLB and
the indirect mapping table. In the case of a
direct mapping, the simulator shows the tree of
information tables for the mapping and the
information concerning the virtual address.
An example can be seen in Fig. 4.

7. Bp tab. This tab presents an image of the
structure of memories and the actions to be
carried out in each step as seen in Fig. 5.

8. Proc tab. In MNEME the number of threads to
be loaded will be between 1 and 28. A thread
can be in two queues: Execution (E) and Wait
(W). These queues can be visualized once a
trace file has been loaded into the simulator.
The user can visualize parameters such as
process identifier, units of time of the process,
number of the following instruction to be
executed by each process, time left in each
queue and the position of each process in the
queue. (Fig. 6).

Apart from the described tabs, practical experience
is reinforced with contextual help easily accessible
from any part of the simulator (it is important to
note that some help files have been developed by
the students themselves). This help includes a user
guide for the simulator and a quick review of the
theoretical concepts that the students may need.

B view.comp.run.App
Config Trace Actions Help

conf | findPages | pageTable | bp | proc | bkthr

starl |

1105975

CcPU B |

“el ol el o e

Fig. 5. MNEME bp tab.

Increasing Student’s Participation in a Memory Hierarchy Course

view.cump.run.ﬂpp
Config Trace Actions Help

| conf | ﬁndPages- pageTable | bp | proc ‘ bkthr |

|Processes

. pid | inslr Tu ni cTuleft cQueus | EGlﬂd_:
0] wies 20 2 20|E 1
1, view 20 2 10/ 1
|
L1 mem alloc (PFF)
pid i pageF ault allocated pages
0 1] view

view

Fig. 6. MNEME proc tab.

1373

2.5 Procedures for using MNEME as a learning
resource

The MNEME simulator has been designed to be
applied in several subjects. It is clear that different
subjects imply different levels of depth and differ-
ent focus. As an example, the authors will describe
a typical sequence of introductory procedures
based on the MNEME simulator. They are
focused on different paging algorithms to be used
in an Operative System. As well as these proce-
dures, students have simultaneously developed
activities regarding design, refinement and analysis
of the simulator.

2.5.1 Introduction to the MNEME simulator

The first goal is that the student learns how to
use the simulator. For this purpose, the students
are presented with a very simple case of pagina-
tion: a hierarchical pagination system with two
levels, and only one process accessing the
memory. The students are very familiar with this
case, since they have studied it in theoretical
classes. Students are expected to pay more atten-
tion to MNEME features rather than the particu-
lar application. Moreover, this case is easy to
follow and easy to predict. The code of the
application consists of a sequence of accesses to
memory, including both cache misses and hits.

By now, students have learnt about the
MNEME menus and options and to interpret its
tables and graphics. Moreover, the students are
able to follow a trace of memory accesses from the
process code to the simulator GUI.

2.5.2 Paging in a multiprogramming system

In the second practical procedure, MNEME is
applied to a multiprogramming paging system.
Students define the number of processes accessing

memory concurrently, the quantum time of each
process and the structure of the page table.
MNEME manages a process scheduler which
controls the process execution and will carry out
the CPU if the process makes a page fault or if the
quantum time finishes.

2.5.3 Memory management system.

In the third procedure, students learn about the
MNEME memory and process management char-
acteristics, so different table page structures will be
tested. A basic program will be studied applying
different techniques, in order to test the efficiency
of the algorithms. The code example has a high
number of page faults, with a small size memory,
so the Operative System will send these pages to
disk frequently. Local and global strategy will be
tested in order to show the simulator character-
istics.

2.5.4 Advanced paging management.

The last exercise is based on advanced paging
methods such as reverse mapped page table, page
aging and the lineal virtual memory page table.
The simulator makes these advanced techniques
easy for the student. In this exercise, the TLB will
be tested too, testing the efficiency of the system in
relation to the TLB size. All the MNEME char-
acteristics will be shown, so students will see the
data go out to the memory, inside the CPU Cache.
The system is shown as a global system, from the
hardware to the operative system.

This exercise is focused on the Operative system
paging management, so MNEME will be config-
ured wusing only these characteristics. Other
features such as multiple cache levels will be used
in other subjects, e.g. Computer Architecture. A
simulator like MNEME which is able to simulate a

1374 L. Moreno et al.

wide range of systems, is very useful in a Computer
Science degree. Students will know the simulator
and will test the computer structure with different
points of view: hardware, operative system and
computer architecture.

2.6 Other activities in the course

From their experience in other analogue subjects
(as detailed in [2]) and as a fourth phase of the
action-research process, the authors extrapolate
some reinforcement experiences to the memory
hierarchy subject.

1. Presentation on state of the art of commercial
machines.
Each group of 2-3 students is assigned a
commercial machine in order to study it from
a memory hierarchy context and design a 3040
minutes Powerpoint-like presentation to be
shown in class. After the presentation, they
carry out a discussion with other groups that
have been assigned similar architectures in
order to compare their results. Thus, they
make contact with powerful ideas as objects
to extrapolation and appropriation.
2. Wiki of memory hierarchy concepts about state
of the art machines.
Each group produces a collaborative document
about concepts and characteristics of the ana-
lysed machines. This helps them to consolidate
their learning by means of the transference and
synthesis of the studied concepts. Moreover,
students of successive years will make use of
these documents by correcting their weaknesses
and profiting from their valuable contents.
3. Wiki analysis.
The teachers point out similarities and differ-
ences among the analysed machines. Addition-
ally they mediate in several discussions about
these topics. In this way analysis, thoughts and
learning about possible mistakes or misconcep-
tions are achieved. At the same time, this
procedure involves more social pressure from
classmates, increasing student motivation.
4. Final evaluation.
This mixed evaluation method includes obser-
vation, automatic registration, interview, indi-
vidual test, teacher notebook, etc. The
following methods are used in this task:
® Quantitative Methods (individual tests, auto-
matic registers in Moodle);
® Qualitative Methods (observations, inter-
views);
® Social Networks (observation of face to face
relations, interactions in Moodle).

As can be observed from this methodological
approach, the role of MNEME as learning media-
tor is essential in order to improve an educational
experience that covers all memory hierarchy
processor concepts.

2.7. Feedback from students
Feedback from students is a crucial piece of

information in order to verify the usefulness of
the proposed exercises [31]. Some weaknesses and
potential improvements of the simulator and the
methodology can also be identified in this way. As
stated above, a first approach to this feedback was
carried out in the design of the simulator, since a
group of students took part significantly in this
design, proposing some improvements that were
included in the final version of MNEME. These
improvements were especially focused on the
usability of the simulator, due to the inherent
complexity of the system to model.

Apart from this first feedback phase, 50 students
from Fifth Course in Computer Science degree
(with experience in software evaluation, simulators
use and programming procedures) were asked to
carry out a collaborative-type validation and to fill
a questionnaire about MNEME and how the
simulator helped them in the subject. This ques-
tionnaire basically focused on three main aspects:

1. The suitability of the simulator for the educa-

tional requirements of the students, including

motivation.

The features and functionality of the software.

. The technical aspects of the simulator, such as
malfunctions or bugs.

w o

As a result of the feedback process, some state-
ments can be reported (as seen in Table 3):

® 100% of the students have tested MNEME for
3-6 hours before answering the questionnaire.

® 90% of the students did not know if there was
any similar software for memory hierarchy
simulation.

® 90 % of the students agree that MNEME helps
to understand the subject topics better.

® 70 % of the students believe that MNEME keeps
their interest.

® Nevertheless, students also confirm that it is
necessary to make some improvements in the
MNEME environment, since every interviewed
student pointed out that the architecture in
MNEME is not easy to follow.

® 90% of the students point out that the help files
are clear and concise; students themselves took
part in the redaction of MNEME help files. A
similar percentage agrees that MNEME is
highly flexible in order to design new proce-
dures.

e Concerning technical aspects of the simulator,
such as malfunctions or bugs, all of the students
agree that MNEME works fine and it can be
perfectly run in different operative systems.

3. DISCUSSION

Table 4 contains the evolution in the marks of
the students of the subject when the different
resources proposed in this paper are applied. As
can be seen from these data, there is a clear
tendency to get better marks with the application

Increasing Student’s Participation in a Memory Hierarchy Course 1375

Table 3. Data from questionnaires about MNEME

<2 hours 24 hours 4-6 hours > 6 hours
How much time have I used MNEME before answering 0% 56 % 44 % 0%
this questionnaire?

Agree strongly Agree Disagree Disagree strongly
I do not know about any similar software for memory 0% 10% 52% 38%
hierarchy simulation
MNEME helps me to understand the topics of the course 20% 70% 10% 0%
I don’t learn much using MNEME 0% 10% 90% 0%
MNEME keeps my interest on the course. 20% 50% 30% 0%
The designed architectures in MNEME is easy to 0% 0% 100% 0%
understand
MNEME help files are clear and concise. 60% 30% 10% 0%
MNEME is highly flexible in order to design new 48% 44% 8% 0%
procedures
MNEME works fine and it can be perfectly run in 64% 36% 0% 0%

different operative systems

Table 4. Evolution of marks in the course

Mark Without simulators With simulators Simulators (MNEME) +
(SIJEM) methodology

EF 27.59% 4.35% 0.00%

CD 41.38% 65.22% 41.03%

AB 31.03% 30.43% 58.97%

of the proposed methodology. Nevertheless, this
tendency has to be confirmed with results from
students in the next courses. With this caveat, from
the authors’ point of view, the described use of
MNEME and the proposed motivational activities
have helped students to better understand memory
hierarchy theoretical concepts. The simulator is a
valuable tool for teaching memory hierarchy that
offers advantages that no other available simula-
tors can provide. As memory hierarchy implies a
huge set of concepts and parameters, MNEME
results in a complex but rich environment, where
non-trivial configurations can be proved. Thus,
complexity in the simulator will improve the learn-
ing process.

However, the most remarkable results were
related to student-teacher interaction. The students
showed a higher level of motivation, which was
reflected in a significant increase in class participa-
tion and general interest in the subject.

4. CONCLUSIONS

Some learning strategies based on action-
research for teaching memory hierarchy have
been presented in this work. The aim of the
application of these strategies is to improve the
learning process through a reflexive analysis of this

process. From this analysis, carried out in a set of
meetings among professors, the authors propose a
methodology that can be divided into four phases:

1. use of global concept maps among the involved
subjects,;

2. a memory hierarchy simulator (MNEME) in
whose design students have taken part signifi-
cantly;

3. code-based procedures using that simulator;

4. some complementary activities such as presen-
tation on state of the art of commercial
machines, wiki of memory hierarchy concepts,
etc.

The described methodology has been tested by
students of different degrees in the University of
La Laguna, since memory hierarchy continuously
appears in subjects such as Operative Systems,
Computer Architecture and Computer Structure.

In addition to this, since the students have taken
part in MNEME design, they have shown a greater
motivation, difficult to find in these types of
courses. Due to this motivation success, this meth-
odology will also be applied to teaching other
aspects of the course, such as multiprocessing,
and to other courses.

The numerous tests which have been performed
have confirmed the utility of MNEME as an
educational tool to support teaching of memory

1376

hierarchy, although more research is needed in
order to confirm statistically the results.

In the next years, students will take advantage
from this work, in a cycle of 34 years, since the
advances in the field probably require a more
sophisticated simulator and the number and qual-
ity of new contributions by students are supposed
to decrease.

Currently, new features are being developed for
the simulator, including those related to usability.

L. Moreno et al.

These improvements include the design of an
interactive tutorial about MNEME configuration
and the implementation of a tool that will allow
the professor to hide some features of the simu-
lator depending on the knowledge of the student.
In other words, MNEME will become a highly
reconfigurable simulator, loading different config-
urations from a metadata file. Moreover, software
modules about multicore processors and NUMA
configuration are being added to the simulator.

10.

1.

12.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

REFERENCES

. L. Moreno, C. S. Gonzélez, 1. Castilla, E.J. Gonzalez and J. F. Sigut. Use of Constructivism and
Collaborative Teaching in an ILP Processors Course. IEEE Transactions on Education, 2(50), 2007,
pp. 101-111.

. K. M. Y. Law and K. B. Chuah, What motivates engineering students: a study in Taiwan,
International Journal of Engineering Education, 25(5), 2009, pp. 1068-1074.

. K.M.Y.Law, V. C. S. Lee and Y. T. Yu. Learning motivation in e-learning facilitated computer
programming courses. Computers & Education. 55(1), 2010, pp. 218-228.

. B. Reynolds, M. Mehalik, M. Lovell, and C.D. Schunn. Increasing student awareness of and
interest in engineering as a career option through design-based learning. International Journal of
Engineering Education, 25(1), 2009, pp. 788-798.

. M. Yaman, C. Nerdel and H. Bayrhuber. The effects of instructional support and learner interests
when learning using computer simulations. Computers & Education, 51(4), 2008, pp. 1784-1794.

. E. A. Linnenbrink, P.R. Pintrich, Motivation as an enabler for academic success. School
Psychology. Review, 31(3), 2002, pp. 313-328.

. D. J. Lynch, Motivational factors, learning strategies and resources management as predictors of
course grades. College Student Journal. 40(2), 2006, pp. 423-428

. M. Rost, Generating Student Motivation, 2006, http://www.pearsonlongman.com/ae/worldview/
motivation.pdf (Accessed: 26 April 2010).

. ACM/IEEE-CS Joint Curriculum Task Force Rep. Computer Engineering 2004: Curriculum

Guidelines for Undergraduate Degree Programs in Computer Engineering, 2004.

C. Argyris, R. Putnam, D. Smith. Action science: concepts, methods and skills for research and

intervention. San Francisco, Ca.: Jossey-Bass, 1985.

F. A. Heller. Group feedback analysis as a method of action research. In AW Clark, Experimenting

with organisational life. Plenum, New York, 1976.

K. Lewin. Action research and minority problems. Journal of Social Issues. 2(34-3), 1946.

. A. Chickering and Z. Gamson. Applying the Seven Principles for Good Practice in Undergraduate

Education. New Directions for Teaching and Learning, vol. 47, Jossey-Bass Inc., San Francisco,

1991.

A. L. Brown. Design experiments: theoretical and methodological challenges in creating complex

interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 1992, pp. 141-178.

P. Cobb, J. Confrey, A. diSessa, R. Lehrer and L. Schauble, Design experiments in educational

research. Educational Researcher (32), 2003, pp. 1-9.

A. A. diSessa, Metarepresentation: Native competence and targets for instruction. Cognition and

Instruction 22(3), 2005, pp. 293-331.

. W. A. Sandoval and P. L. Bell. Design-based research methods for studying learning in context:

introduction. Educational Psychologist, 39(4), 2004, pp. 199-201

D. Joseph. The practice of design-based research: uncovering the interplay between design,

research, and the real-world context. Educational Psychologist, 39(4), 2004, pp. 235-242.

D. Thenasoulas. Motivation and motivating in the foreign language classroom. The Internet TESL

Journal, VIII(11), 2002.

G. Crookes. A practicum in TESOL: Professional development through teaching practice. Cam-

bridge University Press, Cambridge, 2003.

J. D. Novak. Clarify with concept maps: a tool for students and teachers alike. The Science

Teacher. 58(7), 1991, pp. 45-49.

J. D. Novak. How do we learn our lesson? : taking students through the process. The Science

Teacher. 60(3), 1993, pp. 50-55.

J. L. Hennesy and D. A. Patterson. Computer Architecture: A Quantitative Approach. 3rd ed.,:

Morgan Kaufmann, San Mateo, CA, 2003.

D. Stipek. Motivation and instruction. In D. C. Berliner & R.C. Calfee (Eds.), Handbook of

educational psychology.: Simon & Schuster/Macmillan. New York, 1996, pp. 85-113.

http://moodle.org/ (Accessed: 26 April 2010).

J. Sahuquillo, N. Tomas, S. Petit and A. Pont. Spim-Cache: A pedagogical tool for teaching cache

memories through code-based exercises. IEEE Transactions on Education, 50(3), 2007, pp. 244-250

W. Yurcik, G. S. Wolffe and M. A. Holiday, A survey of simulators used in computer

organization/architecture courses. Proceedings of Summer Computer Simulation Conference.

Orlando, FL, Jul. 2001, pp. 524-529.

R. Quislant, E. Herruzo, O. Plata, J. I. Benavides and E.L. Zapata. Teaching the cache memory

system using a reconfigurable approach. IEEE Transactions on Education, 51(3), 2008, pp. 336-341.

Increasing Student’s Participation in a Memory Hierarchy Course

29. MNEME can be downloaded from http://www.isaatc.ull.es/portal/proyectos/mneme/descargas
(Accessed: 26 April 2010).

30. L. Moreno, E. .J. Gonzalez, B. Popescu, J. Torres, J. Toledo, C.S. Gonzalez. Simuladores de
Jerarquia de Memoria en el Contexto de un Proceso de Investigacion-Accion. Proceedings of X111
Jornadas de Enseiianza Universitaria de la Informatica. Teruel, Spain, July 2007.

31. L. Harvey. Student feedback: a report to the Higher Education Funding Council for England.
Technical report. http://www.uce.ac.uk/crq/publications/studentfeedback.pdf (Accessed 26 April
2010).

Lorenzo Moreno received his M.S. and Ph.D. degrees from the Universidad Complutense de
Madrid, Spain, in 1973 and 1977 respectively. From 1977 to 1979 he was an Associate
Professor in the Department of Computer and Control Engineering, Universidad del Pais
Vasco, Spain. From 1979 to 1988 he was an Associate Professor in the Department of
Computer Science, University Autonoma de Barcelona, Spain. From 1989 he has been
Professor in the University of La Laguna, Tenerife, Spain. His areas of interest include
computer architecture and computer education.

Evelio Gonzalez received the M.S. degree in Applied Physics in 1998 and his Ph.D. degree in
Computer Science in 2004 from the University of La Laguna, Tenerife, Spain. From 1998
to 2001, he was a Research Student in the Department of Applied Physics, Electronics and
Systems at the same university. Currently, he works as Assistant Professor in the University
de La Laguna. His areas of interest include Simulation, Digital Control, Computer
Architecture, Artificial Intelligence and Intelligent Agents.

B. Popescu received his degree in Computer Science in 2004 from the University of
Bucarest, Romania. From 2004 to 2005 she has been working as a programmer at GZK
Software, Bucarest, Romania. From 2006 she has been on a scholarship in the University of
La Laguna, Spain.

Jonay T. Toledo Carrillo received his degree in Computer Science Engineering in 2001 and
his degree in Electronics Engineering in 2002 from the University of La Laguna, Tenerife,
Spain. From 2002 to 2008 he has been a Researcher at the Department of Systems
Engineering and Automation of the University of La Laguna, where he is currently an
Associate Professor. He received his Ph. D. in 2008 from the University of La Laguna,
Tenerife, Spain. His two main research fields are robotics and control systems.

J. Torres received his degree in Electronics Engineering in 2001 from the University of La
Laguna, Tenerife Spain. From 2001 to 2008 he has been a Researcher at Department of
Systems Engineering and Control and Computer Architecture in the University of La
Laguna, where he is currently an Associate Professor. He worked in autonomous robot
heading and position localization systems and in artificial hearing to develop sensorial
substitution devices for deaf. But currently his main research field is the computer vision
applied to pose and gesture recognition.

1377

