
Research and Practice on Education of SQA at

Source Code Level*

YAN-QINGWANG,1 ZHONG-YING QI,1 LI-JIE ZHANG2 and MIN-JING SONG1

1School of Management, Harbin Institute of Technology, Harbin 150001, P. R. China. E-mail: yanqing@hit.edu.cn, qizy@hit.edu.cn
2 School of Software, Harbin Institute of Technology, Harbin 150001, P. R. China

The exponential increasing in software size and complexity ismiring testerswith endless testingwork andassuring software

quality becomesmore difficult.Apedagogicalmodelwas proposed for SQAat source code level, inwhich coding standards

and code optimization were determined as two quality buses while code review traversed almost the entire software

development process. In order to consolidate this model, some topics were researched such as evaluation index system of

coding standards, evaluatingwebsite of coding standards, process improvement and behavior analysis of peer code review,

and so on. The model was developed over four academic years of practice; it is possible for students to eliminate defects in

their programs at source code level.

Keywords: software engineering education; software quality assurance (SQA); source code level; coding standards; peer code review
(PCR)

1. Introduction

The internet and information technology revolution

are accelerating the increase in software size and

complexity making the software crisis problem, yet

to be well solved, more rigorous [1]. As the major

approach to solve the crisis problem, software qual-

ity assurance (SQA) comes to be popular. However,

SQA has not played its role as we expected. Three
reasons can be addressed as follows: (1) software

quality is largely dependent upon software de-

signers, developer and testers. The attitude and

habits of project members are the most critical

factors; (2) although testing techniques are evol-

ving, software size and complexity are increasing

even more quickly; (3) testing is too expensive for

many software companies to afford.
Therefore, finding an efficient and economical

SQA approach is a high priority for both the global

software industry and academia. SQA research can

be classified as testing-based SQA and process-or-

iented SQA. SQA at source code level (SQA

@Source) is a concrete implementation of process-

oriented SQA.

Testing techniques have been developed greatly
in recent decades.

1. V-model and test-driven development [2] have

been applied widely;

2. Testing criteria are fully developed and used to
identify the testing use-case systematically [3];

3. Objective oriented testing and component-based

testing are well developed and improved [4];

4. Protocol testing and reliability testing as the

supplementary ways have achieved a lot [5–6].

However, testing alone cannot solve the software

quality problems so that researchers proposed

methods emphasizing quality assurance during de-

velopment process instead of during testing. Everett

proposed developing axiom that pointed out that

software quality was not determined by testing but
system analysis and development [7]. Basili and

Boehm claimed that most of defects were injected

in design and coding phases [8]. To remove defects,

testing cost was much higher than that of code

review. Moreover, Prof. Humphrey at CMU pro-

posed zero-defect objective. He proposed that the

more defects are found when testing, the more defects

will be missed after testing [9].
Engineering education is the prophase of indus-

try. Most of students in universities will be profes-

sionals in industry.Qualified software programmers

require specific training in SQA [10] so our research

was focused on the education of SQA@Source.

The paper is organized as follows. Section 2

presents related work by others. A pedagogical

model of SQA@Source is introduced in Section 3.
Since we made much more progress on coding

standards and peer code review (PCR) than other

topics, our methods and cases on these two topics

are summarized in Section 4 and 5. Finally in

Section 6, concluding marks are made and future

work is introduced.

2. Related work

Process-oriented SQA has become very popular.

The relevant techniques coding standards, code re-

view and static analysis are utilized to assure soft-

ware quality at source code level.

* Accepted 2 September 2010.70

International Journal of Engineering Education Vol. 27, No. 1, pp. 70–76, 2011 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2011 TEMPUS Publications.

2.1 Coding standards

Complying with coding standards has been debated

many times in utilizing programming languages,

especially under pedagogical background. In 2001,

Fangprompted the existing problems in source code

of software products, and addressed the problems

by coding-standards-based quality assurancemodel

[11]. Dr. Li proposed an effective approach of
teaching coding standards in programming [12].

Kirsti et al developed an evaluating tool for the

beginners and created a pedagogical model on cod-

ing standards [13]. Moreover, some famous soft-

ware companies such as IBM andMicrosoft built up

coding standards for some specific languages; Para-

soft and TIOBE developed code checkers to assess

coding standards.
However, many problems still exist as follows:

1. Theoretical system on coding standards has not

been built up;

2. There are few effective approaches to measure

how much students or professional engineers

complywith coding standards in their program-

ming practice;

3. There is no available evaluating website for
students or engineers to evaluate their own

programs.

2.2 Code review

Code review has been attracting lots of research.

Early in 1996, Belli and Crisan presented the auto-

mation of code review [14]. Later on, Jun-Suk Oh et

al demonstrated the automated code review prior to

manual code review [15]. In 2006, Dr. Li presented
an approach of using peer code review to evaluate

coding standards [12].

Code review was utilized as an effective approach

in SQA. Nevertheless, there is not a well-defined

model especially for PCR and the process has not

been researched systematically.

2.3 Static analysis

Static code analysis is the analysis of computer
software which is performed without actually ex-

ecuting programs built from that software. In 2006,

Geay et al developed a static analysis tool targeting

lightweight program verification and finding coding

defects in Java [16]. Seth et al described an available

tool of static analysis [17]. Some static analysis tools

for Java are very popular such as FindBugs, PMD

and Checkstyle.
Although many academics and engineers have

done lots of research on SQA@source, the theore-

tical systemhas not formed yet. The related research

has not been concentrated so that their reference

value has not been brought out as expected.

3. Pedagogical model of SQA@source

3.1 Model definition

After several years’ work on coding standards and

PCR, the pedagogical model of SQA@Source has
been proposed. It is based on traditional software

lifecycle [10] with prior stage design and following

stage unit testing. It relies on two buses (coding

standards and code optimization) and one thread

(code review) (See Fig. 1).

3.2 Model description

3.2.1 Coding standards and code optimization

Coding standards and code optimization play their

roles in the whole model. The other stages are all

performed under the constraints of coding standards

and the guidance of code optimization.

3.2.2 Code review

It is divided into three stages in our model: self code

review, peer code review and tutor code review.

1. Self code review is a personal oriented process.

Being assisted with code review checklist [18], a

student may review and revise program to

comply with coding standards and to conform

to code optimization principles. Self code review
should be done before the first compile [18].

2. Peer code review involves two players. In this

process, one student is author and another is

reviewer. Every participant will be both author

and reviewer. Besides commenting for the re-

mained defects in programs, coding standards

and code optimization are still the main con-

cerns by reviewers.
3. Tutor code review is the last stage of code review,

inwhich tutor (instructor or supervisor) reviews

the code written by students. Some missed

defects may be addressed and suggestions on

coding standards and code optimization may be

presented.

3.3 Static analysis

Static analysis will be undertaken after coder review

and before unit testing. Some successful methods

such as input processing, buffer overflow prevention

Research and Practice on Education of SQA at Source Code Level 71

Fig. 1. Pedagogical model of SQA@Source.

and exception management will be utilized in this

stage. Static analysis has become a very helpful

technique to make secure and reliable software

products.

4. Coding standards: methods and cases

Along this topic, our work covered simplified coding

standards, an evaluation index system, a case study, a

web-based evaluating platform and a student-cen-

tered educational model.

4.1 Quality outlook of coding standards

To emphasize the importance of coding standards

andmeasure the compliance degree of our students,

the research on coding standards was commenced

with the studentswhomajored in software engineer-

ing. The related paper, Quantitative Research on

How Much Students Comply with Coding Standard

in Their Programming Practices, was published in

Proceedings of the 3rd China Europe International

Symposium on Software Industry Oriented Educa-

tion held at Dublin on Feb 6–7, 2007.

Also, in order to minimize the conceptual confu-

sion, the difference between programming style and

coding standards was discussed and the usage of
coding standards was strongly recommended [19].

4.2 Simplified coding standards

Many famous software companies, such as IBM
and Microsoft, have their own sets of coding stan-

dards. Since hundreds of rules and guidelines in one

set of coding standards are difficult to follow by

students who are studying their introductory pro-

gramming languages, a simplified version of coding

standards (including four sections naming, layout,

comment and coding) was presented for college

students.

4.3 An AHP-based evaluation index system

Based on the simplified coding standards, the hier-

archy of evaluation index system was constructed,

which included 3 layers (target, criterion and index)
and nineteen indices (See Fig. 2 and [20]).

There is no doubt that different index has differ-

ent weight. A questionnaire approach was applied

to collect information about indices’ weight. Then

analytical process hierarchy (AHP)was utilized and

the weight distribution was acquired [20] (See Table

1).

4.4 A case study on coding standards

With the evaluation index system, a case study was

done to make sense how many students were ready

to write programs complying with coding stan-
dards.

4.4.1 Data collection

In 2007, all 159 frosh in school of software atHarbin

Institute of Technology were involved in our re-

search. The experiment was taken in the course of

Personal Software Process. In this course, students

were required to submit 5 programs about 100 lines
of code each at a certain interval. Theoretically, 795

programs would be received. Since several students

submitted less than five programs, 675 samples were

collected eventually.

4.4.2 Experiment

The 675 programs were input into a Java applica-

tion. Based on the evaluation index system, the
mark of each program was computed and stored

into a MySQL database.

4.4.3 Results analysis

With the data in database, the mark distribution

was calculated and summarized. From the mark

distribution, it was found that the evaluating result

of each assignment was a normal distribution. The
averagemarks of 5 assignmentswere calculated (See

Fig. 3).

Obviously, the data in Fig. 3 were not so satisfac-

tory. The majority of students got marks in the

range from 60 to 70. The average marks of the five

assignments had no significant difference from1 to 5

sequentially. After analyzing and summarizing,

three major reasons were addressed as follows:

1. Few instruction on coding standards in other

programming courses;

2. No timely feedback on coding standards;

3. Lack of consistent training on coding standards.

Y.-Q. Wang et al.72

Fig. 2. Structure of evaluation index system.

Table 1.Weight distribution of indices

Layout 101 102 111 112 121 122
2.58 3.32 4.19 3.74 6.02 3.29

Naming 201 202 211 212 213 214
4.60 4.22 6.23 2.92 6.07 2.34

Comment 301 302 303
6.88 8.44 11.86

Coding 401 402 411 412
6.45 4.23 3.65 8.97

In order to solve the above problems, aweb-based

management information system (MIS) was devel-

oped and a coding standards oriented model was

built up.

4.5 A web-based evaluating platform

So as to facilitate students to evaluate their work
consistently and get timely feedback online, an

evaluation website was constructed, with which

students could upload their programs, get bench-

marking results, and find detailed shortcomings on

coding standards [20].

4.6 An educational model

With the AHP-based evaluation index system, the

web-based evaluating platform, and the above case

study, an educational model was conceived to en-

large the learning outcome on coding standards.

The related paper, Teaching Model of Coding Stan-

dards Based on Evaluation Index System and Evalu-

ating Platform, was published in the Proceedings of

2008 International Conference on Computer
Science and Software Engineering held at Wuhan

on Dec 12–14, 2008. In this model, teachers, stu-

dents, software industry and evaluation platform

were involved. It was a student-centered model,

which required all sides interact with each other

positively (See Fig. 4).

5. Peer code review: methods and cases

Along the topic PCR, our research included PCR

process refinement, behavior analysis of practitioners

based on a case study, grouping strategy, game theory

modeling and a web-based MIS.

5.1 Kickoff research on PCR

Apreliminary PCRmodel was put forward in 2007.

After the data was collected from a 14-student class

in C++ course, some problems were addressed. The

paper, How to Evaluate Students’ Learning Out-

come: A Peer Code Review Model in Undergraduate

Computer Programming Class, was published in the
Proceedings of the 2nd International Conference on

Computer Science and Education held atWuhan in

July, 2007.

5.2 Process refinement

In order to make the process more clear and facil-
itate future research, the previous PCR process was

refined [21]. In the new model, four roles (author,

reviewer, reviser and instructor), three documents

(manuscript code, comments form and revision code),

and the process were all redefined (See Fig. 5).

Roles were redefined as follows:

1. Author is a student who writes program and

waits for review activity by someone else;

2. Reviewer is a performer who reviews the code

written by an author;

3. Reviser is the author who does revision after

receiving comments from reviewer;
4. Instructor is the lecturer or teaching assistant

who takes responsibility for the quality of la-

boratory.

Documents were reclassified as manuscript code

(first edition of source code by a student), comments
form (written comments by reviewer), and revision

code (final edition of source code by a student).

Processwas clarified as inFig. 5which covered six

Research and Practice on Education of SQA at Source Code Level 73

Fig. 3. Average marks of five assignments.

Fig. 4. Coding standards oriented educational model. Fig. 5. Flowchart of the improved PCR process.

phases in order: write (letters W and Q.1), submit

(letters S.1 and S.2), review (letter R), feedback

(letters F and Q.2), revise (letter V) and quality

assurance (letters Q.1, Q.2, Q.3).

5.3 Case study on PCR

Afterwards, a case studywas completed to check the

students’ performance in PCR process [21].

5.3.1 Experiment

The experiment was taken at the Object Oriented

Programming laboratory of HIT-DIT class in

spring semester of 2007. This class was from a joint

programme developed by School of Software at

Harbin Institute of Technology and the School of

Computing atDublin Institute of Technology start-

ing from September 2003 and its objective was to

cultivate more qualified industry oriented under-
graduates. All nine studentswere required to submit

their programs according to process in Fig. 5

through email. Finally, 178 emails were received.

From the results, it was found that the design of

PCR process had shortcomings and email was

found not a manageable submission way. Careless

authors, irresponsible reviewers or busy instructors

might discount the learning outcome of the entire
PCR process and push it in a bad way.

Later on, interviews with four students were

made separately and some conspiracy issues were

discovered.

1. Author did code review instead of reviewer;

2. Students performed a private review in advance

of the formal PCR process;

3. Author copied code from a good programmer

and did a minor modification, etc.

5.3.2 Behavior analysis

After the case study, the behavior of all participants

was analyzed to address the crux [22].

1. Author. Some improper behaviors by authors

were found. For example, some author students

did not write their code carefully but sent to

reviewer even without compiling or self review.

Also, after receiving comments from reviewer,
some authors scan it briefly and made only a

few trifling revisions.

2. Reviewer. The behavior of reviewer was diverse
too. All positive and responsible reviewers

could finish review work consistently while

other reviewers might not always devote them-

selves into their roles. Moreover, when review-

ing poorly written program by a low-level
student, the reviewer often finished it unwil-

lingly.

3. Instructor. Inspection was a time consuming

work. It was nearly impossible for instructor

to inspect all submissions with every assign-

ment by every student. Also, some reviewers

often confused instructor with poorly written

comments.

5.3.3 Findings

From the result of behavior analysis, it was found

that the stand or fall of this game depended onmany

personality factors. To achieve a better learning
outcome, a control mechanism had to be built up

to normalize the behavior of every game player.

Therefore, grouping strategy and game theory

model were introduced in our later research.

5.4 Grouping strategy of PCR

According to the problem findings and behavior

analysis in case study, it was concluded that group-

ing strategy was one major crux of the problems in

PCR.

After implementing pair review (2 students a

group) in 2006 and circle review (3 students a group)
in 2007, some new grouping strategies were dis-

cussed as follows:

1. Switching a 2-student or 3-student grouping

strategy to n-student grouping strategy, in

which the ring-wise review approach could be

adopted. However, the complexity would in-

crease and the effectiveness might reduce as

usual after a period of time.

2. Switching a fixed grouping strategy to a random

grouping strategy. This would also increase the
management cost because instructor has to

generate grouping result for each assignment.

3. Switching a P2P (one reviewer to one author)

strategy to a T2P (multiple reviewers to one

author) strategy. But it might be not practical

because of its high expense.

4. Introducing double blind review mechanism. It

could solve the conspiracy problems better
because any student could not know who his/

her partner is.

5. Exploring a ranking policy when grouping.

Students would be grouped by the ranking of

their programming capability. If the capability

difference between author and reviewer is too

big, the performance would go down definitely.

5.5 Game theory modeling

In two academic years of implementation, it was

found that the PCR process was a 3-party repeata-
ble game and ethical issues were the key that deter-

mined its success or failure. Based on two premises,

a game theory model was constructed and the

suggestions of applying the model were presented

as well [22].

Y.-Q. Wang et al.74

5.6 A web-based MIS

In order to make our research and pedagogy more

practical, a website built in blind review mechanism
was constructed [23]. Students and instructors could

do their work on this platform conveniently while

the quality could be assured in great measure. Being

supported by website, the process was further sim-

plified and the activities Q.1 and Q.2 were done

automatically by system (See Figs. 5 and 6).

6. Conclusions and future work

Although the development of software testing takes
on a pleasing look, the increasing speed of software

complexity and size is leaving that of testing tech-

niques far behind. Unfortunately, the trend is going

on. That is why the education of SQA@Source has

been drawing our pressing concerns.

A pedagogical model of SQA@Source was put

forward. In this model, such main topics as coding

standards and PCR were researched. Based on the
work, the case studies were undertaken and the

analysis results uncovered more facts for us. How-

ever, themodel has not been completely explored by

ussofar.For instance,wehave just somepreliminary

ideas about code optimization. Anyway, the re-

search and practice summarized above might show

their reference value in software education area and

are leading us towards more interesting topics.
Actually, there is lots of work to do along the

research on education of SQA@Source. For exam-

ples on coding standards: (1) measuring quality of

identifier naming is a very meaningful topic; (2)

measuring of comment quality is another challen-

ging question; (3) a more feasible evaluation index

system should be reconstructed, which should be

compatible with the sets of coding standards by
different organizations such as GNU, Java, ANSI,

Linux and K&R. And about PCR, the game theory

model and practical grouping strategies should be

melt into the web-based MIS to make the process

more feasible.

References

1. S. Murugesan and Y. Deshpande, Web Engineering: A new
Discipline for Development of web-based systems, Springer-
Verlag, 2001.

2. D. Janzen et al, Test-driven development concepts, taxon-
omy, and future direction.Computer, 38(9), 2005, pp. 43–50.

3. H. Zhu. A formal analysis of the subsume relation between
software test adequacy criteria, IEEE Trans. Softw. Eng.,
22(4), 1996, pp. 248–255.

4. R. V. Binder, Testing Object-Oriented Systems Models,
Patterns, and Tools, Addison Wesley Longman, Reading,
MA, 2000.

5. G.V.BochmannandA.Petrenko,Protocol testing: reviewof
methods and relevance for software testing, Proc. ACM/
SIGSOFT Int. Symp. Softw. Testing and Analysis, 1994,
pp. 109–124.

6. J. Poore et al, Planning and certifying software system
reliability, IEEE Software, 10(1), 1993, pp. 87–99.

7. G. D. Everett and R. McLeod, Software Testing: Testing
Across the Entire Software Development Life Cycle, IEEE
Computer Society Press, 2007.

8. B. Boehm and V. R. Basili. Software Defect Reduction Top
10 List, IEEE Computer Society, 34(1), 2001, pp. 135–137.

9. W. S. Humphrey, PSP: A Self-Improvement Process for
Software Engineers, Pearson Education Asia Ltd., 2006.

10. R. S. Pressman, Software Engineering: A Practitioner’s Ap-
proach, (6e), McGraw-Hill, 2005.

11. X. F. Fang, Using a coding standard to improve program
quality,Proc. of the 2nd Asia-Pacific Conf. on Quality Softw.,
IEEE Computer Society, Los Alamitos, CA, USA, 2001,
pp. 73–78.

12. X. S. Li, Using Peer Review to Assess Coding Standards—A
Case Study, Proc. of 36th ASEE/IEEE Frontiers in Educ.
Conf., San Diego, CA, 2006, pp. 9–14.

13. A. Kirsti et al, Supporting Students in C++ Programming
Courses with Automatic Program Style Assessment. Journal
of Information Technology Education, 3, 2004, pp. 245–262.

14. F. Belli and R. Crisan, Towards automation of checklist-
based code-reviews, Proc. of 7th Int. Symp. on Softw. Relia-
bility Eng., IEEE Computer Society, White Plains NY, Oct
30— Nov 2, 1996, pp. 24–33.

15. J. S. Oh and H. J. Choi, A Reflective Practice of Automated
andManual Code Reviews for a Studio Project, Proc. of the
4th Annual ACIS Int. Conf. on Computer and Information
Science, IEEE Computer Society, Washington DC, USA,
2005, pp. 37–42.

16. E. Geay et al, Continuous Code-Quality Assurance with
SAFE, Proc. of PEPM’06, ACM, Charleston, South Car-
olina, USA, January 9–10, 2006, pp. 145–149.

17. H. Seth et al, Uprooting Software Defects at the Source,
ACM Press QUEUE, 1(8), 2003, pp. 64–71.

18. W. S. Humphrey, Introduction to the Personal Software
Process, Addison-Wesley, Reading, Mass, 1997.

19. Y. Q. Wang et al, Complying with Coding Standards or
Retaining Programming Style: A Quality Outlook at Source
CodeLevel, Journal of SoftwareEngineering andApplication,
1(1), 2008, pp. 88–91.

20. Y.Q.Wang et al,AnAHP-basedEvaluation IndexSystemof
Coding Standards, Proc. of 2008 Int. Conf. on Information
Tech. in Educ.,Wuhan, China, December 12–14, 2008, IEEE
Computer Society, pp. 620–623.

21. Y.Q.Wang et al, Process Improvement of PeerCodeReview
and Behavior Analysis of its Participants, ACM SIGCSE
Bulletin, 40(1), 2008, pp. 107–111.

22. Y. Q. Wang et al, Game Theory Modeling in Peer Code
Review Process, Proc. of 2008 Int. Colloquium on Artificial
Intelligence inEduc.,Wuhan,China,Oct. 17–18, 2008,World
Academic Press, England, pp. 113–117.

23. Y. Q. Wang et al, Quality Assurance of Peer Code Review
Process:AComputerScienceBasedStrategy, Journal ofActa
Scientiarum Natralium Universitatis Sunyatseni, 46, SUPPL,
2007, pp. 116–120.

Research and Practice on Education of SQA at Source Code Level 75

Fig. 6. The web-based PCR process.

Yan-QingWang is an associate professor working with School of Management at Harbin Institute of Technology (HIT).

He received aB.A., aM.A. in computer science andaPh.D. inmanagement science and engineering fromHIT.Hehas been

a lecturer for seven years in School of Software atHIT. In 2003, heworkedwith School ofComputing atDublin Institute of

Technology as a visiting scholar. His research interests include engineering education, SQA@Source and learning

information system (LIS).

Zhong-Ying Qi is a professor, a doctoral supervisor, and a vice dean working with School of Management at HIT. He

received aM.A. inmanagement atHIT.Nowhe is amember of Business Administration PedagogyCommittee atMOEof

China.His research interests includeR&Dmanagement, risk analysis andmanagement, industrial strategymanagement, etc.

Li-Jie Zhang is an associate professor working with School of Computer Science and Technology at HIT. She received a

B.A. in computer application in 1993 and a M.A. in computer architecture in 1999 from HIT. Now she is working as the

director of experiment center in School of Software at HIT. Her research covers software engineering and computer

application.

Min-jing Song is a Year 3 student studying in School of Management at HIT. She majors in Information Management &

System and will continue her study for master degree in two years.

Y.-Q. Wang et al.76

