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We developed a 3-D knowledge pyramid/prism model to structure the relationships of lower-level learning, ‘optional’

knowledge bases, concurrent knowledge, and new knowledge; so we may view learning needs of a higher-level learning

objective. Our paradigm stems from Bloom’s taxonomy, but has the advantage of supporting ‘just-in-time’ and ‘learn-

by-doing’ delivery, teaching and learning styles. We illustrate the paradigm through the BMMKP (3-D knowledge

pyramid/prism model of the highest-level, batch-means-method learning objective for our language-focused, under-

graduate course). The BMMKP reveals how highly dependent and fully integrated this learning is to calculus,

probability, statistics, and queuing theory—regardless of the simulation modeling language chosen.. The BMMKP is

then used to develop a set of lower-level learning objectives for the undergraduate course. The 3-D pyramid/prism

approach should lend itself well as a communication tool for visualizing other simulation learning objectives.
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1. Introduction

A simulation study involves the execution of

approximately eight high-level iterative steps (as

shown in Fig. 1). Ideally, simulation course

content should be developed to cover all steps of
the study; particularly if we expect our industrial

engineering (IE) undergraduates to be capable of

utilizing simulation as an analysis tool in prac-

tice—i.e. our programs will generate entry-level,

well-versed ‘practitioners’. There are currently 93

industrial engineering programs within the United

States with the vast majority requiring a simula-

tion modeling course for their undergraduate
degree program However, most IE undergraduate

programs have recently reduced their degree credit

hours (perhaps as a means for recruiting students)

and few offer more than one course in simulation.

The standard IE undergraduate curriculum now

has one semester of an introductory simulation

course with a major learning objective of having

the student learn discrete-event logic via a simula-
tion language—as is the case at the University of

Oklahoma’s School of Industrial Engineering.

A conventional requirement for the student in

these one-semester courses is to show that s/he can

take supplied descriptions of systems of study and

encode those descriptions into a simulation

language of choice (almost always chosen by the

instructor). Some may also require the students to
understand the issues surrounding simulation

input modeling and output analysis; e.g. have the

student be able to employ the method of indepen-

dent replications and perhaps the batch means
method.

Mainstream introductory course textbooks for

teaching simulation languages provide systems

descriptions and problems sets, where the arrival

processes and service mechanisms are entirely

described in terms of their probability distribu-

tions, schedules, etc. The student is then left with

the abstraction tasks (encoding the system descrip-
tion into simulation language); and performing the

simulation study steps of verifying (the model

works as encoded), and validating (the model/

code accurately reflects the behavior of the pre-

Fig. 1. Eight iterative steps of a simulation study.

128 * Accepted 10 September 2010.

International Journal of Engineering Education Vol. 27, No. 1, pp. 128–137, 2011 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2011 TEMPUS Publications.



described system) their model. Whether the text-

book covers verification/validation techniques is

questionable.

1.1 Provision for students

So, referring back to Fig. 1, problem identification,

the objectives(s) of the study, and the input models

(e.g. data distributions) are provided for the

students; and the reiterative simulation study

steps of formulating, verifying/validating, and

modifying their simulation model(s) are for them

to learn. This equates to the students being

‘handed’ nicely-worded problem definitions, well-
behaving and complete data sets, and clearly

identifiable/measurable performance para-

meters—a situation rarely found in practice!

And, the last step of the study, implementation,

is usually not encountered by students until they

are able to utilize simulation in practice, or are

allowed to implement the results of simulation

study through an internship or capstone course.
But then again, most of the language-focused

textbooks do ‘progress’ in terms of what is asked

of the learner—e.g., identifying the problem(s)

shift(s) from being supplied in the textbook’s

problem descriptions, to a task for the student to

perform.

Some textbooks [1] progress even further and

ask the student to perform some type of experi-
ment on the model (see Fig. 1; Experiment/Inter-

pret Results)—such as, obtain a confidence

interval on a parameter of interest or perform

what-if analysis on various system levels (e.g., the

number of resources available or their scheduling

schemas). One textbook [1] provides an excellent

guide for performing the batch means method

when using the Arena simulation modeling
language and a thorough set of exercises requiring

the student to do output analysis.

And yet, we continue to observe through e-

mails, assignments, tests, etc. that one of the

most difficult topics for our undergraduate IE

students is output analysis—particularly output

analysis for non-terminating systems. At issue is

the student’s ability to understand that output data
generated from a non-terminating system’s simula-

tion will have both transient and steady-state data

(i.e. the data are not iid—independent and identi-

cally distributed data). Additionally, they are

uncomfortable or inexperienced with utilizing

approximation tools (simulation) that rely on ad-

hoc methodologies (e.g., graphical techniques to

distinguish between transient and steady-state
behavior) and statistical laws (e.g. the central

limit theorem) for parameter estimation. Adding

to the difficulty is that more often than not, the

student has only had experience using mathema-

tical modeling techniques that were ‘guaranteed’ to

generate ‘one-and-only-one’ (or hopefully, the

optimal) solution to a problem. Compounding

their confusion is that if they do recall or master

pre-requisite knowledge (e.g., what a confidence

interval means), that knowledge is not readily
applicable—the data violate an underlying

assumption. Somehow, it must be made clear to

the student that:

. simulation is a statistical experiment—an

approximation tool—it will not automatically
provide the optimal solution for you—it is not

like prior modeling tools the you have utilized;
. simulation analysis is a statistical experiment

and yet, the simulation data tend to violate the

assumptions of classical statistical analysis tech-

niques;
. there are only ad-hoc methodologies available

for manipulating the data generated from non-
terminating simulation models, so that para-

meter estimation may occur.

1.2 Checking simulation

Complicating the matter for the undergraduate IE

student is the inability of students to ‘check their

answers’. Remember, these students are not

comfortable with the amount of judgment/skill/
experience required to evaluate their findings

(e.g. confidence intervals about the parameters of

interest). Now, let’s take away their ability to

check their results. One justification for using

simulation is that the system is too complicated

to be captured mathematically—so how are

students able to judge the results of their simula-

tion analysis? One approach is to draw upon their
prior knowledge of queuing theory, so they may

look at a more simplified system with closed-form

solutions. The simplified system’s steady-state

parameters may provide some guidance. A simple

example is—if they have just simulated an M/M/1

queue (single server system with exponentially

distributed arrival and service times) but the

server breaks down, they should expect that the
average time-in-queue for their simulated model to

be greater than the ‘closely-related’ M/M/1 queue

(without breakdowns). Another approach is to

remind them about the definition of a confidence

interval and they should expect some degree of

‘movement’ about the parameter.

But we make it very clear that there are no

guarantees in simulation output analysis—they
cannot actually ‘check’ their results. The inability

to know that they have the correct answer tends to

‘pull the rug right out from under the student’s feet’.

Initially, simulation output analysis (particularly

simulation output analysis of non-terminating

A 3-D Pyramid/Prism Taxonomy for Viewing Knowledge 129



systems) tends to be ‘too ad-hoc’ for the ‘typical’

undergraduate IE student. Simulation output

analysis is viewed as a complicated, higher-level

learning activity on the part of the student, since it

requires them to draw upon several other ‘older’

knowledge bases (e.g. queuing and statistics). But
does it require/draw-upon every topic in statistics,

probability and queuing theory? If the answer is

‘yes’, then this may be why mainstream introduc-

tory course textbooks for teaching simulation

languages either omit or do not provide much

depth on the topic. But, does the student really

need all of the topics, or can the course content or

course textbook concentrate on only a few key
concepts? And, how can that content and under-

lying knowledge be made more ‘viewable’ for the

student?

1.3 Establishing learning objectives

One approach widely used by instructors to identify

and help develop course content and assessment
tools is to establish learning objectives. Learning

objectives are active statements and involve some

type of demonstrative/assessment ‘product’ (assign-

ment or test), or activity (e.g. generate a graph) to

show/prove the learning objective has been met.

Educational research has shown faculty (instruc-

tors) who teach using learning objectives provide

their students with learning advantages, since they
communicate to the students what deliverables are

expected of them. Students also obtain a ‘view’ of

the underlying knowledge required for meeting the

learning objectives.

The roots of learning objectives go back to

Bloom [2]. However, in Bloom’s hierarchical

taxonomy, no higher-level learning can occur with-

out lower-level learning being mastered. Previous
work [3] has used Bloom’s taxonomy in empirical

investigations to determine course objectives.

Additionally, [4] combined Bloom’s with coopera-

tive learning as a framework for filling the need for

providing feedback within hierarchical levels of

learning. But previous works [5], [6], [7], [8], and

[9] with Bloom’s taxonomy do not provide tools

for modeling or visualizing complex learning (e.g.
concurrent learning) or delivery systems (e.g. just-

in-time teaching) and hence, the ability to develop

learning objectives for complex learning paradigms

such as those found in engineering curricula.

We now outline a derivative of Bloom’s taxon-

omy, a 3-D knowledge pyramid/prism model that

supports features not supported in Bloom’s taxon-

omy: learning-by-doing, concurrent and just-in-
time delivery, teaching and learning styles. We

feel that our proposed view of knowledge is more

correlated to the needs of model simulation know-

ledge; and more applicable for today’s interdisci-

plinary curriculum and accelerated degree

programs.

2. The knowledge pyramid model approach
to viewing knowledge/learning

One of the most well-known outcomes in learning

stemmed from the research conducted by a team of

educational psychologists under the direction of

Dr Benjamin Bloom. The team believed that learn-

ing could be separated into three domains: intel-
lectual (cognitive) domain, emotional (affective)

domain and physical (psychomotor) domain. The

research is known today as ‘Bloom’s taxonomy of

learning’. In [2], learning is best viewed as a

hierarchical classification of learning objectives;

where the student is expected to complete the

lower level of learning before moving onto the

next learning objective. The six learning objectives
from the lowest to the highest level are:

1. Knowledge. The ability to recall the informa-

tion presented.
2. Comprehension. The ability to restate the

knowledge in different words.
3. Application. The ability to apply the know-

ledge appropriately to solve a problem.
4. Analysis. The ability to break a problem into

its components and note the relationships
between them.

5. Synthesis. The ability to rearrange component
knowledge into a new ‘whole’.

6. Evaluation. The ability to make decisions

based on the whole situation.

There are some correlations between Bloom’s
taxonomy, simulation as an analysis tool, and the

steps of a typical simulation study, as presented in

our language-focused undergraduate simulation

course: Bloom’s Comprehension and Knowledge.

There is a fundamental knowledge base required

for students to learn simulation (e.g. probability,

statistics, and queuing) and a new knowledge

base of simulation for them to build and
comprehend. Bloom’s Application. A simulation

study requires a certain set of simulation skills (new

skills) and prior, ‘older’ skills (e.g. statistical analy-

sis) on that of the student—e.g.

1. s/he must be able to represent the system (real

or non-existent) via the appropriate amount of

details
2. (abstraction and conceptualization),
3. s/he must also be able to select the appropriate

mathematical and logical tools/algorithms,

4. s/he must be able to code the conceptual model

within a particular simulation language.

Bloom’s Analysis. Simulation is used for system

analysis when you wish to study components, and
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or their relationships. Simulation is a systems

integration tool—allowing the parts (components)

to be studied, as well as the whole.

Bloom’s Synthesis. Modifying models and ‘rear-

ranging’ systems and their components resulting in

a new model is expected in simulation studies and
is an integral step of a simulation study (see Fig. 1).

Bloom’s Evaluation. Simulation allows you to

study the system as a ‘whole’, as well as the system

components. Additionally, an industry-wide

expected deliverable is that the simulationist

performs ‘what-if ’ and output analysis for the

purpose of comparing alternative (or competing)

system designs, so that the ‘best’ solution can be
identified and justified.

Note also that we take a ‘just-in-time’ delivery

and a ‘learn-by-doing’ teaching approach for the

language-focused undergraduate simulation

course. That is, while we require the student to

have some knowledge of the simulation modeling

language and the underlying discrete-event logic;—

we do not delay output analysis until the end of the
course, but teach it in conjunction with the

discrete-event logic and language topics. So while

students are building a simulation-language know-

ledge (new knowledge) through the building of

more and more complicated models, they are

also required to learn output analysis techniques

(parallel, new learning). The student simulta-

neously requires prior (old) knowledge (e.g. statis-
tics and queuing theory). The just-in-time delivery

and ‘learn-by-doing’ teaching and learning styles

may be viewed as ‘concurrent learning; where

separate learning objectives (knowledge) are

being achieved (built) in a synchronous or asyn-

chronous manner. The learning we have just

described is in violation of Bloom’s taxonomy.

While the six levels of Bloom’s taxonomy has
been modeled in prior published research as

successive levels within a 2-D pyramid’s frame-

work, we now propose (as shown in Fig. 2) a 4-

level modification to the 2-D pyramid model due

to:

. the correlation between simulation knowledge

and Bloom’s learning objectives;
. our need for viewing concurrent learning.

Our 3-D Knowledge Pyramid/Prism Model (KP/

PM) combines Bloom’s Knowledge and Compre-

hension levels into one integrated level, and

supports the viewing of concurrent, ‘just-in-time’

and ‘learn-by-doing’ teaching/delivery methodolo-

gies and learning styles.

Specifically, the lowest level of our KP/PM is
knowledge recall (perhaps just memorization or

the ability to locate the information in a textbook);

and then (as indicated by the arrow), comprehen-

sion. We suggest that comprehension supports the

capability of learners to remove themselves from

the physical source of the knowledge base (e.g.

having to refer to the textbook or having to search

for the knowledge); and hence, improves their
application skill set. But, we do not believe that

lacking comprehension will necessarily deter the

learner from successful application of the know-

ledge. That is, we have observed/noticed that

students can be quite successful at memorizing

even the applications of knowledge, without fully

comprehending the knowledge they are utilizing.

For example, if asked to calculate the average
time-in-queue for an M/M/1 queuing system;

students are quite capable of memorizing the

formula, selecting the appropriate data to ‘plug’

into the formula, and solving for the unknown

parameter—but, they are often not capable of

‘stating in their own words’ what the average

time-in-queue means for a steady-state queuing

system. So, in contrast to what Bloom supports,
we do allow for learning to ‘skip’—a student may

not master comprehension but will (i) go from

knowledge to application, or (ii) from application

to knowledge (the ‘learn-by-doing’ style).

2.1 More physical than Bloom

If we view application in a more ‘physical’ sense, it

is the identification, obtaining and manipulation of

the correct data into the appropriately selected tool

(correctly chosen formula). We believe the master-

ing of application learning cannot take place with-

out some degree of knowledge (data) in place—

similar to a formula without data—nothing can be
calculated. So our definition of application know-

ledge in the KP/PM allows for a more physical

interpretation than Bloom’s; and we must there-

fore, allow for misconceptions at this level. That is,

we allow for three misconceptions:
Fig. 2. Proposed 3-D knowledge pyramid/prism Model (KP/
PM) based on Bloom’s (1956) taxonomy.

A 3-D Pyramid/Prism Taxonomy for Viewing Knowledge 131



1. wrong knowledge/data in combination with

the correct application/formula,
2. correctly chosen knowledge/data with the

wrong application/formula,
3. wrong knowledge/data with wrong applica-

tion/formula.

Note the arrows shown in the KP/PM are only

used to indicate the hierarchical taxonomy Bloom

professes; and when our paradigm is employed,

arrows may or may not be present. Our paradigm

is not as restrictive or hierarchical as Bloom’s
taxonomy. Our model supports learning within

levels and between levels—in any direction. For

example, if to solve a problem the learner is having

difficulty with breaking down the problem into

smaller more manageable components (analysis),

the learner may need to increase their comprehen-

sion skills. In response to this need, the learner

may ‘self-test/evaluate’ their comprehension via
the application of new or old knowledge—or the

instructor may require the learner to ‘revisit’

lower-level problem sets (application), and or the

instructor may try to identify the knowledge gaps/

misconceptions. The reverse is also true. Our

paradigm allows an instructor to use application

knowledge to support comprehension learning—

i.e. our paradigm supports ‘learning-by-doing’
delivery of knowledge.

So, in our proposed model, the instructor and

learner are free to draw from any level below—

even skip levels—so as to meet learning objectives

(or for the learner to reach higher levels of

learning).

We also propose that our model is more suppor-

tive of viewing concurrent learning environments,
co-enrolled (concurrent) course knowledge/learn-

ing/content, and even interdisciplinary degree

programs. For example, due to the complexity of

the new accelerated baccalaureate and masters

degree programs, some of the courses that were

once prerequisites are now being taken as co-

requisite courses. The student is still expected to

have that prerequisite knowledge; but it now
becomes the responsibility of the student to build

‘parallel’/’concurrent’ knowledge bases for both

courses. Under the accelerated program, it

becomes highly likely that application learning

requirements for one course come before the

comprehension/knowledge level learning of the

other course—i.e. the student needs to meet a

higher-level learning objective without having the
lower-level learning accomplished—again a viola-

tion of Bloom’s taxonomy. This violation is less

controllable since it may involve two courses and

two instructors; across disciplines.

Our KP/PM has an added benefit of being able

to support the visualization of concurrent learning

within and between courses; particularly if the

timing of concurrent learning is not synchronized.

We are not suggesting that our KP/PM guaran-

tees knowledge gain, or that all learners will attain

the appropriate amount of knowledge in this
manner (there are always ‘exceptions to the

rule’); or even how to measure knowledge gain.

We foresee the KP/PM may be used as a tool to

assist the instructor in viewing the relationships

between and among knowledge requirements for

complex learning topics; and eventually, the devel-

opment of specific learning objectives, assessment

and misconception tools. The KP/PM is used in
the next section for viewing the knowledge

required for meeting the batch-means-method

learning objective of our language-focused under-

graduate simulation course.

3. A knowledge pyramid model of batch
means method (BMMKP)

Before we reveal our batch-means-method know-

ledge pyramid (BMMKP), we present in Fig. 3 the

3-D course-based knowledge pyramid model

(CBKP) of a student enrolling into our language-
focused, undergraduate simulation course: IE4663,

Systems Analysis Using Simulation. While the

CBKP has only three levels (the KP/PM has

four), a KP/PM could be developed for each

level/topic. We only introduce the CBKP here to

assist the reader in our development of the

BMMKP.

The CBKP allows us to view the expected
(required) and possible (elective or co-enrolled)

undergraduate courses, as well as other knowledge

pyramids a student may need, or might draw upon,

when enrolled in IE4663. For example, while it is

highly advisable for the student to have taken

IE4553, Experimental Design, before IE4663;

several of our undergraduate students are in co-

Fig. 3: 3-D, course-based knowledge pyramid model (cbkp) of
undergraduate simulation course.
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op or accelerated degree programs (BS/MS or BS/

MBA). We allow those students to co-enroll in

IE4663 and IE4553. IE4553 is then depicted at the

same level as IE4663, but along the z-axis—i.e. the

knowledge bases for the two courses may be

concurrent.
The first level of the CBKP represents our

calculus-based engineering statistics course,

(IE3293, Engineering Statistics), other required

courses for the IE undergraduate program, and

the various types of other coursework/experience

gained by an individual student. We also note that

while linear algebra is no longer a requirement for

our undergraduate program, our undergraduate
students are advised to take the course. Since the

majority does—we have this ‘optional’ (but help-

ful) linear algebra knowledge pyramid shown with

dotted lines to indicate that it may or may not be

present. The calculus knowledge pyramid is

expected (required) for IE3293; so it is shown

within IE3293 as a pyramid with solid lines to

emphasize its importance (it could just as well be
placed below IE3293).

The IE4633 course is the stochastic operations

research course (Applied Engineering Optimiza-

tion). It is in this second-semester, junior level

course that the student is expected to build know-

ledge in Markov chain analysis and queuing

theory; and then if time permits, have some experi-

ence with (exposure to) Monte Carlo simulation
and discrete-event simulation logic.

IE4623, Systems Modeling and Optimization, is

our deterministic operations course and required

for IE4633 (as depicted by the arrow in Fig. 3).

IE4623 is not directly correlated with our under-

graduate simulation course (IE4663); but since it

assists the students in building abstraction, concep-

tualization, and modeling experience, it is noted on
our pyramid along the z-axis.

We now state the highest-level learning objective

for the batch means method in our undergraduate

IE4663 course:

At the end of the course, the student should be

able to evaluate parameter estimates and para-

metric tests obtained via the Batch Means

Method in order to identify and justify the ‘best’
alternative system among those competing.

We consider this learning objective to be at the

evaluation level—our highest level of learning—i.e.

the student will be tasked with having to demon-

strate (either through their assignments, project,

oral, and or written exams) that they are able to

make and can justify their decision(s) based on the

whole situation (a thorough systems analysis with
appropriate ‘what-if ’ exploration and supporting

simulation output analysis).

Some of the tasks the student must perform in

their demonstration can be immediately identified

by listing the ‘mechanical’ steps involved with

performing the batch-means method—a ‘new’

knowledge base. However, there are several other

‘older’ comprehension/analysis skills and tools the

student must appropriately perform (or select) in
order to achieve the goals of the learning objective

(e.g. generate confidence intervals or perform

hypothesis tests). The student must also be able

to determine the viability of alternative solutions

(competing designs—encoded into their new simu-

lation modeling knowledge—and perhaps select

the designs or design criteria themselves), by

comparing the parameter(s) estimated (via the
batch means method) against performance

measure(s) established for the simulation study

(e.g. identify the design that minimizes the average

time-in-queue).

This higher-level learning objective is compli-

cated since there are ‘new’ as well as ‘old’ know-

ledge bases (recall) the student must attain (know

and comprehend) and utilize (apply).
At the application level, the student is expected

to select and utilize the appropriate old (e.g.

confidence intervals and correlation) and new

tools (batch means method); and depending on

the student, perhaps choose and employ con-

currently-learned tools.

To demonstrate competency of this learning

objective, requires the student to ‘analyze’, ‘synthe-
size’, and resolve the old, new and concurrent

knowledge and applications; frame the analysis

within a simulation-study context; and then, ‘eval-

uate’ the results and document a cohesive (‘whole’)

argument supporting their recommendation(s).

As expected, our batch-means-method know-

ledge pyramid (BMMKP) for the undergraduate

course is more complicated than our prior know-
ledge pyramid. The BMMKP of Fig. 4 has four

‘sides’ to represent expected and possible concur-

Fig. 4. Batch-means-method knowledge pyramid (BMMKP)
for the language-focused undergraduate course, IE4663.
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rent learning; and a foundation (comprehension/

knowledge) level dependent on at least five other

knowledge pyramids.

Concurrent learning is represented by the faces/

sides of the BMMKP—i.e. the student may be co-

enrolled in our IE4553, Experimental Design
course. Plus, our delivery and instructional meth-

odology employed for IE4663 has the knowledge

bases for discrete-event logic and simulation

language knowledge concurrent as well.

3.1. ‘Learn-by-doing’ and ‘just-in-time’

Recall that for our course, we take a ‘learn-by-

doing’ and ‘just-in-time’ approach to teaching, so

we only require the student to have some know-

ledge of the simulation language and the under-
lying discrete-event logic topics; therefore, we do

not detail the discrete event and simulation

language knowledge pyramids here. We leave

them for future research. We do, however, note a

joint/merged knowledge pyramid generated from

the discrete-event and simulation language topics,

with the specific learning that is linked to the

batch-means method (and other output analysis
techniques as well). For illustrative purposes, a

small protruding pyramid in Fig. 4 lists the

lower-level knowledge for the intersecting sides of

the discrete-event and simulation knowledge pyra-

mids specific to our higher-level learning objective:

ending and beginning events, stopping rules,

initializing the system and (initial state), and

collecting statistics.

The calculus-based probability knowledge pyra-

mid (CBPKP, Fig. 5), the statistics knowledge

pyramid, (SKP, Fig. 6) and the probability-

based queuing theory knowledge pyramid
(PBQTKP, Fig. 7) are specific to the BMMKP.

The remaining two (abstraction/modeling and

programming) knowledge pyramids are also not

detailed here, since they will vary from student to

student and are not necessarily required prior

knowledge. In fact, the abstraction/modeling

knowledge pyramid is expected to expand along

the simulation language (face) knowledge pyramid
(concurrent learning).

Observe in Figs 5–7 that again, we do not strictly

follow our KP/PM. We found that most learning

for the topics is foundational (knowledge recall

and comprehension) and course assessment tools

(assignments, quizzes, tests, etc.) focus on applica-

Fig. 5. 3-D Calculus-based, probability knowledge pyramid
(CBPKP) required for learning the batch means method at
the undergraduate level.

Fig. 6. Statistics knowledge pyramid (SKP) required for
learning the batch means method at the undergraduate level.

Fig. 7. 3-D Probability-based queuing theory knowledge
pyramid (pbqtkp) required for learning the batch means
method at the undergraduate level queuing knowledge
pyramid.
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tions. As a result, we chose to only identify the

knowledge most directly ‘linked’/critical to the

batch means methodology. Hence, the CBPKP,

SKP and PBQTKP contain more of a ‘suggested

order’ of learning/teaching topics. For example, in

the SKP we do not see how anyone can truly

‘comprehend’ the sampling distribution of the

mean without knowing the central limit theorem.
The CBPKP (Fig. 5) has a concurrent face,

Calculus. But after reviewing the knowledge

needed of statistics for our learning objective, we

saw no justification for having calculus as a

required knowledge pyramid in (or for) the SPK

(Fig. 6). Calculus however, is required for know-

ledge gain in probability (although some students

co-enroll). Likewise, probability knowledge is
constantly called upon for queuing theory

(PBQTKP, Fig. 7); and the particularly emphas-

ized probability knowledge is shown as pyramids

along the CBPKP face (e.g. the exponential distri-

bution and its memoryless property).

Now, one can see that by having a ‘common

face’, the PBQTKP (Fig. 7) and the CBPKP (Fig.

5) can be ‘coupled’, and then joined to the (SKP
Fig. 6), to yield a four-sided pyramid—or prism.

This allows the reconfiguring of the BMMKP (Fig.

4) into an optional-BMMKP, as presented in Fig.

8; with the prism of the foundational knowledge

internal to the BMMKP. The details on the face of

the optional-BMMKP and the small protruding

knowledge pyramid are omitted for clarity since

they remain the same as in Fig. 4.
For both the BMMKP (Fig. 4) and optional-

BMMKP (Fig. 8), the levels supporting our batch-

means-method learning objective are as follows:

. The Moving Average and Cumulative Average
level is considered ‘knowledge’ that must be

applied at the Transient (application) level for

the student to show they can perform an ad-hoc

transient analysis technique.

. The student will perhaps call upon ‘older’ graph-

ing and spreadsheet-analysis knowledge to

achieve the learning. For some students the

calculation of these averages is ‘new knowledge’.
. The comprehension of the graphs assists the

student in determining steady-state (transient).

The Autocorrelation is also considered at the

‘knowledge’ level, since the student must be able

to apply this knowledge at the Batch Size (applica-

tion) level to demonstrate they can determine ‘lag 0’.

They will need to call upon prior knowledge in

statistics (correlation) andperhaps other knowledge
(e.g. graphing). They also need to comprehend that

Autocorrelation knowledge will not necessarily

‘guarantee success’ (i.e. it is an ad-hoc methodology

and some systems do not reach steady state).

Terminating versus Non-Terminating is at the

knowledge and comprehension level since students

must understand they are analyzing non-terminat-

ing systems, where the initial state and Run Length
(application level) have impact on their parameter

estimation. They also need to be able to identify

and classify transient and non-transient systems

based on the simulation study’s objective(s). They

will need to call on ‘new’ knowledge from the

discrete event and simulation language knowledge

pyramids; and ‘old’ knowledge from the PBQTKP

and SKP.
The Transient Analysis, Batch Size, and Run

Length are all at the application level. Students are

applying their knowledge (using the tools) to

obtain results. As with the knowledge level, the

application level is also connected—i.e. if lag ‘0’

cannot be determined, perhaps transient data still

exist in the output data; or the Run Length was not

long enough. Run Length coupled with Batch Size
and Transient Analysis, will impact the number of

batches generated, their independence and the

‘strength’ of the confidence statements.

At the Identify Viable Alternative level, students

investigate/use parameter estimates from the batch

means method (for those systems that do reach

steady state) to determine feasible alternatives (e.g.

they must answer the question, ‘do the designs meet
the simulation study’s objective?’). They will call

upon older knowledge (statistics), perhaps concur-

rent knowledge (designs of experiments); and new

knowledge (simulation language pyramid) model.

The What-If Analysis level is where the student

synthesizes and re-arranges the information of the

Identify Viable Alternative level to determine the

‘best solution’. The student may call upon ‘older’
knowledge (e.g. paired t-tests) and will need ‘new’

knowledge (e.g. simulation language knowledge

pyramid).

At the highest level, the results are presented in a

Fig. 8. Optional-BMMKP prism.
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cohesive argument with the ‘best’ solution identi-

fied. The student will also provide the statistical

analysis and modeling techniques they employed

to justify their recommendation.

The development of our BMMKPs led to the

following lower-level learning objectives to
support our higher-level learning objective (—all

begin with the statement—‘at the end of the course

the student should be able to . . .’:

. analyze a system and the objectives of the simu-

lation study to identify the system as terminating

or non-terminating;
. identify transient versus steady-state behavior

using the moving average and cumulative aver-

age method;
. produce an autocorrelogram from output data

and identify ‘lag0’;
. calculate the batch size when using the batch

means method for steady-state parameter esti-

mation;
. generate and test for approximately, normally

distributed batches;
. apply the batch means method to obtain con-

fidence intervals on the mean of system para-

meters (e.g. average queue time);
. identify and justify the ‘best’ of competing

system designs in terms of designs of experi-

ments or other parametric tests, where the data
for the statistical tests are obtained via the batch

means method.

4. Conclusions and future research

Wehave presented a 3-D knowledge pyramid/prism

approach (theKP/PM) to viewing knowledge based

on Bloom’s taxonomy of learning. Bloom’s taxon-

omy does not allow for today’s classroom environ-

ment where a just-in-time or learn-by-doing

approach to teaching and delivering content is

popular; or for the increasing number of interdisci-
plinary and accelerated degree programs (concur-

rent and asynchronous learning).

Our KP/PM has an added benefit of being able

to support the visualization of concurrent learning

within and between courses; particularly if the

timing of concurrent learning is not synchronized.

We developed the model for viewing the relation-

ships of

1. lower-level learning;
2. ‘optional’ knowledge bases;
3. concurrent knowledge;

4. new knowledge; in terms of a higher-level

learning objective.

Since knowledge requirements for simulation

output analysis of non-terminating systems is

directly correlated to higher-level learning, we

illustrated the paradigm through the BMMKP

and the optional-BMMKP (the 3-D knowledge

pyramid/prism models of the highest-level, batch-

means-method learning objective for our language-

focused, undergraduate course).

The BMMKPs reveal how highly dependent and
fully integrated this learning is to calculus, prob-

ability, statistics, andqueuing theory—regardless of

the simulationmodeling language chosen to teach in

the course. The BMMKP is then used to develop a

set of lower-level learning objectives for the under-

graduate course. Educational research has shown

faculty (instructors) who teach using learning objec-

tives provide their students with learning advan-
tages, since they communicate to the students what

deliverables are expected of them. The students also

obtain a ‘view’ of the underlying knowledge

required for meeting the learning objectives.

We are not suggesting that our KP/PM guaran-

tees knowledge gain, or that all learners will attain

the appropriate amount of knowledge in this

manner (there are always ‘exceptions to the
rules’); or even how to measure knowledge gain.

We foresee that the KP/PM may be used as a tool

to assist the instructor in viewing the relationships

between and among knowledge requirements for

complex learning topics; and eventually, the devel-

opment of specific learning objectives, assessment

and misconception tools. With over ninety three

industrial and systems engineering programs in
universities over the United States alone, this work

can serve as a useful tool to numerous instructors.

Future research will be aimed at developing

other simulation KP/PMs. We also hope to

compare the usefulness of the KP/PM against

concept maps [10]. [11] developed a high-level

concept map for output analysis but not specifi-

cally for the batch means method. Concept maps
also show learning relationships but can be diffi-

cult to ascertain when many relationships exist

(they almost become ‘spaghetti diagrams’). They

too suffer from what we found in Bloom’s taxon-

omy—they do not visualize concurrent learning or

provide for asynchronous learning environments.

References

1. W. D. Kelton, R. P. Sadowski and D. T. Sturrock,
Simulation with Arena, 4th ed., McGraw Hill, Inc., New
York, 2007.

2. B. Bloom, Taxonomy of Educational Objectives, Handbook
1: Cognitive Domain, Longman, New York, NY, 1956.

3. S. Goel andN. Sharda,What Do EngineersWant?: Examin-
ing Engineering Education through Bloom’s Taxonomy. In:
Snook, Chris (Ed.); Thorpe, David (Ed.), Creating Flexible
LearningEnvironments:Proceedings of the 15thAustralasian
Conference for the Australasian Association for Engineering
Education and the 10th Australasian Women in Engineering
Forum, Toowoomba, Qld: Australasian Association for
Engineering Education, 2004, pp. 173–185

C. Poyner et al.136



4. R. M. Felder and R. Brent, The ABC’s of Engineering
Education: ABET, Bloom’s Taxonomy, Cooperative
Learning, and So On, Proceedings of the 2004 American
Society for Engineering Education Annual Conference &
Exposition, American Society for Engineering Education,
CD-Rom, 2004.

5. R. Carter, A Taxonomy of Objectives for Professional
Education, Studies in Higher Education, 10(24), 1985,
pp. 135–149.

6. C. W. Starr, B. Manaris and R. H. Stalvey, Bloom’s
taxonomy revisited: specifying assessable learning objec-
tives in computer science, Proceedings of the 39th SIGCSE
technical symposium on Computer science education, 2008,
pp. 261–265.

7. A. J. Swart, Evaluation of Final Examination Papers in
Engineering: A Case Study Using Bloom’s Taxonomy,
IEEE Transactions on Education, 53, 2010, pp. 257–264.

8. M. H. W Hoffmann, Using Bloom’s taxonomy of learning to
make engineering courses comparable, European Associa-
tion for Education in Electrical and Information Engineer-
ing Annual Conference Formal Proceedings, 2008, pp. 205–
209.

9. K. O. Jones, J. Harland, J. Reid, M. V. Juliet, and
R. Bartlett, Relationship between examination questions
and Bloom’s taxonomy, Proceedings Frontiers in Education
Conference, CD-Rom 2009.

10. J. Turns, C. Atman and R. Adams, Concept Maps for
Engineering Education: A Cognitively Motivated tool
Supporting Varied Assessment Functions, Institute of Elec-
trical and Electronics Engineering Transactions on Educa-
tion, 43, 2000, pp. 164–173.

11. M. C. Court, The impact of using Excel macros for teaching
simulation input and output analysis, International Journal
of Engineering Education, 20, 2004, pp. 966–973.

Christopher Poyner is a doctoral student at the University of Oklahoma’s School of Industrial Engineering (OUSIE).
His research is on formulating and implementing a reverse simulation modeling approach for supporting lean
philosophies. He received his BS and M. S. from the School of Industrial Engineering.

Mary Court is an Associate Professor at OUSIE. She has researched and taught simulation analysis for over 10 years.
Her current funded research programs are with the Federal Transit Administration.

Huong Pham is working on her doctoral degree at OUSIE. Her research focuses on developing the framework for
simulating the impact transportation infrastructure design has on large-population evacuations. She received her
accelerated BSIE/MSIE in the IT program of the School of Industrial Engineering.

Jennifer Pittman is a doctoral student at OUSIE. Her research is on developing an agent-based simulation paradigm to
study the impact human-behavior has on large population evacuations. She received her accelerated BSIE/MSIE in the
IT program of the School of Industrial Engineering with minors in computer science and philosophy.

A 3-D Pyramid/Prism Taxonomy for Viewing Knowledge 137


