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Obfuscation and code encryption applied to ensure confidentiality achieve some degree of tamper resistance due to the

complexity of the analysis required to break these protection schemes.However, there are very fewproposals that combine

high integrity and confidentiality levels at the same time. In the context of engineering education software, this article

presents a newmechanism for increasing the software tamper resistance applications based on non-deterministic integrity

self-checking network.
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1. Introduction

There are several situations in which becomes

desirable to protect a software component form

malicious attacks by inspection or modification,

once that component has been distributed to third

parties. An example of such instances is software

piracy. It is common for software attacker to
make dynamic tests on applications to inspect

and modify the code by applying reverse engineer-

ing techniques and tools [1]. Generally, software

piracy is formed by illegal distribution of applica-

tions, theft of intellectual property or privilege

system escalation. The attacker modifies the

application and executes it in order to demon-

strate if he has made a successful attack. If the
confidentiality application attribute is ensured, the

attacker has to resign himself to make a black-

box security application analysis watching the

pair sets of inputs and outputs inferring the

application behavior. Moreover, the protection

of the application integrity [2] is intended to

detect or prevent attacks which alter the applica-

tion behavior. It becomes necessary to use protec-

tion mechanisms that ensure the confidentiality

and the application integrity under an untrusted

host threat model [3].

In this sense, several techniques can be used in

order to guarantee the privacy of the application,

such as: obfuscation [1, 15, 16], cipher [9, 17–19],

and self-modification of code [20–22]. On the other
hand, theprogram integritymaybe secured byusing

integrity self-verification techniques [2, 7, 23] or

even fragile watermarks [24].

This proposal successfully combines an integrity

self-checking mechanism and obfuscation in the

same protection mechanism using non-determinis-

tic behavior. Themain contribution is to address the

integrity self-checking mechanism, from a practical
security point of view, by using non-deterministic

detections and responses to integrity violation,

rather than a theoretical security model which is

difficult to define in this kind of context [4]. Note

that the protection mechanism is designed to be

used primarily in the area of software protection,

against software piracy.
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2. Previous work

To ensure the application confidentiality, several

techniques can be used such as obfuscation [5] or

encryption [6]. On the other hand, the integrity is

usually assured by integrity self-checking mechan-

isms (ISCM) [2], [7]. These self-checking mechan-

isms are focused on augmenting the strength of the
program before attacks by modification [14]. In

general terms, these techniques are made up by

two components: a tamper detection component,

and a tamper response component [25]. These

mechanisms are defined as self-checking because

the application is in charge of protecting itself,

being the control components mentioned before a

part of said application.
Usually, different protection mechanisms utilize

techniques that provide confidentiality to ensure

integrity collaterally because the attacker may not

understand the application behavior. In these cases,

they cannot satisfy their intentions bymodifying the

target application.Otherwise, designing an integrity

control mechanism which ensures confidentiality in

an explicit way may be more difficult to achieve.
Note that the integrity algorithms are not designed

to prevent an attack on the application confidenti-

ality. Different authors [2], [7] propose combination

of techniques that ensures integrity with others that

provide confidentiality, either obfuscation [8] or

code encryption [9]. Due to some negative results

in the area of obfuscation [4] and code encryption

[10], it is necessary to identify an integrity control
mechanism that takes into account the obfuscation,

not so much from the structural dimension, but

rather from a functional point of view [11].

There is a clear tendency to design and implement

integrity self-checking systems that include some

random elements in their operation, exhibiting a

non-deterministic behavior. Under an untrusted

host threat model, the primordial aspect is to
detect the attack, yet both detection and response

may be non-deterministic without stopping the

protection mechanism from being effective.

Also, some concepts from the areas of trusted and

fault tolerant systems are being included in order to

evaluate the security of the protection mechanisms.

More specifically, the mechanisms of interest are

those that offer resistance to modification, given the
analogy between the concept of failure and attack,

both of which affect integrity in the end.

3. Proposed method

We propose a self-checking mechanism that is

characterized by the following security attributes:

� Distributed security. Instead of having a single

point of integrity checking, a distributed security

scheme through various integrity control nodes

scattered throughout the application is defined.

� Non-deterministic redundant verification. Each

node verifies the integrity of a node subset, there-

fore, redundant verification exists. The revisions

performed by the nodes are non-deterministic;
they may detect a change in each application

execution with some probability.

� Diverse and equiprobable response. This attri-

bute is reached by introducing different response

mechanisms, for example, progressive data cor-

ruption, application performance degradation,

etc. After the detection of attacks, the application

responses are selected in a random and equiprob-
able way, ensuring a low relationship between

attacks and responses.

� Non-deterministic response time. The response

time to an attack is non-deterministic. Thus, the

response may be issued several executions after

modification detection.

Suppose the following scenario. An attacker tries to

compromise the integrity control mechanism appli-

cation in order to illegally distribute and allow the

application execution by unauthorized users. The

integrity control mechanism application under

attack is designed by taking into account the secur-

ity attributes described above. The attack consists in

executing the application to locate and deactivate
each integrity control node. The attacker will have

succeeded, if the integrity control mechanism never

gives a response to the change. Otherwise, the

attacker will have to repeat the process again and

again. Note, one of the ways that the attacker has to

locate a node is based on the response after an

attack, and by finding the part of the application

which generated the response. Thus, the attacker
learns the integrity control mechanism by monitor-

ing the attack-response relationship. If the

responses to the same attack are different, equiprob-

ables, and the response time is non-deterministic in

every execution, then the amount of information in

terms of entropy [12] that provides the integrity

control mechanism for the attacker will be less

than that given by traditional protection mechan-
isms. As there is more chaos or confusion in an

attack-response relationship, the entropy, given by

the mechanism, increases, so the attacker will need

to perform other application executions to get the

necessary amount of information in order to under-

stand the integrity control mechanism behavior.

After each node modification, the integrity con-

trol mechanism cannot give a response for two
reasons: (1) the attacker successfully defused each

node or, (2) the protective mechanism did not per-

form the verification during the current execution.

Although, there are probabilities that the verifica-
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tion be carried out, in subsequent performances.

For this reason, the attacker has to perform a high

number of attempts to obtain an expected response

to his attack.

Based on the assumptions outlined above, both

time location and time node deactivation could
increase. Thus, it is necessary to establish, in an

objective way, the following observations:

� From the attacker point of view. The fact that the

revisions and responses to attacks are non-deter-

ministic provokes attacker to consume a great

effort to be certain that the protectionmechanism

has been overcome. Moreover, the attacker can
accept that the target application works accord-

ing his interests and the application execution

fails with a low probability (e.g. one in a hundred

executions on average), is considered a success-

fully attack under these conditions.

� From the illegitimate user point of view. Protec-

tion through anon-deterministic integrity control

mechanism generates distrust in potential illegi-
timate users, lacking the certainty that the results

generated by the application are always correct.

The effort and cost required to correct the errors

caused by protection may outweigh the cost for

obtaining a legal application. The time between

failures may be accepted as valid for an attacker,

but not necessarily for an illegitimate user. The

uncertainty of the proper application function-
ing, together with the cost of correcting flaws

caused by the protection mechanism, can force

the illegitimate user to acquire a legal application.

The main goal of the proposed mechanism is to

ensure that both, detection and response to an

attack are non-deterministic, with the aim of creat-

ing an uncertainty as to whether or not the attacker
was able to disable the protection mechanism.

Moreover, equiprobable responses to attacks

increase the entropy of the protection mechanism

to prolong the reverse engineering process applied

by the attacker, achieving some degree of obfusca-

tion.

We denote the application P to be protected by its

Control Flow Graph, GCF = (V,A) where G is a
directed graph in which V(GCF) is the vertex set of

the graph and A(GCF) is the arcs set that indicates

the transition between two vertices during the

execution of P. The integrity control mechanism,

structurally speaking, consists of two functional

components: the tamper detection component and

the tamper response component:

� Tamper detection: Is composed by a set of

verifiers C = {c1, . . . , cn} those are responsible

for detecting unauthorized modifications on the

objects set O = {o1, . . . , on} belonging to the

program P. Each verifier ci has a verification

subset O 0 � O and verifies the integrity of each

ok 2 O 0
i with a given probability at each execu-

tion of P.

� Tamper response. This component provides a

response rj, selected randomly among the l

different responses of the corresponding set R =

{r1, . . . , rl}, against a change detected by a verifier

ci on some object ok. The response component

may choose many diverse responses or no

response when an attack is detected repeatedly

in different application executions. For this

reason, the number of responses rj is much

larger than the number of verifiers ci.

Since both the verification and the responsesmay be
non-deterministic, the same ci during different

executions can take oneof the following three states:

� Non-verification/non-response: the verifier ci
cannot verify the integrity of some ok that has

been deliberately modified by the attacker, so no

response is issued. At this stage, the attacker does

not receive any response, so he considers that a

successful attack has been obtained during the

execution in progress.
� Verification/non-response: the verifier ci detects

the change made on some ok, but no response is

issued. At this stage, the attacker receives no

response, so he could consider a successful

attack has been obtained.

� Verification/response: the verifier ci detects the

change made on some ok and issues a response rj
randomly selected. At this stage, the attacker
receives a response to this attack.

In order to insert the integrity self-checking network

into program P, several transformations must be

done to the program, which is described below.

� Verification graph insertion into program P.

1. Add the verification graph vertices to the ver-

tex set of the Control Flow Graph of P. The

newvertex set isVðGCF Þ ¼ VðGCF Þ [ VðGV Þ.
2. Reorganize the arcs AðGCF Þ such that the

verifiers C � VðGV Þ are uniformly distribu-

ted throughout the GCF of P. For this, an arc

subsetAc � AðGCF Þ is selected randomly such

that jAcj ¼ jCj. Each arc ðai; ajÞ 2 Ac is sub-

stituted by two new arcs ðai; ckÞ and ðck; ajÞ
for each of the ck 2 CjC � VðGV Þ selected

randomly.

3. Configure randomly the Verification Graph
GV in such way that the input degree d�GV

ðoiÞ
of each oi 2 VðGV Þ is approximately propor-

tional to the rest. Even though the Verifica-

tion Graph has a ‘fixed’ configuration when it

is inserted into programP, a different part of it
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will be activated at each execution, given the

non-deterministic verifications.

� Response graph insertion into program P.

1. The response vertices RðGRÞ are inserted (like
the graph Gv is inserted into GCF ), such that

VðGCF Þ ¼ VðGCF Þ [ RðGRÞ .
2. Reorganize the arcs AðGCF Þ such that the

responses RðGRÞ are uniformly distributed

throughout the GCF of P. The procedure is

the same as the one used for the verifiers, only

that a new arcs subset AR � AðGCF Þ is

selected, keeping the responses from being to

spacially close to the verifiers.

3. Configure theResponseGraphGR such that it
is a complete bipartite graph. This ensures

that each c 2 CðGRÞ may activate any

c 2 CðGRÞ during the execution of P.
In this way, program P becomes a protected pro-

gram Pprotect which is able to verify its integrity in a

non-deterministic way.

4. The attacker’s activities

The attacker will try to overcome the mechanism by

removing the self-checking nodes. During the pro-
cess of locating nodes, the attacker is facing two

main problems:

1. Since both the verification and the responses are

non-deterministic, the attacker is forced to

make a high number of attempts until a

response to their attacks is issued. It is necessary

to take into account that the attacker initially

does not know the minimum number of execu-

tions to be carried out in order to observe a
response, which increases the uncertainty of his

attacks.

2. The attacker receives little information from

the protection mechanism after a modification,

since the mechanism emits equiprobable

responses. This forces the attacker to perform

a thorough analysis of all possible answers after

each modification, because he doesn’t know
which response may be issued.

The attacker must confirm that target application
has an expected behavior after modifications that

remove each of the verifiers and protectionmechan-

ism that does not issue any response.

To validate theirmodifications, the attackermust

execute the application repeatedly with different

input data to analyze the application responses. If

the target application does not emit any response

after a certain number of executions, the attacker
may infer that: (1) he modified a non-protected

application zone, (2) the data set applied has not

activated the execution path that contains the

verifier that checks the modified zone or (3) he

doesn’t apply a sufficient number of executions to

obtain a response.

To guarantee an exhaustive running of all net-

work nodes, the attacker must execute the target

application by different data sets or test cases. That

is, he needs to define sufficient data sets that assure
high code coverage.

If a verifier ci is inserted into an application zone

that doesn’t activate the data set that the attacker

has applied, the application would not emit a

response. In this case, the attacker might conclude

that the protectionmechanismwas eliminated com-

pletely.

The attacker may decide to distribute the target
application to a third party. Illegal users may

execute the target application with different data

sets that could activate non-removed verifiers.

The attacker must confirm that the target appli-

cation has an expected behavior aftermodifications,

that remove each of the verifiers and protection

mechanism that doesn’t issue any response.

By previous situations, the attacker must identify
the data sets by ensuring 100 percent code coverage,

but this could be a complex task. On the other hand,

the attacker’s intentions would be to obtain highest

code coverage with minimum data sets, because

they must execute the target application for each

data set. To define a minimum amount of data, to

guarantee code coverage a 100 percent, is an NP-

problem due to the fact that this is a particular cover
case problem [13]. The attackermay apply heuristics

techniques to avoid the explained complexity, which

supposes an additional effort.

5. Experimental results

This proposal is situated from a practical security
point of view [14] related with experiments and

validations. A theoretical approach that ensures

100 percent attack detection is not considered. It

may be an impossible scenario due to the untrusted

host threat model that has been considered [3].

The experiments simulate the attacker activities,

which modify the target application and collect the

attacks-responses pairs to decide if they have per-
formed a successful attack.

The proposed mechanism security analysis is

based on estimating the effort required by an

attacker to locate, modify and test the result of

their attack on each of the nodes in the network.

To validate the proposal, we applied a set of pre-

liminary experiments. We used as a target applica-

tion, the gzip application, included into Benchmark
Spec CPU2000 (http://www.spec.org/cpu2000/).

The process to inserting a self-checking network

inside the target application was done by automat-

ing the compilation process using Microsoft Phoe-
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nix Framework (https://connect.microsoft.com/

Phoenix) as a main tool. The target application

was modified by the insertion of one thousand

verifiers.

The first experiment consists in simulating the

attacker behavior. It consists in generating the data
sets (test cases) to reach bigger code coverage.

For the target application (gzip), we generated 58

test cases and a 85.1 percent of code coverage was

obtained. No technique to minimize the data sets

was applied in this case.

In general terms, for any test case, 24 percent of

verifying nodes were not executed. This implies that

the attacker will not detect the presence of these
nodes, because he will not obtain any related

response.

Another aspect to take into consideration is the

impact on program performance produced by the

protection mechanism. From 58 test cases, 49 did

not suffer any impact on programperformance. The

worst test case consumed 2.8 times longer for

executing than the original application, without
the self-checking mechanism.

6. Conclusions and future work

A mechanism for software protection is proposed
by means of a non-deterministic self-checking net-

work. This proposal combines the integrity controls

and confidentiality in a unique protection mechan-

ism. A non-deterministic behavior, forces the

attacker to perform a high number of application

executions to be sure that the protectionmechanism

has been overcome. This represents a considerable

effort by the attacker and delays the reverse engi-
neering process considerably.

On the other hand, the authors are currently

working on identifying or developing (where neces-

sary) metrics which allow the quantification of both

integrity and privacy reached by the proposed

model under a singlemodel. For this, some concepts

will be taken from areas like trusted computing and

fault tolerant systems.
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