
ANon-Deterministic Self-CheckingMechanism to Enhance

Tamper-Resistance in Engineering Education Software*

YULIER NÚÑEZ MUSA
Superior Polytechnic Institute ‘José Antonio Echeverrı́a’ – Informatics Engineering Faculty FII ISPJAE,Calle 114No. 11901. e/ Ciclovı́a

y Rotonda, Marianao, La Habana 19390, Cuba. E-mail: jnunezm@ceis.cujae.edu.cu

ROBERTO SEPÚLVEDA LIMA
Superior Polytechnic Institute ‘José Antonio Echeverrı́a’—Informatics Engineering FacultyFII ISPJAE,Calle 114No. 11901. e/ Ciclovı́a

y Rotonda, Marianao, La Habana 19390, Cuba. E-mail: sepul@ceis.cujae.edu.cu

SERGIO CUENCA ASENSI
Computer Technology Department, University of Alicante, Carretera San Vicente del Raspeig S/N, 03690 San Vicente del Raspeig,

Alicante, Spain. E-mail: sergio@dtic.ua.es

ITZAMÁ LÓPEZ YÁÑEZ
National Polytechnics Institute – Interdisciplinary Professional Unit on Engineering and Advanced Technologies IPN UPIITA, Av.

Instituto Politécnico Nacional No. 2580, Mexico City 07340, Mexico. E-mail: ilopezy@ipn.mx

LUIS OCTAVIO LÓPEZ LEYVA
National Polytechnics Institute—Superior School of Computing IPN ESCOM, Av. Juan de Dios Bátiz, Esq. Miguel Othón de

Mendizábal, ESCOM Building, Mexico City 07738, Mexico. E-mail:octavioll@gmail.com

Obfuscation and code encryption applied to ensure confidentiality achieve some degree of tamper resistance due to the

complexity of the analysis required to break these protection schemes.However, there are very fewproposals that combine

high integrity and confidentiality levels at the same time. In the context of engineering education software, this article

presents a newmechanism for increasing the software tamper resistance applications based on non-deterministic integrity

self-checking network.

Keywords: software piracy; engineering education software; software tamper-resistance; integrity; confidentiality; integrity self-checking
network.

1. Introduction

There are several situations in which becomes

desirable to protect a software component form

malicious attacks by inspection or modification,

once that component has been distributed to third

parties. An example of such instances is software

piracy. It is common for software attacker to
make dynamic tests on applications to inspect

and modify the code by applying reverse engineer-

ing techniques and tools [1]. Generally, software

piracy is formed by illegal distribution of applica-

tions, theft of intellectual property or privilege

system escalation. The attacker modifies the

application and executes it in order to demon-

strate if he has made a successful attack. If the
confidentiality application attribute is ensured, the

attacker has to resign himself to make a black-

box security application analysis watching the

pair sets of inputs and outputs inferring the

application behavior. Moreover, the protection

of the application integrity [2] is intended to

detect or prevent attacks which alter the applica-

tion behavior. It becomes necessary to use protec-

tion mechanisms that ensure the confidentiality

and the application integrity under an untrusted

host threat model [3].

In this sense, several techniques can be used in

order to guarantee the privacy of the application,

such as: obfuscation [1, 15, 16], cipher [9, 17–19],

and self-modification of code [20–22]. On the other
hand, theprogram integritymaybe secured byusing

integrity self-verification techniques [2, 7, 23] or

even fragile watermarks [24].

This proposal successfully combines an integrity

self-checking mechanism and obfuscation in the

same protection mechanism using non-determinis-

tic behavior. Themain contribution is to address the

integrity self-checking mechanism, from a practical
security point of view, by using non-deterministic

detections and responses to integrity violation,

rather than a theoretical security model which is

difficult to define in this kind of context [4]. Note

that the protection mechanism is designed to be

used primarily in the area of software protection,

against software piracy.

* Accepted 2 August 2012. 1393

International Journal of Engineering Education Vol. 28, No. 6, pp. 1393–1398, 2012 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2012 TEMPUS Publications.

2. Previous work

To ensure the application confidentiality, several

techniques can be used such as obfuscation [5] or

encryption [6]. On the other hand, the integrity is

usually assured by integrity self-checking mechan-

isms (ISCM) [2], [7]. These self-checking mechan-

isms are focused on augmenting the strength of the
program before attacks by modification [14]. In

general terms, these techniques are made up by

two components: a tamper detection component,

and a tamper response component [25]. These

mechanisms are defined as self-checking because

the application is in charge of protecting itself,

being the control components mentioned before a

part of said application.
Usually, different protection mechanisms utilize

techniques that provide confidentiality to ensure

integrity collaterally because the attacker may not

understand the application behavior. In these cases,

they cannot satisfy their intentions bymodifying the

target application.Otherwise, designing an integrity

control mechanism which ensures confidentiality in

an explicit way may be more difficult to achieve.
Note that the integrity algorithms are not designed

to prevent an attack on the application confidenti-

ality. Different authors [2], [7] propose combination

of techniques that ensures integrity with others that

provide confidentiality, either obfuscation [8] or

code encryption [9]. Due to some negative results

in the area of obfuscation [4] and code encryption

[10], it is necessary to identify an integrity control
mechanism that takes into account the obfuscation,

not so much from the structural dimension, but

rather from a functional point of view [11].

There is a clear tendency to design and implement

integrity self-checking systems that include some

random elements in their operation, exhibiting a

non-deterministic behavior. Under an untrusted

host threat model, the primordial aspect is to
detect the attack, yet both detection and response

may be non-deterministic without stopping the

protection mechanism from being effective.

Also, some concepts from the areas of trusted and

fault tolerant systems are being included in order to

evaluate the security of the protection mechanisms.

More specifically, the mechanisms of interest are

those that offer resistance to modification, given the
analogy between the concept of failure and attack,

both of which affect integrity in the end.

3. Proposed method

We propose a self-checking mechanism that is

characterized by the following security attributes:

� Distributed security. Instead of having a single

point of integrity checking, a distributed security

scheme through various integrity control nodes

scattered throughout the application is defined.

� Non-deterministic redundant verification. Each

node verifies the integrity of a node subset, there-

fore, redundant verification exists. The revisions

performed by the nodes are non-deterministic;
they may detect a change in each application

execution with some probability.

� Diverse and equiprobable response. This attri-

bute is reached by introducing different response

mechanisms, for example, progressive data cor-

ruption, application performance degradation,

etc. After the detection of attacks, the application

responses are selected in a random and equiprob-
able way, ensuring a low relationship between

attacks and responses.

� Non-deterministic response time. The response

time to an attack is non-deterministic. Thus, the

response may be issued several executions after

modification detection.

Suppose the following scenario. An attacker tries to

compromise the integrity control mechanism appli-

cation in order to illegally distribute and allow the

application execution by unauthorized users. The

integrity control mechanism application under

attack is designed by taking into account the secur-

ity attributes described above. The attack consists in

executing the application to locate and deactivate
each integrity control node. The attacker will have

succeeded, if the integrity control mechanism never

gives a response to the change. Otherwise, the

attacker will have to repeat the process again and

again. Note, one of the ways that the attacker has to

locate a node is based on the response after an

attack, and by finding the part of the application

which generated the response. Thus, the attacker
learns the integrity control mechanism by monitor-

ing the attack-response relationship. If the

responses to the same attack are different, equiprob-

ables, and the response time is non-deterministic in

every execution, then the amount of information in

terms of entropy [12] that provides the integrity

control mechanism for the attacker will be less

than that given by traditional protection mechan-
isms. As there is more chaos or confusion in an

attack-response relationship, the entropy, given by

the mechanism, increases, so the attacker will need

to perform other application executions to get the

necessary amount of information in order to under-

stand the integrity control mechanism behavior.

After each node modification, the integrity con-

trol mechanism cannot give a response for two
reasons: (1) the attacker successfully defused each

node or, (2) the protective mechanism did not per-

form the verification during the current execution.

Although, there are probabilities that the verifica-

Yulier Núñez Musa et al.1394

tion be carried out, in subsequent performances.

For this reason, the attacker has to perform a high

number of attempts to obtain an expected response

to his attack.

Based on the assumptions outlined above, both

time location and time node deactivation could
increase. Thus, it is necessary to establish, in an

objective way, the following observations:

� From the attacker point of view. The fact that the

revisions and responses to attacks are non-deter-

ministic provokes attacker to consume a great

effort to be certain that the protectionmechanism

has been overcome. Moreover, the attacker can
accept that the target application works accord-

ing his interests and the application execution

fails with a low probability (e.g. one in a hundred

executions on average), is considered a success-

fully attack under these conditions.

� From the illegitimate user point of view. Protec-

tion through anon-deterministic integrity control

mechanism generates distrust in potential illegi-
timate users, lacking the certainty that the results

generated by the application are always correct.

The effort and cost required to correct the errors

caused by protection may outweigh the cost for

obtaining a legal application. The time between

failures may be accepted as valid for an attacker,

but not necessarily for an illegitimate user. The

uncertainty of the proper application function-
ing, together with the cost of correcting flaws

caused by the protection mechanism, can force

the illegitimate user to acquire a legal application.

The main goal of the proposed mechanism is to

ensure that both, detection and response to an

attack are non-deterministic, with the aim of creat-

ing an uncertainty as to whether or not the attacker
was able to disable the protection mechanism.

Moreover, equiprobable responses to attacks

increase the entropy of the protection mechanism

to prolong the reverse engineering process applied

by the attacker, achieving some degree of obfusca-

tion.

We denote the application P to be protected by its

Control Flow Graph, GCF = (V,A) where G is a
directed graph in which V(GCF) is the vertex set of

the graph and A(GCF) is the arcs set that indicates

the transition between two vertices during the

execution of P. The integrity control mechanism,

structurally speaking, consists of two functional

components: the tamper detection component and

the tamper response component:

� Tamper detection: Is composed by a set of

verifiers C = {c1, . . . , cn} those are responsible

for detecting unauthorized modifications on the

objects set O = {o1, . . . , on} belonging to the

program P. Each verifier ci has a verification

subset O 0 � O and verifies the integrity of each

ok 2 O 0
i with a given probability at each execu-

tion of P.

� Tamper response. This component provides a

response rj, selected randomly among the l

different responses of the corresponding set R =

{r1, . . . , rl}, against a change detected by a verifier

ci on some object ok. The response component

may choose many diverse responses or no

response when an attack is detected repeatedly

in different application executions. For this

reason, the number of responses rj is much

larger than the number of verifiers ci.

Since both the verification and the responsesmay be
non-deterministic, the same ci during different

executions can take oneof the following three states:

� Non-verification/non-response: the verifier ci
cannot verify the integrity of some ok that has

been deliberately modified by the attacker, so no

response is issued. At this stage, the attacker does

not receive any response, so he considers that a

successful attack has been obtained during the

execution in progress.
� Verification/non-response: the verifier ci detects

the change made on some ok, but no response is

issued. At this stage, the attacker receives no

response, so he could consider a successful

attack has been obtained.

� Verification/response: the verifier ci detects the

change made on some ok and issues a response rj
randomly selected. At this stage, the attacker
receives a response to this attack.

In order to insert the integrity self-checking network

into program P, several transformations must be

done to the program, which is described below.

� Verification graph insertion into program P.

1. Add the verification graph vertices to the ver-

tex set of the Control Flow Graph of P. The

newvertex set isVðGCF Þ ¼ VðGCF Þ [VðGV Þ.
2. Reorganize the arcs AðGCF Þ such that the

verifiers C � VðGV Þ are uniformly distribu-

ted throughout the GCF of P. For this, an arc

subsetAc � AðGCF Þ is selected randomly such

that jAcj ¼ jCj. Each arc ðai; ajÞ 2 Ac is sub-

stituted by two new arcs ðai; ckÞ and ðck; ajÞ
for each of the ck 2 CjC � VðGV Þ selected

randomly.

3. Configure randomly the Verification Graph
GV in such way that the input degree d�GV

ðoiÞ
of each oi 2 VðGV Þ is approximately propor-

tional to the rest. Even though the Verifica-

tion Graph has a ‘fixed’ configuration when it

is inserted into programP, a different part of it

A Non-Deterministic Self-Checking Mechanism to Enhance Tamper-Resistance 1395

will be activated at each execution, given the

non-deterministic verifications.

� Response graph insertion into program P.

1. The response vertices RðGRÞ are inserted (like
the graph Gv is inserted into GCF), such that

VðGCF Þ ¼ VðGCF Þ [RðGRÞ .
2. Reorganize the arcs AðGCF Þ such that the

responses RðGRÞ are uniformly distributed

throughout the GCF of P. The procedure is

the same as the one used for the verifiers, only

that a new arcs subset AR � AðGCF Þ is

selected, keeping the responses from being to

spacially close to the verifiers.

3. Configure theResponseGraphGR such that it
is a complete bipartite graph. This ensures

that each c 2 CðGRÞ may activate any

c 2 CðGRÞ during the execution of P.
In this way, program P becomes a protected pro-

gram Pprotect which is able to verify its integrity in a

non-deterministic way.

4. The attacker’s activities

The attacker will try to overcome the mechanism by

removing the self-checking nodes. During the pro-
cess of locating nodes, the attacker is facing two

main problems:

1. Since both the verification and the responses are

non-deterministic, the attacker is forced to

make a high number of attempts until a

response to their attacks is issued. It is necessary

to take into account that the attacker initially

does not know the minimum number of execu-

tions to be carried out in order to observe a
response, which increases the uncertainty of his

attacks.

2. The attacker receives little information from

the protection mechanism after a modification,

since the mechanism emits equiprobable

responses. This forces the attacker to perform

a thorough analysis of all possible answers after

each modification, because he doesn’t know
which response may be issued.

The attacker must confirm that target application
has an expected behavior after modifications that

remove each of the verifiers and protectionmechan-

ism that does not issue any response.

To validate theirmodifications, the attackermust

execute the application repeatedly with different

input data to analyze the application responses. If

the target application does not emit any response

after a certain number of executions, the attacker
may infer that: (1) he modified a non-protected

application zone, (2) the data set applied has not

activated the execution path that contains the

verifier that checks the modified zone or (3) he

doesn’t apply a sufficient number of executions to

obtain a response.

To guarantee an exhaustive running of all net-

work nodes, the attacker must execute the target

application by different data sets or test cases. That

is, he needs to define sufficient data sets that assure
high code coverage.

If a verifier ci is inserted into an application zone

that doesn’t activate the data set that the attacker

has applied, the application would not emit a

response. In this case, the attacker might conclude

that the protectionmechanismwas eliminated com-

pletely.

The attacker may decide to distribute the target
application to a third party. Illegal users may

execute the target application with different data

sets that could activate non-removed verifiers.

The attacker must confirm that the target appli-

cation has an expected behavior aftermodifications,

that remove each of the verifiers and protection

mechanism that doesn’t issue any response.

By previous situations, the attacker must identify
the data sets by ensuring 100 percent code coverage,

but this could be a complex task. On the other hand,

the attacker’s intentions would be to obtain highest

code coverage with minimum data sets, because

they must execute the target application for each

data set. To define a minimum amount of data, to

guarantee code coverage a 100 percent, is an NP-

problem due to the fact that this is a particular cover
case problem [13]. The attackermay apply heuristics

techniques to avoid the explained complexity, which

supposes an additional effort.

5. Experimental results

This proposal is situated from a practical security
point of view [14] related with experiments and

validations. A theoretical approach that ensures

100 percent attack detection is not considered. It

may be an impossible scenario due to the untrusted

host threat model that has been considered [3].

The experiments simulate the attacker activities,

which modify the target application and collect the

attacks-responses pairs to decide if they have per-
formed a successful attack.

The proposed mechanism security analysis is

based on estimating the effort required by an

attacker to locate, modify and test the result of

their attack on each of the nodes in the network.

To validate the proposal, we applied a set of pre-

liminary experiments. We used as a target applica-

tion, the gzip application, included into Benchmark
Spec CPU2000 (http://www.spec.org/cpu2000/).

The process to inserting a self-checking network

inside the target application was done by automat-

ing the compilation process using Microsoft Phoe-

Yulier Núñez Musa et al.1396

nix Framework (https://connect.microsoft.com/

Phoenix) as a main tool. The target application

was modified by the insertion of one thousand

verifiers.

The first experiment consists in simulating the

attacker behavior. It consists in generating the data
sets (test cases) to reach bigger code coverage.

For the target application (gzip), we generated 58

test cases and a 85.1 percent of code coverage was

obtained. No technique to minimize the data sets

was applied in this case.

In general terms, for any test case, 24 percent of

verifying nodes were not executed. This implies that

the attacker will not detect the presence of these
nodes, because he will not obtain any related

response.

Another aspect to take into consideration is the

impact on program performance produced by the

protection mechanism. From 58 test cases, 49 did

not suffer any impact on programperformance. The

worst test case consumed 2.8 times longer for

executing than the original application, without
the self-checking mechanism.

6. Conclusions and future work

A mechanism for software protection is proposed
by means of a non-deterministic self-checking net-

work. This proposal combines the integrity controls

and confidentiality in a unique protection mechan-

ism. A non-deterministic behavior, forces the

attacker to perform a high number of application

executions to be sure that the protectionmechanism

has been overcome. This represents a considerable

effort by the attacker and delays the reverse engi-
neering process considerably.

On the other hand, the authors are currently

working on identifying or developing (where neces-

sary) metrics which allow the quantification of both

integrity and privacy reached by the proposed

model under a singlemodel. For this, some concepts

will be taken from areas like trusted computing and

fault tolerant systems.

Acknowledgements—The authors would like to thank the
ICyTDF (grants PIUTE10-77 and PICSO10-85), the ISPJAE,
the CITI, the University of Alicante, the Instituto Politécnico
Nacional (Secretarı́a Académica, COFAA, SIP, CIC, UPIITA,
and ESCOM), the CONACyT, and SNI for their economical
support to develop this work.

References

1. C. S. Collberg andC.Thomborson,Watermarking, Tamper-
Proofing, and Obfuscation—Tools for Software Protection,
IEEE Transactions on Software Engineering, 28(8), 2002,
pp. 735–746.

2. B.Horne, L.Matheson,C. Sheehan andR.Tartan,Dynamic
self-checking techniques for improved tamper resistance,
Lecture Notes in Computer Science, 2320, 2002, pp. 141–159.

3. A. Main and P. C. van Oorschot, Software protection and

application security: Understanding the battleground, Inter-
national Course on State of the Art andEvolution of Computer
Security and Industrial Cryptography, Heverlee, Belgium,
June, 2003, pp. 1–19.

4. S. Goldwasser and Y. T. Kalai, On the impossibility of
obfuscation with auxiliary input, 46th Annual IEEE Symp.
Foundations of Computer Science, Pittsburgh, PA, USA, 23–
25 Oct., 2005, pp. 553–562.

5. S. Goldwasser and G. N. Rothblum, On best-possible
obfuscation, Lecture Notes in Computer Science, 4392,
2007, pp. 194–213.

6. W. Michiels, Opportunities in white-box cryptography,
IEEE Security & Privacy, 8(1), 2010, pp. 64–67.

7. M. Jacob, M. H. Jakubowski and R. Venkatesan, Towards
integral binary execution: implementing oblivious hashing
using overlapped instruction encodings, 9th Workshop on
Multimedia & security, Dallas, Texas, USA, September 20–
21, 2007, pp. 129–140.

8. H. Jin, G. Myles and J. Lotspiech, Towards better software
tamper resistance, Lecture Notes in Computer Science, 3650,
2005, pp. 417–430.

9. J. Cappaert, B. Preneel, B. Anckaert, M. Madou and K. De
Bosschere, Towards tamper resistant code encryption: Prac-
tice and experience,LectureNotes inComputerScience, 4991,
2008, pp. 86–100.

10. L. Goubin, J.-M. Masereel and M. Quisquater, Cryptana-
lysis of white box DES implementations, Lecture Notes in
Computer Science, 4876, 2007, pp. 278–295.

11. N.Dedic,M. Jakubowski, andR.Venkatesan,Agraphgame
model for software tamper protection, Lecture Notes in
Computer Science, 4567, 2007, pp. 80–95.

12. M. Alvim, M. Andrés and C. Palamidessi, Entropy and
attack models in information flow, Theoretical Computer
Science, 323, 2010, pp. 53–54.

13. S. Yoo and M. Harman, Using hybrid algorithm for pareto
efficient multiobjective test suite minimisation, The Journal
of Systems and Software, 83, 2010, pp. 689–701.

14. V. D. Gligor, Architectures for practical security, ACM
symposium on access control models and technologies
SACMAT, Pittsburgh, USA, June 9–11, 2010, pp. 161–162.

15. C. Linn and S. Debray, Obfuscation of executable code to
improve resistance to static disassembly, 10th ACM con-
ference on Computer and communications security, Washing-
ton D.C., USA, October 27–30, 2003, pp. 290–299.

16. N. Kuzurin, A. Shokurov, N. Varnovsky and V. Zakharov,
On the concept of software obfuscation in computer security,
10th Information Security Conference, Valparaiso, Chile,
October 9–12, 2007, pp. 281–298.

17. S. Chow, P. A. Eisen, H. Johnson and P. C. van
Oorschot, White-Box Cryptography and an AES Imple-
mentation, Lecture Notes in Computer Science, 2595, 2003,
pp. 250–270.

18. S. Chow,P. Eisen,H. Johnson andP. vanOorschot,Awhite-
box DES implementation for DRM applications, Lecture
Notes in Computer Science, 2696, 2003, pp. 1–15.

19. W. Michiels and P. Gorissen, Mechanism for software
tamper resistance: an application of white-box cryptogra-
phy, ACM workshop on Digital Rights Management, Alex-
andria, Virginia, USA, October 29, 2007, pp. 82–89.

20. B. Anckaert, M. Madou and K. D. Bosschere, A Model for
Self-Modifying Code, 8th International Workshop on Infor-
mation Hiding, Alexandria, VA, USA, July 10–12, 2006, pp.
232–248.

21. H. Cai, Z. Shao and A. Vaynberg, Certified self-modifying
code,ACMSIGPLAN conference on Programming language
designand implementation, SanDiego,California,USA, June
11–13, 2007, pp. 66–77.

22. Y. Kanzaki, A.Monden,M.Nakamura andK.Matsumoto,
Exploiting Self-Modification Mechanism for Program Pro-
tection, 27th Annual International Conference on Computer
Software and Applications, Dallas, Texas, USA, November
3–6, 2003, pp. 170–179.

23. H. Chang and M. J. Atallah, Protecting Software Code by
Guards,Workshop on Security and Privacy in Digital Rights
Management, Philadelphia, USA, November 5, 2001, pp.
160–175.

A Non-Deterministic Self-Checking Mechanism to Enhance Tamper-Resistance 1397

24. W. Zhu, C. Thomborson and F.-Y. Wang, A Survey of
SoftwareWatermarking,LectureNotes in Computer Science,
3495, 2005, pp. 283–331.

25. G. Tan, Y. Chen and M. H. Jakubowski, Delayed and
controlled failures in tamper-resistant software, Lecture
Notes in Computer Science, 4437, 2007, pp. 216–231.

Yulier Núñez Musa obtained his Bachelor degree and MSc degree as Informatics Engineer at the Superior Polytechnic

Institute ‘José Antonio Echeverrı́a’ (ISPJAE). He is currently a Professor at the Informatics Engineering Faculty in the

ISPJAE, and studying his Doctorate in Knowledge Society Technologies at the University of Alicante. Areas of interest:

Cryptographic Applications and Public Key Infrastructure, Application and Intellectual Property Protection, and

Information Systems Audit and Evaluation.

Roberto Sepúlveda Lima received his PhD degree (1998) on Technical Sciences at Superior Polytechnic Institute ‘José

Antonio Echeverrı́a’ (ISPJAE). He is currently the President of theNational Commission for the Informatics Engineering

Career andMember of theNationalGroup for theDevelopment of Cryptography, in Cuba.Also, he is a Titular Professor

at the Informatics Engineering Faculty in the ISPJAE, of which he is a former Dean. Areas of interest: Cryptography and

Information Security, Artificial Intelligence, Software Engineering, and Computer Networks.

Sergio Cuenca Asensi is an associate professor in the Computer and Technology Department at University of Alicante,

Spain. He received the B.S. degree in electronic physics in 1990 from University of Granada, Spain. He received PhD in

Computer Engineering from the University Miguel Hernández of Elche, Spain in 2002. His current research interests are

reconfigurable computing, hardware/software codesign and soft error mitigation in embedded systems

Itzamá López Yáñez received his Bachelor degree as Information Systems Engineer (2003) at Monterrey Institute of

Technology and Superior Studies (ITESM), while the MSc (2007) and PhD (2011) degrees on Computer Sciences at

National Polytechnics Institute (IPN) Center for Computing Research (CIC), both with mention of Honor. He was

granted the Lázaro Cárdenas 2012 Award by the President of the Republic. Currently he is both a Professor at, and the

President of the Telematics Academy at IPN Interdisciplinary Professional Unit on Engineering and Advanced

Technologies (UPIITA). Areas of interest: Associative Memories, Neural Networks, Software Engineering, and Pattern

Classification, in particular the Gamma classifier.

Luis Octavio López Leyva obtained his Bachelor degree as Communications and Electronics Engineer (1983) at National

Polytechnics Institute (IPN) Superior School of Mechanical and Electrical Engineering (ESIME), while the MSc degree

(2003) on Computer Engineering and the PhD degree (2008) on Computer Sciences, both at IPN Center for Computing

Research (CIC).He currently is aResearcher Professor, TitularC, at IPNSuperior School ofComputing (ESCOM).Areas

of interest: Associative Memories, Neural Networks, Support Vector Machines, and Software Engineering.

Yulier Núñez Musa et al.1398

