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Classification is oneof thekey issues inmedical diagnosis. In this paper, a new tool for engineering education is presented: it

is an automatic hepatitis diagnosis system based on associative memories. The characteristic of this approach is twofold:

first, learning the fundamental set of associations in order to get an associative memory; second, computing a differential

associative memory in order to get a threshold value for each unknown input pattern to be classified. Hepatitis disease

dataset, taken fromUCImachine learning repository, was used asmedical dataset. Classification accuracy of the proposed

approach is 82.67% and it was assessed using stratified 10 fold cross-validation. The correct diagnosis performance of the

proposed approach is validated not only using classification accuracy, but also performing sensitivity and specificity

analysis. The results presented in this paper demonstrate associative memories potential for automatic medical diagnosis

systems.
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1. Introduction

Hepatitis is an abnormal condition of the liver

characterized by the presence of inflammatory

cells in the tissue of the organ. Depending on

malady duration, hepatitis is considered acute

when it lasts less than six months and chronic

when it persists longer [1]. There are a number of
different viruses, known as the hepatitis viruses,

which cause most cases of liver damage worldwide.

The type of hepatitis is named for the virus that

causes it; for example, hepatitis A is caused by the

hepatitis A virus (HAV). The hepatitis virus family

consists of several different viruses, namely, hepati-

tis A, hepatitis B, hepatitis C, hepatitis D and

hepatitis E [2–4]. All of these viruses cause acute
or short-term viral hepatitis; however, hepatitis B,

C, and D viruses can also cause chronic hepatitis,

which can lead to cirrhosis of the liver, liver failure,

and liver cancer [5].

Unlike most daily decisions, many health-care

decisions have important implications for the qual-

ity of life of the patient, and involve significant

uncertainties and trade-offs. The uncertainties
may be about the diagnosis, the accuracy of avail-

able diagnostic tests, the prevalence of the disease

and its attendant risk factors. For such kind of

complex decisions, which are inherently affected

by so many uncertainties, it is indispensable to

have computational tools that help to identify

which variables or features of the problem should

have a major impact on our decision. It is also
needed to apply effective mathematical models, as

well as efficient algorithms that allow to decrease the

level of uncertainty in the diagnosis of the disease.

Early models of learning matrices appeared more

than four decades ago [6–8], and since then associa-

tive memories have attracted the attention of major

research groups worldwide. From a connectionist

model perspective an associative memory can be

considered a special case of the neural computing
approach for pattern recognition [9-11]. Further-

more, associative memories have a number of prop-

erties, including a rapid, compute efficient best-

match and intrinsic noise tolerance that make

them ideal for many applications [12-14]. As a

consequence, associative memories have emerged

as a computational paradigm to efficiently solve

pattern recognition tasks such as: automatic color
matching [15], efficient retrieval of grayscale images

[16], text translation [17], feature selection [18],

image compression [19] and classification of

cancer recurrence [20] among many others.

In this paper, a novel algorithm is presented. The

proposed algorithm is applied to diagnose diseases;

particularly, it is applied to help diagnose hepatitis

effectively. The experimental outcomes suggest that
to perform reliable diagnosis of diseases it is not

sufficient to take into account only the classification

accuracy parameter. Notwithstanding, it is neces-

sary to conduct a sensitivity and specificity analysis.

In the following section, the main characteristics

of the dataset that was used along the experimental

phase are presented. In section 3, a brief description

of associative memories fundamentals is presented.
In section 4, Linear Associator technical details are
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presented. In section 5, Delta Associative Memory

mathematical foundations are presented. In section

6, a brief introduction to performance evaluation

methods in a binary classification problem is pre-

sented, while in section 7 some experimental results

are shown using real-world data. Delta Associative
Memory advantages, as well as a short conclusion

will be discussed in section 8.

2. Hepatitis disease dataset

Hepatitis disease dataset has been widely used as

test dataset not only in machine learning but also in

knowledge discovery. This dataset was donated by

the Jozef Stefan Institute, former Yugoslavia, now
Slovenia. It was taken from the University of

California at Irvine machine learning repository

[21]. The purpose of the dataset is to predict the

presence or absence of hepatitis disease on a patient.

Hepatitis disease dataset consists of 155 instances

belonging to two different classes (32 ‘die’ cases, 123

‘live’ cases). Each instance consists of 20 attributes,

13 binary, 6 attributes with discrete values and a
class label.

3. Associative memories

An associative memory M is a system that relates

input patterns and output patterns as follows:

x! M ! y

with x and y the input and output pattern vectors,

respectively. Each input vector forms an associa-

tion with its corresponding output vector. For each

k integer and positive, the corresponding associa-
tion will be denoted as: xk; yk

� �
. An associative

memory M is represented by a matrix whose ij-th

component is mij. Associative memory M is gener-

ated from a set of known associations, called the

fundamental set of associations. If � is an index,

the fundamental set is represented as:

x�; y�ð Þj� ¼ 1; 2; :::; pf g with p as the cardinality

of the set. The patterns that form the fundamental
set are called fundamental patterns. If it holds that

x� ¼ y� 8� 2 1; 2; :::; pf g M is autoassociative,

otherwise it is heteroassociative; in this case, it is

possible to establish that 9� 2 1; 2; :::; pf g for

which x� 6¼ y�. If we consider the fundamental set

of patterns x�; y�ð Þj� ¼ 1; 2; :::; pf g where n and m

are the dimensions of the input patterns and output

patterns, respectively, it is said that x� 2 An and
y� 2 Am where A ¼ 0; 1f g, then the j-th component

of an input pattern x� 2 An is x
�
j 2 A. Analo-

gously, the i-th component of an output pattern

y� 2 Am is represented as y
�
j 2 A. Therefore the

fundamental input and output patterns are repre-

sented as follows:

x� ¼

x
�
1

x
�
2

..

.

x�n

0
BBBBBB@

1
CCCCCCA
2 An y� ¼

y
�
1

y
�
2

..

.

y�m

0
BBBBBB@

1
CCCCCCA
2 Am

A distorted version of a pattern xk to be recalled

will be denoted as ~xk. An unknown input pattern

to be recalled will be denoted as x!. If

when an unknown input pattern x! with

! 2 1; 2; :::; k; :::; pf g is fed to an associative

memoryM, it happens that the output corresponds

exactly to the associated pattern y!, it is said that

recalling is correct.

4. Linear associator

The Linear Associator [11, 14], which is one of the

classical models of associative memories, is a het-

eroassociative memory that can easily work as a

binary pattern classifier if output patterns are

appropriately chosen. In this section, Linear Asso-

ciator mathematical foundations are presented.

4.1 Learning phase

Let x�; y�ð Þj� ¼ 1; 2; :::; pf g be the fundamental set.

In order to obtain an associative memory M, the
learning phase is done in two stages:

1. Consider each one of the p associations x�; y�ð Þ,
so an m by n matrix is obtained according to

y� � x�ð Þt¼

y
�
1x

�
1 � � � y

�
1x

�
j � � � y

�
1x

�
n

..

. ..
. ..

.

y
�
i x

�
1 � � � y

�
i x

�
j � � � y

�
i x

�
n

..

. ..
. ..

.

y�mx
�
1 � � � y�mx

�
j � � � y�mx

�
n

0
BBBBBBB@

1
CCCCCCCA

ð1Þ

2. An associative memoryM is obtained by adding
all the p matrices

M ¼
Xp

�¼1
y� � x�ð Þt¼ mij

� �
mxn

ð2Þ

In this way the ij-th component of an associative

memoryM is expressed as follows:

mij ¼
Xp

�¼1
y
�
i x

�
j ð3Þ
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4.2 Recalling phase

Linear Associator recalling phase is done by oper-

ating an associative memory M with an unknown

input pattern x!, where ! 2 1; 2; :::; k; :::; pf g. Oper-
ateM � x! as follows:

M � x! ¼
Xp

�¼1
y� � x�ð Þt

" #
� x! ð4Þ

Let’s expand expression (4), which is:

M � x! ¼ y! � x!ð Þt�x!
� �

þ
X

�6¼!
y� � x�ð Þt�x!

� �
ð5Þ

Expression (5) let us know about which restric-

tions have to be observed thus correct recalling is

achieved.

This is expressed as:

x�ð Þt�x! ¼ 1 if � ¼ !
0 if � 6¼ !

�
ð6Þ

If condition (6) is met, then a correct recalling is

expected. Therefore, expression (5) is expressed as:

M � x! ¼ y! ð7Þ

5. Delta associative memory

In this section, a novel algorithm that overcomes

Linear Associator weaknesses is proposed. Due to

the fact that an order relation between patterns

implies an order relation between their character-

istic set and vice versa [22, 23], cross-talk influence

can be annulled by means of a dynamic threshold
value which is computed for each unknown input

pattern to be classified. Delta Associative Memory

algorithm applies the same learning phase as the

Linear Associator, while a completely different

recalling phase is proposed.

In what follows, letM be an associative memory

whose ij-th component is denoted bymij and let !be
an index such that ! 2 1; 2; :::; k; :::; pf g. Let
x! 2 Rn be an unknown input pattern to be classi-

fied and let m; n 2 Zþ be the dimension of the

output patterns and input patterns, respectively.

Definition 1. Differential Associative Memory. A

Differential Associative Memory is denoted by 	!.

The ij-th component of	! is obtained according to

the following rule:

 !ij ¼ mij � x!j

���
��� ð8Þ

8i 2 1; 2; :::;mf g, 8j 2 1; 2; :::; nf g.

Definition 2. Maximum threshold value. The max-

imum threshold value, denoted by �!, is obtained
according to the following rule:

�! ¼ _
m

i¼1
_
n

j¼1
 !ij

� �� �
ð9Þ

Where _ is the maximum operator.

Definition 3. Minimum threshold value. The mini-

mum threshold value, denoted by �!, is obtained
according to the following rule:

�! ¼ ^
m

i¼1
^
n

j¼1
 !ij

� �� �
ð10Þ

Where ^ is the minumum operator.

Definition 4. Delta Associative Memory (DAM).

Let �! be the dynamic threshold value, such that
�! � �! � �!. A Delta Associative Memory is

denoted by�!. The ij-th component of�!, denoted

by �!ij , is obtained according to the following rule:

�!ij ¼
1 if mij � x!j

���
��� � �!

0 otherwise

(
ð11Þ

Definition 5. Positive contributions vector. The

Positive contributions vector is denoted by �!.
The i-th component of �!, denoted by �!i , is

obtained according to the following rule:

�!i ¼
Xn

j¼1
�!ij ð12Þ

Definition 6. Transition vector. The Transition

vector is denoted by �!. The i-th component of �!,
denoted by �!i , is obtained according to the follow-
ing rule:

�!i ¼ 1 if �!i ¼ _
m

h¼1
�!h
� �� �

0 otherwise

8
<
: ð13Þ

Where _ is the maximum operator.

Definition 7. Unambiguously recalled class vector.

The Unambiguously recalled class vector, denoted

by y!, is obtained according to the following rule:

y! ¼ �! if
Pm
i¼1
�!i � 1

0 otherwise

8
<
: ð14Þ

5.1 Learning phase

Generate a matrix M that will store the p associa-
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tions of the fundamental set x1; y1
� �

; :::; xp; ypð Þ
� 	

,

where x� 2 R and y� 2 Am

8� 2 1; 2; :::; pf g. It is worth pointing out that there
are m different classes. Therefore, each one of the

input patterns belongs to a k class, k 2 1; 2; :::;mf g,
represented by a column vector y�, whose compo-
nents will be assigned by y

�
k ¼ 1, so y

�
j ¼ 0 for

j ¼ 1; 2; :::; k � 1; k þ 1; :::;mf g; hence, the class
statements are given in a 1-out-of-m-code, also

known as one-hot codification [17].

Given:

The fundamental set of associations

x�; y�ð Þj� ¼ 1; 2; :::; pf g with p as the cardinality of
the set.

Algorithm:

Obtain p matrices according to expression (1).

for � = 1 to p do

{

for i = 1 to m do

{
for j = 1 to n do

{

Compute mij using expression (2).

}

}

}

5.2 Classification phase

Finding the class which an unknown input pattern

x! 2 Rn belongs to. Finding the class means getting
y! 2 Am that corresponds to x!.

If when an unknown input pattern x! is fed to an

associative memory M, it happens that the output

corresponds exactly to the associated pattern y!, it is

said that classification is correct.

Given:

An unknown input pattern x! 2 Rn

Algorithm:

Obtain a Differential Associative Memory 	!,

using expression (8).

Compute the maximum threshold value �!, using
expression (9).

Compute the minimum threshold value �!, using
expression (10).

Initialize the dynamic threshold value �!, ie,

�! ¼ �!

While
Pm
i¼1
�!i > 1 and �! < �! do

{

Obtain a Delta Associative Memory �!, using

expression (11).

Compute the positive contributions �!, using

expression (12).

Compute the transition vector �!, using expression
(13).

Assign the recalled class vector y!, using expression
(14).

Increment the dynamic threshold value �!, i.e.,
�! ¼ �! þ 1

}

Assign the unambiguously recalled class vector y!,

using expression (14).

6. Performance evaluation methods

There are three main performance indicators of a

binary classification test: sensitivity, specificity and

classification accuracy. These indicators are com-
puted from the confusion matrix.

6.1 Confusion matrix

A confusion matrix is typically used in supervised

learning for classifier performance estimation. It

contains information, arranged in rows and col-

umns, about the actual condition and the classifica-
tion outcome. In general, a confusion matrix is of

size LxL, where L is the number of different class

labels [24]. The diagonal elements represent cor-

rectly classified instances while the cross-diagonal

elements represent misclassified instances. Table 1

shows the confusion matrix for a two class classifier

(binary classification test).

The entries of the confusionmatrix are as follows:

� True Positive (TP) refers to those instances whose

actual condition is positive and the test outcome

is positive.

� True Negative (TN) refers to those instances

whose actual condition is negative and the test

outcome is negative.
� False Positive (FP) refers to those instances

whose actual condition is negative and the test

outcome is positive.

� False Negative (FN) refers to those instances

whose actual condition is positive and the test

outcome is negative.

Mario Aldape-Pérez et al.1402

Table 1. Confusion matrix for a two class classifier (binary
classification test)

Actual condition

Positive Negative

Test outcome Positive True Positive False Positive
Negative False Negative True Negative



6.2 Sensitivity and specificity

Sensitivity and specificity are statistical measures of

the performance of a binary classification test.

From a medical diagnostic perspective, sensitiv-

ity and specificity are used for assessing the results of

diagnostic and screening tests [25].

SensitivityorTruePositiveRate (TPR) represents

theproportionof trulydiseasedpersons inascreened
population who are identified as being diseased by

the test. Sensitivity is ameasure of the probability of

correctly diagnosing a condition. Sensitivity is com-

puted using the following expression:

sensitivity ¼ #TP

#TPþ#FN
ð15Þ

Specificity or True Negative Rate (TNR) is the

proportion of truly healthy persons who are identi-

fied as so by the screening test. Specificity is a

measure of the probability of correctly identifying

a healthy person. Specificity is computed using the
following expression:

specificity ¼ #TN

#FPþ#TN
ð16Þ

6.3 Classification accuracy

Classification accuracy of any algorithm can be
estimated taking into account the overall number

of test patterns that are correctly classified. In the

present paper, classification accuracy results were

estimated using the following expression:

accuracy Tð Þ ¼

PTj j

!¼1
assess x!ð Þ

Tj j ; x! 2 T ð17Þ

Where T is the set of unknown input patterns to be

classified (test set) [26].

Each time the classification result of a test pattern
x! 2 T is equal to the actual condition of that

pattern, an integer value equal to 1 will be assigned

to the assessment function, as shown in the follow-

ing expression:

assess x!ð Þ ¼ 1 if classify x!ð Þ ¼ y�

0 otherwise

�

ð18Þ

Where y� is the actual condition of a test pattern

x! and classify x!ð Þ returns the classification result

of a test pattern x! by Delta Associative Memory
algorithm, as indicated in section 5.2.

7. Experimental results

Throughout the experimental phase, hepatitis dis-

ease dataset, taken from UCI machine learning

repository [21], was used as test set to estimate the

performance of the proposed method in the diag-

nosis of liver disease. The main characteristics of

this data set have been expounded in section 2.Delta

Associative Memory performance was compared

against the performance achieved by the fifteen
best-performing algorithms which are included in

WEKA 3: Data Mining Software in Java [27].

Further information on each of the algorithms

used during the experimental phase, can be found

in the bookDataMining: PracticalMachine Learn-

ing Tools and Techniques [28].

The experimental phase has been carried out as

follows: firstly, in order to obtain reasonably
unbiased performance estimates, the dataset was

broken into K partitions (in our case K = 10).

Afterwards, in order to obtain an associative

memory, the same number of input vectors for

each class was randomly taken, which ensures a

balanced classifier. Classification accuracy of each

one of the compared algorithms was calculated

using 10-fold cross-validation technique. Sensitiv-
ity, specificity and classification accuracy for each

one of the compared algorithms have been summar-

ized in Table 2. As it is shown in Table 2, the best-

performing method in terms of specificity and

classification accuracy is our proposal, called

Delta Associative Memory (DAM).

8. Conclusions

This paper presents a new algorithm to perform

pattern classification tasks efficiently. The proposed

algorithm is applied to diagnose a disease; particu-

larly, it is applied to help diagnose hepatitis effec-
tively. Since many health-care decisions have

important implications for the quality of life of the

A New Tool for Engineering Education: Hepatitis Diagnosis using Associative Memories 1403

Table 2.Classification accuracy, sensitivity and specificity values
for hepatitis disease dataset using 10 fold cross-validation. The
fifteen best-performing algorithms shown in this table are
included in WEKA 3: Data Mining Software in Java [27]

Method Sensitivity Specificity Accuracy

1 HyperPipes 0.871 0.143 54.194
2 DecisionStump 0.941 0.214 61.290
3 FLR 0.400 0.671 52.258
4 ConjunctiveRule 0.835 0.371 62.581
5 RandomTree 0.541 0.557 54.839
6 LADTree 0.647 0.471 56.774
7 REPTree 0.812 0.400 62.581
8 BFTree 0.800 0.429 63.226
9 SimpleCart 0.753 0.457 61.936
10 RBFNetwork 0.788 0.586 69.677
11 JRip 0.741 0.614 68.387
12 FT 0.765 0.600 69.032
13 PART 0.706 0.643 67.742
14 NBTree 0.765 0.614 69.677
15 DecisionTable 0.812 0.614 72.258
* DAM (our proposal) 0.812 0.829 82.667



patient, it is not sufficient to issue a medical diag-

nosis taking into account only the classification

accuracy parameter. The experimental outcomes

suggest that in order to perform reliable diagnosis

of diseases it is necessary to conduct a sensitivity and

specificity analysis. The performance of the pro-
posed model in the diagnosis of liver disease is

validated not only using classification accuracy,

but also performing sensitivity and specificity ana-

lysis. Experimental results have shown that the best

performing method in terms of specificity and

classification accuracy is Delta Associative

Memory.

The results presented in this paper demonstrate
associative memories potential for automatic med-

ical diagnosis systems.
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