
PLP: A Community Driven Open Source Platform for

Computer Engineering Education*

WIRA D. MULIA, DAVID J. FRITZ, SOHUM A. SOHONI, KERRI KEARNEY and

MWARUMBAMWAVITA
Oklahoma State University, Stillwater, Oklahoma, USA. E-mails: wira.mulia, david.fritz, kerri.kearney,

mwarumba.mwavita@okstate.edu; sohum.sohoni@asu.edu

This paper is a detailed technical description of the Progressive Learning Platform (PLP). The PLP system is a System on a

Chip design with accompanying tools reflecting a contemporary CPU architecture. The paper is intended to be a reference

for users who are interested in using the platform, developerswho intend to contribute to the project, educatorswhowould

like to adopt PLP in their computer engineering course, and engineering education researchers who would like to use PLP

as a vehicle for conducting research.All hardware components ofPLParewritten inVerilogHDL, are open source, andare

freely available. To support the hardware components, a unified assembler, cycle accurate emulator, and board interface

software package is included. The software is written in Java, works on Linux,Windows, andMacOS, is open source, and

is freely available. The PLP hardware and software components are licensed under theGeneral Public License version 3 to

encourage open access and contribution.All parts of the system are publicly hosted and a publicmailing list is used to serve

as a communication channel between users and developers of the system.

Keywords: instruction set design; computer systems organization; collaborative learning; computer science education; modeling of
computer architecture; learning technologies; educational simulations; user generated learning content

1. Introduction

The Progressive Learning Platform [1] is an open,

community driven project that consists of a System-

on-Chip platform and curriculum for computer

engineering courses. System-on-Chip platforms

and simulators already exist to aid the teaching of
computer engineering topics in classrooms, but they

are mostly standalone systems and do not provide

the students with a cohesive framework that spans

multiple courses. The aim for this project is to

provide a comprehensive education platform and

an open, dynamic development process by having a

public website, a mailing list, and an open license of

the work that allows unrestricted collaboration.
The curriculum that is based on the PLPproject is

a departure from the traditional lecture-style course

to a social constructivist design [2]. Courses in this

curriculum promote cooperative learning, commu-

nications skills, and other soft engineering skills in

addition to technical skills. The PLP system centers

on the design and implementation of aCPU.ACPU

is something to which all computer engineering
students can relate, which makes it an obvious

choice for the focus of many computer engineering

topics. This system utilizes Field-Programmable

Gate Array (FPGA) development kits. FPGA is a

reconfigurable integrated logic circuit that allows

the hardware to be configured using a hardware

description language (HDL), as opposed to the

‘‘final’’ nature of an Application-specific Integrated
Circuit (ASIC) hardware. The adaptability of the

system allows the use of the system in multiple

courses. For example, a microcontroller course

instructor can use the system as is to be utilized as

a CPU development board with MIPS-like Instruc-

tion Set Architecture (ISA). An instructor for a

graduate computer architecture course can use the

system as a platform for the students to meet course
objectives by actually making changes to the hard-

ware itself or to the simulation and visualization

environments.

The openness of PLP prevents the system from

becoming obsolete. The design currently supports

the Digilent Nexys2 [3] and Nexys3 [4] FPGA

development kits, but can be developed to support

other FPGA technologies. The hardware of PLP is
written in behavioral Verilog [5] and the community

is encouraged to adapt the system to as many

hardware platforms as possible.

This paper describes in detail the design and

implementation of version 3 of PLP and suggests

ideas on how this system can be implemented in

various computer engineering courses while main-

taining a common context. This paper also serves as
a reference for individuals or groups interested in

developing any part of the PLP system. Section 3

includes a description of a reference hardware

design including the core, bus interface, and numer-

ous modules (VGA controller, timers, UART,

GPIO, etc.). This section also describes PLPTool,

a complete Java based software stack including an

assembler, cycle accurate simulator, and program-
ming tools.

* Accepted 6 July 2012. 215

International Journal of Engineering Education Vol. 29, No. 1, pp. 215–229, 2013 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2013 TEMPUS Publications.

PLP is also a platform for computer engineering

education research. This paper provides some pre-

liminary results based on a pilot study of how PLP

enhanced students’ academic efficacy in the compu-

ter architecture course. This course applied teaching

philosophies that include social constructivism and
cooperative learning [6] and is a departure fromhow

the class was taught before: a traditional lecture

class with disjointed lab assignments. PLP is also

currently used in two other courses in Oklahoma

State University: an embedded systems program-

ming and an advanced computer architecture

course.

The rest of the paper is organized as follows.
Section 2 summarizes thework related to simulators

and platforms for teaching computer engineering.

Section 3 provides a detailed description of our

platform. Section 4 provides a context of the courses

in which the platform is used and describes how it is

used in these courses. Section 5 describes the quali-

tative and quantitative studies carried out to gauge

the effects of PLP on student learning, and Section 6
lists our conclusions and future work.

2. Related work

There exist several FPGA-based SoC designs. Hol-

land et al. [7] suggest a reducedMIPS instruction set

design for use in the classroom. The design uses an
eight-instruction variant of MIPS, and allows full

observability and controllability through a host

tool. This design however does not provide a host-

independent product, requiring the host tool to run

the processor in the classroom (beyond just pro-

gramming). The PLP system provides a rich set of I/

O, requiring the host tool for nothing more than

initial programming. Additionally, the PLP MIPS
design is more robust, while still simple enough for

design and implementation in the classroom.

Nagaonkar and Manwaring [8] discuss a com-

plete FPGA andmicrocontroller-based SoC for use

in research and academia. Their design uses a very

flexible custom hardware design.While its use in the

classroom is mentioned, no explicit educational use

is defined. The PLP system is designed only for use
in the classroom, with special emphasis on exposing

students to critical foundational components of the

Computer Engineering curriculum.

Other than the FPGA hardware solutions men-

tioned above, processor simulators have been used

in computer engineering classrooms in many uni-

versities as education tools. Simulators such as

WebMIPS [9] and MipsIt [10] are used to teach
concepts during program execution. Others such as

MARS [11], SPIM [12] and TExaS [13] provide

integrated development, simulation, and a debug-

ging environment. LC-3 [14] is an ISA with an

assembler and simulator built for it to be used in

class projects. The PLP system extends the idea of

using simulators as a teaching aid by allowing

students to run their program on real hardware.

The open nature of the hardware also allows

instructors to suit the system to any specific require-
ment of a particular course.

Hades [15] is a logic circuit simulator with a

powerful visualization tool and extensive compo-

nents library. PLP focusesmore on the architectural

level with the inclusion of a toolchain for the ISA

and integration into computer engineering courses.

PLP is an open source project, allowing anybody

to contribute to and benefit from any part of the
project with one restriction: all code contributions

to the project will have to be licensed under GPL

version 3. Brett [16] leveraged the open source

paradigm to create an education environment

where students can use and modify works that

already exist to enhance their learning experience.

Theuse of open source software also allows students

to contribute improvements to the system itself. The
openness of PLP uses the same idea to allow

students to actually make modifications that will

be incorporated into the project and provide a sense

of ownership for the work that has been done.

3. Technical description

PLP development is hosted in our Google Code site

[17]. The project uses Mercurial [18] as our source
control management system. See the development

site for how to obtain your own copy of the project.

3.1 CPU design

The PLP CPU implements a MIPS-like Instruction

Set Architecture (ISA) with instructions listed in

Table 1. The goal is to provide a simple, yet relevant,
architecture that is applicable to a wide range of

Computer Engineering courses. The differences

between the PLP CPU and MIPS as described by

Hennessy et al. [19] are the reduced instruction set,

the lack of co-processors and there are no excep-

tions inPLP.ThePLPCPUsupports interrupts, but

instead of utilizing a co-processor, two of the 32

registers in the CPU are used for an interrupt vector
and to save the return address when an interrupt

occurs. As in the pipelined MIPS micro-architec-

ture, all hazards are forwarded except for the load/

use hazard, which generates a single cycle stall. A

block diagram is shown in Fig. 1. The datapath for

the CPU is shown in Fig. 2.

3.1.1 Hardware implementation

All hardware is defined with Verilog HDL. Cur-

rently the platform targets the Digilent Nexys 2 and

Nexys 3 FPGAdevelopment kits. Although a target

Wira D. Mulia et al.216

board is used for development, and we use proprie-

tary tools for synthesis, the system is designed to be

platform agnostic. All HDL is defined behaviorally

and special structures such as block RAMs are

generically defined to aid in proper inference for a

number of targets. PLP is also designed to be highly
portable. In general, porting the reference design to

another target board requires only that unsup-

ported modules be removed from the module

build manifest, timing constraints be updated, and

pin assignments be made.

3.1.2 Hardware modules

The bus arbiter provides a dual instruction/data bus

for interfacing modules with the CPU. All modules

are multiplexed on the bus, and are selected by a

compile time generated memory map. All modules

follow a common bus interface that requires two
ports (instruction and data). The bus arbiter is

automatically generated at compile time by a

script that reads memory map information from

each of the modules. This is done to simplify adding

anynewmodules.Anewmodule canbe added to the

system by conforming to the module port and

timing specification, and adding a special memory

map declaration, embedded as a Verilog comment
in the module. The memory map declaration spe-

cifies the start address and segment length in

memory. Figure 3 shows the declaration of a PLP

module in Verilog. The first several ports are pre-

defined, allowing additional ports as necessary. The

comment immediately before the module declara-

tion assigns the memory map base address and

length.
Themodules provide support for board level I/O,

memory, and other internal components such as

timer and interrupt hardware. The core set of

components was driven by the available hardware

on the reference target development kit, as well as

the perceived educational value of certain compo-

PLP: Open Source Platform for Computer Engineering Education 217

Table 1. PLP instruction set

Instruction Syntax

Unsigned add addu $rd, $rs, $rt
Unsigned subtract subu $rd, $rs, $rt
Logical AND and $rd, $rs, $rt
Logical OR or $rd, $rs, $rt
Logical NOR nor $rd, $rs, $rt
Multiply high-word mulhi $rd, $rs, $rt
Multiply low-word mullo $rd, $rs, $rt
Signed compare slt $rd, $rs, $rt
Unsigned compare sltu $rd, $rs, $rt
Shift Left Logical sll $rd, $rt, shamt
Shift Right Logical srl $rd, $rt, shamt
Jump Register jr $rs
Jump and Link Reigster jalr $rd, $rs
Branch on Equal beq $rt, $rs, label
Branch on Not Equal bne $rt, $rs, label
Add Immediate Unsigned addiu $rt, $rs, imm
Logical AND Immediate andi $rt, $rs, imm
Logical OR Immediate ori $rt, $rs, imm
Signed compare immediate slti $rt, $rs, imm
Unsigned compare immediate sltiu $rt, $rs, imm
Load Upper immediate lui $rt, imm
Load word lw $rt, imm($rs)
Store word sw $rt, imm($rs)
Jump j label
Jump and Link jal label

Fig. 1. PLP block diagram. All of the modules are connected to
the CPU via the bus arbiter.

Fig. 2. Block diagram for the PLP CPU.

nents.Modules included in the core set are aUART,

timer, identifier module, interrupt controller, boot-

loader ROM, and memory (either as a block RAM

or off-chip interface). Additional support modules
include a VGA controller which operates at

640648068 with frame buffer support, LED con-

troller, GPIO, switch controller, and seven segment

driver.

3.2 Extending the hardware

As shown in Fig. 1, the PLP CPU core connects to

the rest of the system via a simple bus arbiter, which

directs I/O to and from the CPU to the various

modules based on a defined memory map. The
arbiter is designed to be easily extended to accom-

modate new hardware modules that can be easily

memory mapped to the PLP system. All modules,

including memories, interrupt controllers, and I/O

modules follow a standard module interface, as

defined in Table 2. The bus arbiter facilitates both

instruction and data access to each module. Even if

a module does not support certain access (instruc-
tion reads for example), it must provide the neces-

sary ports to the arbiter (returning undefined data if

used incorrectly).

3.2.1 Detailed module port descriptions

rst—Synchronous reset

Global synchronous reset. The PLP CPU core also

resets on this signal.

clk—Clock

Global clock. The PLP CPU core also uses this

clock.

ie, de—Instruction / data bus enable

Bus enable signals. Modules see all traffic to every

module on each cycle. These signals are raised by the

arbiter to inform a specific module that the traffic in

that cycle is intended for that module. For example,

on an instruction that reads the value of the LEDs,

the ie signal for the instruction memory would be

raised, and the de signal for theLEDsmodulewould
be raised.

iaddr, daddr—Instruction / data address

Address ports. Represents the memory address to
read from / write to for the instruction or data bus.

drw—Data read/write

2-bit read/write signal. 2’b00 indicates an idle cycle

(neither read nor write), 2’b01 a write cycle, and
2’b10 a read cycle. 2’b11 is not a possible state. drw

must be evaluated with de to determine if a read/

write is intended for that module.

din—Data input

Data input to themodule. This signal is only used on

a store word instruction, and is only valid in a

module when both de and drw[0] is asserted.

iout, dout—Instruction / data output

Instruction and data outputs. Used on instruction /

data reads. Asserting values on these busses are

ignored by the arbiter unless ie / de are asserted.

3.2.2 Describing a new module

Developing a new module involves creating a new

Verilog module that follows the port description

shown in Table 2. An example skeleton module

implementation is shown in Fig. 4. If the module

communicates with other modules, or off-chip,

additional ports are declared at the end of the port

declaration list. Additional ports must then be
routed up to the necessary level (to other modules

in the arbiter for module-module communication,

or to the top level module for off-chip communica-

tion).

For examplewe shall create a simple timermodule

that is memorymapped at 0xf0f00000, and contains

a single writable register. The timer module will

increment on each cycle, unless written to. To
begin, we declare a new module named mod_timer

using the required port list, as shown in Fig. 5.

3.3 Software tools and library

PLP has a suite of software tools (PLPTool) that
includes an assembler, a simulator, and an interface

to load a program image to the target board. These

tools are written in Java to maximize the number of

computing platforms they can run on without

Wira D. Mulia et al.218

Fig. 3.Defining a PLP hardware module. Notice that a Verilog comment is used to assign the memory map,
which is generated at build time.

Table 2.Required module port declaration. Additional ports are
declared after these ports

Port name Direction Size Description

rst input 1 Synchronous reset
clk input 1 Clock
ie input 1 Instruction bus enable
de input 1 Data bus enable
iaddr input 32 Instruction bus address
daddr input 32 Data bus address
drw input 2 Data read/write
din input 32 Data bus data input
iout output 32 Instruction bus output
dout output 32 Data bus data output

modification. The tools are written with extensibil-

ity in mind, and are organized such that developers
familiar in Java can extend the tools in an object-

oriented manner. PLP also includes a code library

that users can use to interface with the I/O and to

perform other routine functions.

3.3.1 PLPTool

The software tools can be used without any mod-

ification as a development tool for the PLP CPU.

Students can download the package from the web-

site and use it in a classroom to program an

embedded system. Figure 6 shows a view of the

editor with a PLP project open.
PLPTool uses the PLP project file format to store

information of the project including the source files,

compiled binary, and some simulation states. This

makes it easier for students to pass their project file

among team members and for course instructors to

evaluate their work.

Clicking the simulation button will launch

PLPTool into a simulation mode as shown in Fig.
7. This mode allows the users to simulate their

program: stepping through instructions, running

PLP: Open Source Platform for Computer Engineering Education 219

Fig. 4. A skeleton module.

Fig. 5. Timer module.

the CPU, modifying register and memory values,

interactingwith I/O devices, and observing theCPU

operation. PLPTool simulates all the I/O devices

implemented by the hardware. Figure 8 shows the

watcher window of the simulator where users can

directly observe the changes to CPU registers,

memory locations, and I/O device registers.

PLPTool also allows users to download their

program to the CPU board using a serial port.

This capability uses RXTX serial library [20]

Wira D. Mulia et al.220

Fig. 6. The default view of the PLPTool editor window. The left pane displays the source assembly files
contained in the project. The editor window should be familiar to users who have used a development
environment for a programming language.

Fig. 7. PLPTool window running a simulation showing the seven segments I/O.

which may not be available in some computing

platforms.

3.3.2 Developing and extending PLPTool

Table 3 lists the packages that are in PLPTool and

gives a short description onwhat is containedwithin

each one. PLPTool ISA framework is located in

plptool as described in Section 3.3.3. plptool.mips is

an example use of the framework and is currently

used to implement an assembler, a simulator, and

board programming tools for the PLP CPU.

PLPTool is developed as a Netbeans 6.9.1 project
[21].

3.3.3 ISA framework

The framework consists of a collection of Java

classes that allowdevelopers to build a development

and simulation environment for their CPU archi-

tecture. Figure 9 provides a general overview of the

system, and shows the structure of the framework.
The plptool.mips package contains the current

implementation of the PLP CPU ISA in PLPTool.

Developers will need to implement the functions

listed in Fig. 9 to integrate with the PLP software

stack. The User program flows as each object is

instantiated, i.e., each assembly source file will be

attached to an assembler object, and in turn these

objects will be passed on to the simulator. A binary
image might not even be necessary for the purpose

of simulation; in fact, the source code can be passed

on to the simulation core as is and processed during

simulation, if the developer chooses. Users can refer

to javadoc-generated documentation [22] of the

PLP software tool under the root plptool Java

package for class definitions.

The simulation framework consists of a single
Java class implementing member methods of the

PLP simulation core abstract (PLPSimCore.java).

These methods include a program load procedure

(loadProgram), a reset handler (reset), and a simu-

lation step (step) function.Howa ‘‘step’’ is defined is

up to the simulation core developer: it could be a full

cycle of the clock, or a phase of the clock. Currently,

PLP: Open Source Platform for Computer Engineering Education 221

Fig. 8.Watcherwindowof the simulator. Thiswindowallows users tomonitormemory addresses and
CPU registers during simulation.

Table 3. Java packages in PLPTool and a description of what each package contains

Package name Description

plptool This package contains global classes such as constants and global configuration. It also contains abstract classes
that define the ISA: the assembler, simulator, and programmer classes

plptool.gui User interface classes
plptool.gui.frames GUI window frames
plptool.mips Assembler, simulator and board programmer implementation for PLP CPU
plptool.mods PLPTool simulation modules

Fig. 9.The assembler, simulator, andboardprogrammer abstract
methods. Developers wishing to port an ISA to PLPTool will
have to at least implement these methods and the methods
mentioned in Section 3.3.3.

developers will have to implement the simulation

core from the ground up using Java. Future work

will include a simulation shell with a well-defined

interface where users can drop in HDL modules to
drive the simulation. The final goal for this environ-

ment is an intuitive GUI core builder usable by

undergraduate computer engineering students to

generate custom simulation cores.

The framework also implements a module inter-

face that can be used to attachmodules to the bus of

the simulation core as shown in Fig. 10. The bus will

call read or write functions of these modules when-
ever the CPU tries to access an address mapped to

the module. The access functions can be overridden

by the developers to reflect the actual module or

simulated device behavior. Evaluation functions are

called by the simulation core whenever outputs are

needed to be displayed to the user. Modules imple-

mented using this interface can range from common

I/O devices such as switches and LEDs, to tracers
and cache simulators.

A GUI frame can be attached to the module for

display, or control purposes. The plptool.mods

package in the source code tree contains modules

already written for the system as examples. This

includes an LED array, switches, and a memory

access tracer. IORegistry.java contains registration

information to load or unload modules during run-
time.

3.3.4 Software library

PLP includes a software library that makes it easier

to program by reusing common functions, such as

accessing I/O devices and math operations. The

library can be found under the reference/sw/libplp

directory in the repository. The documentation for

the library is available on the development website
[17]. All the library functions use the argument

registers ($a0 to $a3) for function parameters and

they use the $v0 and $v1 registers for return values.

Saved temporaries ($s0–$s7) and pointer registers

are not modified. All other registers, including the

temporaries ($t0–$t9) are subject to modification

andmayneed to be saved before a library function is

called.

4. Applying PLP to the classroom

This section describes the use of the PLP system in

various courses at Oklahoma State University. PLP

is currently used in three classes: Computer Based

Systems (an engineering science class that intro-

duces students to computer systems, microproces-

sors and assembly programming), Computer
Architecture (a senior-level course that teaches

processor design), and Digital Computer Design

(a graduate-level computer architecture course

that delves deeper into processor design). A pilot

study was done for the Computer Architecture class

in spring 2011. A detailed description of the course

and the results of the study are presented later in this

section.We first describe how PLP is used in each of
the classes.

4.1 PLP in the Computer Based Systems course

PLP is used as a programming platform in Compu-

ter Based Systems where students use the software

tools to write and simulate their programs. The

students also use the board to see their program

running in real hardware.We alsomodified the PLP
system to drive a robot we name PLPBot [23] for the

final project [24] where the students form groups to

write the control software. PLPBot is an excellent

example of the extensibility of the PLP system.

PLPBot uses two PLP devices, one on the robot

itself, and another device acting as a base station for

communication relay to the driver. The robot PLP

device was modified to support two additional
UARTs, replacing the GPIO pins. One UART is

used to interface a simple wireless transceiver, and

another is used to drive the motor controller circui-

try. The base station is also modified with an extra

Wira D. Mulia et al.222

Fig. 10. PLP software module architecture, showing abstract methods and members of the class.

UART, to drive another wireless transceiver. Since

the PLP system already has a UART implementa-

tion, the only modifications needed were in the

memory map and arbiter modules. In total, only

ten lines of Verilogwere added /modified to support

this new configuration. Details of how the course
was redesigned around PLP are available in another

paper [25].

4.2 PLP in the Digital Computer Design course

Advanced computer architecture students can

extend the system to reinforce their understanding

of computer engineering concepts. Some project
ideas include modifying the cache in the CPU

design, encrypting the main memory, design and

implement a superscalar version of PLP, or imple-

ment aMMUfor theCPU. Students can also extend

the software tools such as extending the simulator

andwriting optimization routines for the assembler.

Instead of just developing toy projects, students are

contributing to a real system and have the oppor-
tunity to see their additions to the project in action.

They also have the opportunity to develop some-

thing that may be used, or extended, by future

students.

4.3 PLP in the Computer Architecture course

While many engineering design laboratories are

conducted in small teams, it is difficult and imprac-
tical for a small team to design and implement a

complete processor in a single semester. In our

undergraduate introductory Computer Architec-

ture course, students are grouped into five large

teams of five to seven students each. The teams are

asked towork collaboratively ona single deliverable

processor design to be used in the PLP system. The

design is divided among the five teams including a
front-end team, an execution engine team, a hazards

and forwarding team, a test andmeasurement team,

and a meta-team. Emphasis is placed on the highly

collaborative inter- and intra-teamwork implied by

the project assignment. To facilitate communica-

tion, themeta-teamhas special administrative rights

over the other teams in that they are responsible for

communicating inter-team communication, signal
and timing definitions, and other collaborative

needs. Moving the control of these components to

a student team enables the instructor to further

assume the role of facilitator and students to gain

additional levels of real-world-applicable experi-

ence.

Each team consists of particular team roles

including a team leader, documentation expert,
and lead engineer. All team members must have at

least one distinct role. The team leaders from each

team meet regularly to ensure that proper commu-

nication of design efforts is made. The team leader

for the meta-team is the primary liaison to the

instructor and teaching assistants (TAs), and he or

she is effectively the project leader. In our course, the

meta-team leader’s role as project leader is made

explicit, and he or she serves as the final decision

maker on conflicts in design decisions. Again, this
provides a unique opportunity to extend student

learning to address the interpersonal communica-

tion challenges of teaming, a critical real-world set

of skills that is too often not addressed in engineer-

ing education.

The course emphasizes the course project and

does not include any mid-term or final examina-

tions. Weekly quizzes are used to monitor ongoing
learning. Additionally, there are many in-class

assignments, and teams provide weekly in-class

oral status reports.

4.3.1 Course project

The course project, which lasts for the entire seme-

ster, is split into four phases: team-building,
research, implementation, and integration. During

the team-building phase in the first two weeks of the

semester, studentsmeet and exchange contact infor-

mation, form basic team structure such as meeting

times, and create a team behavioral contract. Stu-

dents also complete required certifications for using

the collaborative tools for the course, which

includes a course Wiki and the code management
software. Once students are certified, they are given

administrative access to both tools, which allows

them to modify all information, including that of

other students, on theWiki and code repository. All

team-building phase information is documented on

the course Wiki as the deliverable for that phase.

The research phases lasts for approximately one

month and teams learn in great detail the aspects of
their part of the overall design. It is during this phase

that general instruction over computer architecture

is provided in a lecture format. Teams are asked to

learn about material relevant to their part of the

design, create block diagrams, fully define signals

that impact other teams, and document all of their

work on the course Wiki. At the end of the research

phase, teams deliver formal presentations of their
findings. Other students, as well as an assessment

board made up of the instructor, other knowledge-

able instructors, and key graduate students, are also

present for the presentation. The assessment board

is responsible for assessing the team on the effec-

tiveness and clarity of communication of their part

of the design, as well as their understanding of the

overall design.Other students are encouraged to ask
questions as well, particularly about how that

team’s design impacts their own. The grade for the

research phase is based on the combined perspec-

tives of the assessment board.

PLP: Open Source Platform for Computer Engineering Education 223

The implementation phase is the longest phase of

the design; within this phase, students implement

their designs from the research phase in a hardware

description language (in our course, using Verilog).

Communication is also critical in this phase, as even

moment-to-moment changes can have significant
impact on the work of other teams. The meta-team

is responsible for coordinating all cross-team infor-

mation. All teams are responsible for providing up

to the minute documentation on the course Wiki,

which enables teams to use and build upon each

others’ work. The implementation phase ends with

the test and measurement team evaluating the

design based on the most recent version of the
project specifications. This evaluation may result

in teams being required to modify their designs. All

implementationsmustmeet specification in order to

move on to the integration phase. Teams that have

outstanding issues with their implementation do

not, however, delay the overall project as the other

teams may use components from the reference

design to progress to the next phase.
The integration phase is the final phase of the

project. In this phase, students are assembled into

new teams: an integration team, a documentation

team, a demonstration team, and a video team. The

integration team has the task of integrating the

implementations (or components from the reference

design) into the final deliverable. The documenta-

tion team completes all Wiki based documentation
of the design. The demonstration team uses the

PLPTool to create a high-quality program to run

on their design; this work will be demonstrated

during the end-of-semester College of Engineering

DesignDaywhere students demonstrate their seme-

ster projects in the hallways of the Engineering

College. Finally, the video team works to create a

video-based documentary of the class project and
student experiences with the class.

4.3.2 Assessment

Assessment practices in the course are based on the

ability of students to communicate their under-

standing of the design and its implementation effec-
tively. As noted above, this is accomplished through

four major communication metrics:

1. Documentation of all work on a publicly acces-

sible Wiki.
2. In-class demonstrations of the outcomes of

each phase.

3. An end-of-term video detailing the course pro-

ject.

4. An end-of-term, high-quality program for the

College of Engineering Design Day.

The primary assessmentmetric is the courseWiki. A

Wiki is a website that is driven by a powerful and

simple markup language and is intended for rapid

development of deeply connected content. Themost

prevalent example of a Wiki is Wikipedia, a free

encyclopedia that anyone can contribute to or edit.

Owing to the rapid development of content and ease

of use, Wiki software is used in numerous contexts
including project development portals, documenta-

tion efforts, and in education. Wiki software facil-

itates collaborative development, as anyone with

access to the Wiki can edit it. This allows for

information to develop in an evolutionary way

from multiple users. Side discussions about the

development of particular Wiki articles often

develop as students work to resolve conflicts of
information among users. Additionally, Wiki soft-

ware saves revision history of every edit to an article,

allowing users to revert a particular edit to any

previous point in time. Wiki software is used exten-

sively in the engineering industry and has merit in

design courses intended to be representative of

industry practice.

5. Educational research methodology to
assess PLP usage in computer architecture
course

This pilot study used a mixed method, case study

design that, by definition, included both qualitative

and quantitative research methods. This presented
an epistemological challenge as each type of

research flows from a very different worldview.

For this study constructivism, which flows from

interpretivism, dominated and closely associated

with qualitative research design. Constructivists

hold that ‘‘all knowledge, and therefore all mean-

ingful reality as such, is contingent upon human

practices, being constructed in and out of interac-
tion between human beings and the world’’ [26].

Thus people may experience the same phenomena

differently and thus have differing reactions, under-

standings, and conclusions with each person view-

ing his or her experience through the lenses of

personal perspective and previous experience. This

requires that the researcher use data collection

techniques designed to capture variations in parti-
cipant experiences and constructed meanings; in

this study, free-flowing focus groups that encour-

aged extensive participant interaction and evolving

perspectives were used. In addition the researcher

kept field notes that included observations and

emerging insights.

The combination of quantitative and qualitative

methodologies can enhance and deepen under-
standing. Quantitative methodology flows from a

positivist tradition that posits that meaning exists

externally to the person and can be definitively

discovered, understood, classified and measured.

Wira D. Mulia et al.224

This study used pre- and post-test assessment as a

quantitative method for measuring changes in stu-

dent knowledge.

5.1 Qualitative focus groups

The Progressive Learning Platform was used twice

in the Computer Architecture (ECEN 4243) course.

At the conclusion of these courses, a researcher

from outside the college of engineering conducted

a focus group with student volunteers who com-

pleted the course. Discussion focused on PLP and

its perceived impact on the course experience. The

focus group was designed to be free-form and
interactive, allowing students to voice any opinions

about their experiences in the course. However a set

of guiding questions was used to provide direction

for the discussion:

� How does your learning experience in the class

compare with other learning experiences in your

other engineering coursework?

� In what ways were you able to link learning from

other classes to this one?

� How would you describe your interest level

within and across the time of this class?

� Describe the level of collaboration that was
required with your classmates.

� In what aspects did this class help you to prepare

to work in engineering in the ‘‘real world?’’

Sessions were audio-taped and transcribed. Open

coding and researcher memos served as primary

data analysis methods with particular attention

paid to emerging patterns and themes. Peer review

and researcher discussion, preservation of all data

and notes, and analytic memos increased the trust-

worthiness [27] of the qualitative outcomes. Data

were collected into four primary themes as reported
below.

5.2 Pre–post assessment

We used pre/post tests data to evaluate the efficacy

of PLP in the classroom [28]. The pre/post tests were

identical to each other and administered at the

beginning of the first lecture of the semester, as
well as with the final examination (or last lecture

in courses that had no final examination) at the end

of the semester. The pre/post tests consisted of a

number of questions designed to cover all listed

course objectives and pre-identified ‘‘Be Able

To’s’’ (BATs).

A subset of test questions is explicitly covered by

the PLP system. The success of the use of PLP in the
classroom was determined by comparing pre-test

and post-test scores. Specifically, we were interested

in finding out if the use of the PLP system impacted

students’ knowledge of the relevant general course

material and if the use of the PLP system in the

classroom impacted knowledge of concepts expli-

citly covered by PLP. Tests were scored by calculat-

ing the mean, standard deviation, and standard

error mean of the overall test and the subset of

questions identified as being explicitly covered by

PLP. The overall test calculations included the PLP
questions. A paired dependent t-test design was

used to analyze the results. The paired dependent

t-tests uses repeated measures. Thus it is used to

examinemean differences of test scores between two

waves of assessments on the same participants. The

t-test assesses whether the mean difference between

paired/matched observations is significantly differ-

ent from zero, that is, if themean difference between
the pre-test and post-test is greater or lesser than

zero, as well as whether this difference is statistically

significant or is noise (error). Furthermore, for each

group of students, the Cronbach’s alpha coefficient

was calculated to determine the reliability of the

instrument [29]. Reliability in this context was used

to measure whether or not the items on the test

measured the intended variable (topic). Generally, a
Cronbach’s alpha coefficient of > 0.5 is considered

statistically significant; however, with this test it is

important to note that a very highCronbach’s alpha

coefficient is not necessarily a good thing. Too high

a value may indicate that the test items do not vary

enough to provide a meaningful test (equivalent to

asking the same question with slightly different

wording). Furthermore, there are a number of
topics in the taught courses (especially ECEN

4243) that have independent topics (digital logic

vs. high level programming) that, when measured,

may not indicate a high Cronbach’s alpha coeffi-

cient. Nonetheless, topics in these courses can be

considered to be broadly linked, making it impor-

tant to measure their correlations.

5.3 Findings

5.3.1 Qualitative case studies

Overall, students in the focus groups characterized

their experience in the classes as ‘‘different,’’ in a

positive way, from previous engineering course

experiences. The focus group members specifically
noted four observable themes that they felt

improved their understanding of Computer Archi-

tecture and Computer Engineering as a whole:

Building and bridging knowledge

Participants noted that the course concepts were

serial and had a backwards dependency, including

into previous courses in the Computer Engineering
curriculum. Students had to understand the pre-

vious material (specifically in lab assignments) in

order to proceed to the next. This dependency was

not artificial (such as not being allowed as per the

PLP: Open Source Platform for Computer Engineering Education 225

syllabus to proceed until previous lab work was

accomplished), but rather was a natural progression

of learning the assigned material. As one student

noted:

In usual testing, I can take test 1 and test 2, and it
doesn’t matter on test 2 what grade I had on test 1. But
in this, if my research wasn’t correct, I must catch it up.
[sic]

Use of PLP in the classroom also facilitated the

bridging of the knowledge gained from previous

(and listed pre-requisite) coursework, as well as

from the current classwork to lab work:

[It was] interesting to have one central hub that
reinforced all of the materials. If you had it in class,
the PLP system had something to do with it. So, as you
moved on, you got more and more knowledge. [sic]

Another student noted that the course

really bridged the gap between digital logic and coding,
integrated hardware and software class we had prior to
[this].We actually had to know the knowledge from the
pre-reqs. [sic]

A primary goal of PLP is to provide amechanism to

facilitate students’ understanding of the connec-

tions among course content in the Computer Engi-

neering curriculum. Student feedback appears to
support PLP’s ability to do this.

Increased levels of communication

Participants noted that the use of PLP required and

facilitated an increased level of communication.

Requirements for inter-team communication were

reported as ‘‘much higher.’’ Communication ‘‘with

more than just your partner’’ was expected. Speci-
fically, the use of theWiki was a significant factor in

facilitating communication:

With this class we had Wiki dedicated to reference
design and PLP so we could go to the Wiki. This is
different because there was information readily avail-
able right there. That was good. [sic]

PLP explicitly uses communication as a resource

throughout the curriculum as well as a primary
assessment metric. This result was expected, and is

in keeping with previous research regarding how

critical communication is to understanding [30–35].

Increased student engagement

Participants generally agreed that students were

more engagedwith the course content, both because

the format of the course facilitated engagement and
because of student interest in the course, project,

and PLP:

We were working on a processor and I didn’t really
know a lot about it—the basics, yes, but actually going
through it and building it from the ground up, learning
about all of the different aspects of it. I’d say that
interested me a lot. [sic]

One student reported that his increased interest

caused him to expand his usual focus:

[This class] gotme interested—Inormally only lookat a
system level as a computer engineer. This class got me
interested in diving in deeper to how the chip works.
[sic]

Another student noted that the format encouraged
all students to be much more vocal, and another

associated the format with having ‘‘fun’’:

This was fun. I didn’t worry about my grade this entire
semester . . . it was more about learning and having fun
and understanding it rather than ‘‘will I pass this class.’’
[sic]

Clearly student engagement was reported as posi-

tively impacted by the use of the PLP system.

Perceived authenticity

The authenticity of the learning process, or the

degree to which it mimicked the real world, was a

prominent factor of the use of PLP on which

numerous students commented. Reports collected

into twomajor themes related to authenticity of task

and authenticity of environment. One student

summed up the overall impression:

Being able to put your hands on it mattered. [sic]

At a greater depth, however, student perceptions

about the authenticity of the environment varied

across four areas:

1. Management. The instructor and teaching

assistant were generally viewed as functioning

in a role similar to managers in the real world;

however, participants generally agreed that

supervisory infrastructure needed to be

increased. These observations evolved from
focus group discussion about the need to

address student complaints about unequal par-

ticipation among team members. Additionally,

students noted that critical issues raised in peer

evaluations were not addressed by instructors

in any observable way. The boss knows if there

is an employee not pulling their weight—it’s

bad business to not pay attention.
2. Team versus individual performance and assess-

ment. Students were concerned with the struc-

ture of and messages implied by the grading

system. Because the emphasis was on team-

work, students could ‘‘game the system’’—con-

tributing little to the course project (and

ostensibly not learning), and still receiving a

passing grade. This was seen as in opposition to
the real world where ‘‘if you don’t show up for

work in industry, you don’t keep the job.’’

3. Team Structure. Participants reported that the

use of PLP requiredmore inter-team collabora-

tion. In terms of helping them prepare for real-

Wira D. Mulia et al.226

world relationships, one student remarked ‘‘I

would rank [the class] very high, one of the top.’’

4. Accountability toward the goal/task. Partici-

pants reported that deadlines in the class were

more realistic—more ‘‘real world.’’ Students

also noted that the self-management required

was more authentic or like their experiences in

internships in the real world. If one group fails,
then the whole class fails with it just like you

would be in industry. [sic]

Another student remarked:

We were able to see from the start of the class what the
goal of this class was. This is very unusual. We started
knowing what the end result should be if we did every-
thing we were supposed to do. Classes do not usually
work that way. [sic].

Students viewed the existence of a stated, specific
goal as a significant positive as it ‘‘gives students

something to work toward.’’

In addition to student comments about their

experience in the classroom, focus group members

provided feedback and suggestions for future itera-

tions of the course and the use of PLP. Regarding

teams, students suggested: smaller teams, even at

the expense of having two, simultaneous course
projects, in order to alleviate problems inherent to

large teams.

Of significant importance is the last point men-

tioned, as teams report challenges with assessing

individual performance and perceived authenticity.

Students noted the desire for more emphasis on soft

skills as well as the inclusion of assessment on

technical achievement; they also stated a desire to
have assessment better reflect industry practice of

performance-based assessment. Qualitative results

are promising, as students appear to embrace the

merits of PLP in the classroom. Several deficiencies

are noted, and plans to alleviate those concerns all

are in place for the spring 2012 Computer Archi-

tecture course.A subsequent focus groupwill follow

to assess the resolution of those concerns and
additional needed improvements.

5.3.2 Pre-post assessment

Pre/post-test data were scored and analyzed using

paired t-tests and Cronbach’s alpha coefficient.

Table 4 shows the mean, standard deviation, and

standard error mean for each sample set. This data

is used in the paired t-tests to determine if the

difference in mean between the two tests is signifi-

cant.

A subset of the questions on the pre/post-test is

explicitly covered by PLP. To quantify this, we use

Cronbach’s alpha to determine the reliability of
questions in the overall question set, and the ques-

tions in thePLPquestion set. Inotherwords, is there

an indication that the questions on the pre/post

exam, overall and PLP, evaluate the same topic?

As shown in Table 5, the overall and PLP-specific

question sets are somewhat significantly reliable.

The loss in reliability indicated by the Cronbach’s

alpha is probably due to the multiple variables
examined in the pre/post-test. That is, the pre/

post-test asks a number of questions about Com-

puter Architecture, covering each of the course

objectives, but the questions do not necessarily

intersect as the breadth of course objectives is

significant.

Table 6 shows the difference in mean, and t-test

values from each of the studied courses. The t-test
values for each of the courses indicate a significant

difference, which implies that students in the course

had a positive and significantly different under-

standing of the course objectives at the end of the

course than at the beginning. This is expected of

both a traditionally taught course and one that uses

PLP. We also measure the subset of post-test ques-

tions that are explicitly and only covered by the use
of PLP in the course. These too show a significant

difference in mean.

The implications of these results allow us to assert

that the use of PLP is an effective way to teach the

stated course objectives. To determine whether or

not the use of PLP is an effective way to teach the

soft engineering skills, communication, and other

goals of PLP, we defer to the qualitative results. We

PLP: Open Source Platform for Computer Engineering Education 227

Table 4. Descriptive statistics

Class / semester Pre/post-test Mean N � Std. error mean

ECEN 4243 Spring 2010 Pre (overall) 5.04 25 1.51 0.303
Post (overall) 6.88 25 1.67 0.333
Pre (PLP-specific) 1.72 25 1.14 0.227
Post (PLP-specific) 3.4 25 1.44 0.289

ECEN 4243 Spring 2011 Pre (overall) 3.33 33 1.915 0.333
Post (overall) 5.76 33 2.21 0.384
Pre (PLP-specific) 1.50 33 1.37 0.239
Post (PLP-specific) 3.51 33 1.52 0.265

Table 5. Reliability statistics

ECEN 4243 Spring 2011 Pre (overall) 0.687
Post (overall) 0.685
Pre (PLP-specific) 0.528
Post (PLP-specific) 0.578

also note that the overall difference in mean for the

2011 ECEN 4243 course was greater than the

difference in mean in the 2010 data.

6. Conclusion and future work

In summary, PLP is an open project that adapts to
the needs of computer engineering education and it

is still in an early stage of implementation. It was

created to connect core concepts learned in various

computer engineering courses, and is aimed at

improving the learning experience for students. It

is grounded in the theories of social constructionism

and situated cognition. Results from the pilot study

show that PLP is highly effective in engaging
students and in helping them gain valuable skills.

Since this is a work in progress, we have collected

data in subsequent semesters and are currently

transcribing and analyzing it. A longitudinal study

is also in progress and will be completed by spring

2013. One clear advantage that we are beginning to

see is that students, instructors and teaching assis-

tants all found it very convenient to use the same
system (PLP) in multiple courses.

One of the weaknesses of PLP in its current state

is that it might prove to be a challenge for other

instructors to readily adopt it in their courses. We

are addressing this by improving the documenta-

tion, standardizing and rewriting parts of the code,

and putting together a proposal for beta-testing

PLP in three or four other universities. We hope
to involve more people in the development of this

project and have this system used in more classes

and universities. Once PLP gains traction, we expect

the open-source model to nurture and sustain its

growth.

The PLP system is licensed under the GNUGPL

version 3 license [36], and is free to download and

use.Media components, including lectures from the
classroom, lecture slides, in-class assignments, and

other documents are all licensed under a Creative

Commons Attribution license.

The project is hosted at http://plp.okstate.edu

and the development site is hosted at http://code.-

google.com/p/progressive-learning-platform/.

Acknowledgment—This work was supported in part by NSF
award EEC 1136934.

References

1. D. Fritz, W. Mulia and S. Sohoni, The Progressive Learning
PlatformWebsite. Accessed July 2012. http://plp.okstate.edu

2. L. S. Vygotskii, V. Davidov and R. Silverman, Educational
Psychology, St. Lucie Press, 1997.

3. Digilent, Digilent Nexys2 Spartan-3E FPGA Board.
Accessed July 2012. http://www.digilentinc.com/Products/
Detail.cfm?Prod=NEXYS2

4. Digilent, Digilent Nexys3 Spartan-6 FPGA Board. Accessed
July 2012. http://www.digilentinc.com/Products/Detail.cfm?
NavPath=2,400,897&Prod=NEXYS3

5. IEEE Standard Verilog Hardware Description Language,
IEEE Std 1364-2001, pp. 0_1-856, 2001.

6. D. Fritz,W.Mulia, S. Sohoni, K.Kearney andM.Mwavita,
The Progressive Learning Platform for computer engineer-
ing, presented at the American Society for Engineering
Education National Conference, June 26, 2011.

7. M. Holland, J. Harris and S. Hauck, Harnessing FPGAs for
computer architecture education, inMicroelectronic Systems
Education, 2003. Proceedings. 2003 IEEE International Con-
ference on, 2003, pp. 12–13.

8. Y. Nagaonkar and M. L. Manwaring, An FPGA-based
experiment platform for hardware-software codesign and
hardware emulation, Proceedings of 2006 International Con-
ference on Computer Design, Las Vegas, Nevada, 2006.

9. I. Branovic, R. Giorgi and E. Martinelli, WebMIPS: a new
web-based MIPS simulation environment for computer
architecture education, Proceedings of the 2004 Workshop
on Computer Architecture Education: held in conjunction with
the 31st International Symposium on Computer Architecture,
Munich, Germany, 2004.

10. M. Brorsson, MipsIt: a simulation and development envir-
onment using animation for computer architecture educa-
tion, Proceedings of the 2002 Workshop on Computer
Architecture Education: Held in conjunction with the 29th
International Symposium on Computer Architecture, Ancho-
rage, Alaska, 2002.

11. K. Vollmar and P. Sanderson, MARS: an education-
oriented MIPS assembly language simulator, SIGCSE
Bull., 38, 2006, pp. 239–243.

12. J. Larus. SPIM: A MIPS32 Simulator. Accessed July 2012.
http://spimsimulator.sourceforge.net

13. J. Valvano. TExaS: Test Execute and Simulate. Accessed
July 2012. http://www.ece.utexas.edu/~valvano/sim.html

14. Y. N. Patt and S. Patel, Introduction to Computing Systems:
From Bits and Gates to C and Beyond, McGraw-Hill Higher
Education, New York, NY, 2003.

15. C. Bienia, S. Kumar, J. P. Singh and K. Li, The PARSEC
benchmark suite: characterization and architectural implica-
tions, Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, Toronto,
Ontario, Canada, 2008.

16. E. S. Brett, A Frankenstein approach to open source: The
construction of a 3D game engine as meaningful educational
process, IEEE Transactions on Learning Technologies, 3,
2010, pp. 85–90.

17. D. Fritz and W. Mulia. Progressive Learning Platform
Development Website. Accessed July 2012. http://code.goo-
gle.com/p/progressive-learning-platform

18. Mercurial Source Control Management. Accessed July 2012.
http://mercurial.selenic.com/about

19. J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross,
F. Baskett and J. Gill,MIPS: Amicroprocessor architecture,

Wira D. Mulia et al.228

Table 6. Paired samples t-test

Class / semester Pre/post-test Mean difference s t df Sig. (2-tailed)

ECEN 4243 Spring 2010 Overall 1.84 1.49 6.17 24 0.000
PLP-specific 1.68 1.57 5.33 24 0.000

ECEN 4243 Spring 2011 Overall 2.42 1.92 7.25 32 0.000
PLP-specific 2.03 1.38 8.45 32 0.000

Proceedings of the 15th annual workshop on Microprogram-
ming, Palo Alto, California, USA, 1982.

20. RXTX: The Prescription for Transmission. Accessed July
2012. http://users.frii.com/jarvi/rxtx

21. NetBeans IDE6.9.1Release Information.Accessed July 2012.
http://netbeans.org/community/releases/69

22. W. Mulia and D. Fritz. PLP Software Tool Javadoc Doc-
umentation. Accessed July 2012. http://plp.okstate.edu/
javadoc

23. D. Fritz and W. Mulia. PLPBot. Accessed July 2012. http://
code.google.com/p/plpbot

24. ENSC 3213 Course Webpage. Accessed July 2012. http://
plp.okstate.edu/ensc3213

25. S. Sohoni, D. Fritz and W. Mulia, Transforming a micro-
processors course through the progressive learning platform,
ASEEMidwest Conference, Russelville, AR, 2011.

26. M. Crotty,The Foundations of Social Research:Meaning and
Perspective in the Research Process, Sage Publications Ltd,
1998.

27. Y. S. Lincoln and E. G. Guba, Naturalistic Inquiry, 75, Sage
Publications, Inc., 1985.

28. L. R. Gay, G. E. Mills and P. W. Airasian, Educational
Research: Competencies for Analysis and Applications, Pear-
son Merrill Prentice Hall, 2006.

29. L. J. Cronbach, Coefficient alpha and the internal structure
of tests, Psychometrika, 16, 1951, pp. 297–334.

30. E. F. Crawley, D. R. Brodeur and D. H. Soderholm, The
education of future aeronautical engineers: conceiving,
designing, implementing and operating, Journal of Science
Education and Technology, 17, 2008, pp. 138–151.

31. J. Lave and E. Wenger, Situated learning: Legitimate Per-
ipheral Participation, Cambridge University Press, 1991.

32. M. Maram, P. Prabhakaran, S. Murthy and N. Domala,
SixteenRoles Performed by Software Engineers in First One
Year, 2009, pp. 212–215.

33. D. Q. Nguyen, The essential skills and attributes of an
engineer: a comparative study of academics, industry per-
sonnel and engineering students,Global J. of Engng. Educ, 2,
1998, pp. 65–75.

34. L. B. Resnick, Knowing, Learning, and Instruction: Essays in
Honor of Robert Glaser, Lawrence Erlbaum, 1989.

35. J. Shimazoe and H. Aldrich, Group work can be gratifying:
Understanding and overcoming resistance to cooperative
learning, College Teaching, 58, 2010, pp. 52–57.

36. F. S. Foundation.GNUGeneral Public License 3.0. Accessed
July 2012. http://www.gnu.org/licenses/gpl.html

Wira D. Mulia is a Doctoral Candidate in Electrical and Computer Engineering (ECE) at Oklahoma State University

(OSU).He receivedhisMS inECE fromOSUin2009.His research interests are inComputerArchitecture andSystems.He

has been instrumental in the development of the Progressive Learning Platform, and has led the work on PLPTool.

David J. Fritz is a Doctoral Candidate in Electrical and Computer Engineering (ECE) at Oklahoma State University

(OSU). He received hisMS in ECE fromOSU in 2008. His research interests are in Computer Engineering Education and

Computer Architecture, with an emphasis onmemory systems and virtualization. He is lead developer for the Progressive

Learning Platform.

Sohum A. Sohoni is an Assistant Professor in Computing Studies in the College of Technology and Innovation at Arizona

State University. Prior to joining ASU in 2012, he was an Assistant Professor at Oklahoma State University. He received

his Ph.D. in Computer Engineering from the University of Cincinnati in 2004 and his Bachelors in Electrical Engineering

from COEP, Pune University in 1998. His research interests are in STEM Education and Computer Architecture.

Kerri Kearney is an associate professor of educational leadership at Oklahoma State University. Her professional

experience is a hybrid of both education and organizational consulting in leadership, organizational and team

development, and executive coaching. She holds an MBA in management and an Ed.D. in educational leadership.

MwarumbaMwavita is a Visiting Assistant Professor of Research, Evaluation,Measurement, and Statistics at Oklahoma

State University.

PLP: Open Source Platform for Computer Engineering Education 229

