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While various spatial tests are available, the Purdue Spatial Visualization Tests: Visualization of Rotations (PSVT:R) has

been commonly used to predict students’ success in the engineering field. While many studies that used the PSVT:R exist,

little attention had been given to its psychometric properties in measuring spatial ability and relationships to other

academic indices. The purposes of this study were (a) to characterize the item- and test-level functions of the Revised

PSVT:R for the use of incomingFirstYearEngineering (FYE) students, and (b) to investigate its relationship to academic-

related variables to provide validity evidence. Approximately 2400 FYE students enrolled in the fall of 2010 and 2011 in a

large Midwestern public university completed the Revised PSVT:R. Students’ academic-related variables were also

retrieved from the university archive. A variety of statistical analyses, including exploratory and confirmatory factor

analyses as well as item analyses, were conducted on the Revised PSVT:R scores. Pearson’s product–moment correlation

coefficients between theRevisedPSVT:Randother academic variableswere also obtained. TheRevisedPSVT:Rmeasures

a unidimensional subcomponent of spatial ability. Cronbach’s �was 0.84. Items were relatively easy and the test provides
themost precise estimate for students whose ability level is at or below average.Weak tomoderate correlationswere found

between the Revised PSVT:R scores and the aptitude test scores. The Revised PSVT:R is a psychometrically sound

instrument.However, items are relatively easy, but it is still appropriate tomeasure spatial visualization ability of the FYE

students.
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1. Introduction

1.1 Importance of spatial ability for success in

engineering programs

Spatial ability has received widespread attention

since the early 1900s because of its link with aca-
demic and vocational success [1]. While several

attempts have been made to define this construct,

Lohman stated that: ‘‘It [spatial ability] is not a

unitary construct. There are, in fact, several spatial

abilities, each emphasizing different aspects of the

process of image generation, storage, retrieval, and

transformation’’ [2, p. 4]. For example, Michael et

al. [3] proposed a three-factor model of spatial
ability: spatial visualization (SV), spatial relations

and orientation, and kinesthetic imagery. Later,

McGee [4] suggested a two-factor model with SV

and spatial orientation (SO). Lohman [5] agreed

with the basic components of McGee’s model of

spatial ability, but he extended it further by distin-

guishing spatial relations (SR) from SO. Diver-
gently, Carroll [6] characterized the dimensions in

spatial ability broadly by including other peripheral

components, such as closure speed, flexibility of

closure, perceptual speed, and visual memory.

Although there is no consensus of dimensions in

spatial ability, researchers seems to agree with at

least two core components of spatial ability: spatial

visualization (SV) and spatial relation/orientation
(SR/SO).

Despite the fact that the notion of spatial ability

varies across studies and/or the ability is often

loosely defined, researchers generally agree that

spatial ability plays a crucial role in determining

students’ achievement in engineering courses, in

particular graphic and design courses [7–10]. For

example, Baartmans [7] found that students’ scores
on a spatial ability test were the most powerful
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predictors for their success in an engineering design

graphics course among 11 variables, including

demographic and academic aptitude variables,

such as SAT and ACT scores. Field [9] reported

that the use of spatial ability scores as well as

mathematics course grades improved the prediction
of performance in undergraduate engineering

design courses compared with the use of mathe-

matics GPA as a single predictor. Recently, the

demand for spatial ability in engineering has

increased as technology like Computer-Aided

Design (CAD) application has been introduced in

graphic design; a traditionally required skill for

designing and drawing in 2-D space is now replaced
by designing and manipulating objects in 3-D space

using virtual models [8]. Therefore, spatial ability

has received more attention than ever for its role in

predicting the academic success of students.

First Year Engineering (FYE) programs provide

opportunities for students seeking degrees in engi-

neering to learn and develop fundamental knowl-

edge by taking basic courses in STEMareas (such as
calculus, physics, computer programming, and gra-

phic design courses). Therefore, some institutions

require that students successfully complete the FYE

program in order to proceed in their choice of

engineering major. The 17-year longitudinal study

by Budny et al. [11], conducted at a large Midwes-

tern public university, indicates one of the impor-

tant roles of the FYE program. The researchers
reported that 97% of freshmen who successfully

completed the first year requirements in the FYE

programgraduated from the university,mostlywith

baccalaureate degrees in engineering (i.e., 89%).

This indicates that successful completion of the

FYE program predicts students’ retention in pro-

fessional schools, and their chance of graduating

with a college degree. Together, these results imply
that providing appropriate remedial instruction for

students with lower spatial ability may help those

students to be better prepared to take fundamental

STEM courses in the FYE program, which may

result in the successful completion of their FYE

program and subsequently increase their chance of

graduating from college.

In fact, Sorby and her colleagues [e.g., 12–16]
reported the positive impact of interventions on

spatial ability for improving spatial ability perfor-

mance in engineering graphic design courses at

Michigan Technological University. In their stu-

dies, the FYE students were measured for their

spatial ability and then placed into the graphic

courses according to their ability level. Students

with low spatial ability were encouraged to take a
remedial course in cultivating 3-D spatial visualiza-

tion. After taking the remedial course, students

increased their ability and later successfully com-

pleted graphic-related courses [12, 16]. In addition,

Sorby and Baartmans [15] suggested a link between

positive outcomes through the intervention and an

increase in student retention in the engineering

program. Other studies also supported the positive

relationship [e.g., 17].

1.2 Spatial ability tests frequently used in

engineering education

Given evidence of the positive correlation between

spatial ability and academic success in engineering,

the spatial ability of FYE students was often mea-

sured (a) to predict their performance in engineering
courses [e.g., 9, 18, 19] and (b) to identify students

who may benefit from participating in a remedial

intervention program [13–15]. For these purposes,

selecting an instrument with sound psychometric

properties is a critical first step to providing useful

information to support students towards their aca-

demic success.

Various tests for measuring spatial ability are
currently available, partly because there is no uni-

tary definition of spatial ability; rather, spatial

ability is often defined in terms of several subcom-

ponents [2, 20]. These include the Mental Cutting

Test (MCT) [21], theMental Rotations Test (MRT)

[22], theRevisedMinnesota PaperFormBoardTest

(RMPFBT) [23], the Differential Aptitude Tests:

Spatial Relations (DAT:SR) [24], and the Purdue
Spatial Visualization Tests: Visualization of Rota-

tions (PSVT:R, see Fig. 1 for a sample item from

each spatial test). These tests have been used fre-

quently in research on success in engineering pro-

grams because the particular spatial ability

measured by these tests seems to be tightly con-

nected to the engineering profession [5, 25]. Each

test is briefly described below.
TheMCT aims tomeasure an individual’s spatial

visualization ability. For the test, an individual has

to solve 25 items of 3-D objects with a cutting plane,

indicating where they should be cut through. The

individual’s task is to imagine the trace of that

cutting plane and select the correct image from the

possible options [21]. The MRT is a paper-and-

pencil based test that consists of 20 items tomeasure
spatial visualization by mentally rotating 3-D

objects [22]. The RMPFBT is another popular

spatial visualization test originally developed in

1920s [23] to ‘‘measure aspects of mechanical ability

requiring the capacity to visualize and manipulate

objects in space’’ [26]. Respondents are asked to

mentally assemble the presented pieces of a certain

geometric figure and discern the correct figures from
the answer choices. Although the test contains 64

multiple choice items with 2-D objects, solving a

problem in this test does not involve the mental

rotation of objects.
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The DAT:SR is a subtest of a multiple aptitude

battery (eight subtests) that requires examinees to

indicate what an unfolded shape would look like

when folded [24]. Finally, the PSVT:R is a spatial
visualization test involving themental rotation of 3-

D objects [27]. The PSVT:R has been used primarily

in research on educational settings in science, tech-

nology, engineering, and mathematics (STEM) dis-

ciplines for more than three decades. The test has

been recognized as one of the most popular tests to

measure the ability of students to spatially visualize

the mental rotation in engineering education [8, 9].
This is partly because, comparedwith other popular

spatial tests for research in engineering education,

the PSVT:R is unique in that it includes a variety of

3-D objects (including objects with inclined, obli-

que, and/or curved surfaces), and it requires a higher

level of spatial visualization ability [28]. A further
description of the PSVT:R is provided in the next

section.

1.3 Purdue Spatial Visualization Test:

Visualization of Rotations (PSVT:R)

Guay [27] developed the Purdue Spatial Visualiza-
tion Test (PSVT), which consists of three 12-item

subtests entitled Developments, Rotations, and

Views, respectively. The PSVT:R is an extended

version of the subtest, Rotations, to measure the 3-
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D mental rotation ability of individuals aged 13 or

above in 20 minutes [29]. The PSVT:R has 30 items

consisting of 13 symmetrical and 17 nonsymmetri-

cal 3-D objects that are drawn in a 2-D isometric

format. In each item, the respondents’ task is to

mentally rotate an object in the same direction as
indicated visually in the instructions, and then to

select an answer from among five possible options.

While there have been many studies that use the

PSVT:R, little attention has been paid to the accu-

racy of measuring spatial ability with the test.

Recently, Yue [30, 31] identified ten figural errors,

such as missing lines of a rotated object, on seven of

30 items of the PSVT:R. As a result, the test was
revised by Yoon [32], with Guay’s permission, to

eliminate all figural representation errors on items.

In addition, the format of the instrument was

modified to avoid possible measurement errors

due to crude item presentation: the revised version

has one item per page instead of two items per page

to avoid any distractions to the respondent (i.e.

being distracted by features of another item on the
same page). In addition, if figures had different

scales, they were rescaled. For interested readers,

see Yoon [32] for detailed information about the

revision process. The revised version of the PSVT:R

is distinguished from the original one in this study

by referring to it as the Revised PSVT:R.

The purpose of the study was twofold: to inves-

tigate and characterize the psychometric functions
of the Revised PSVT:R for incoming FYE students

and to report its relationship with academic-related

variables. The specific research questions to meet

the purpose were:

1. To what extent is the one-factor model of the

theoretical construct measured by the Revised

PSVT:R appropriate?

2. How reliable are scores on the Revised PSVT:R

for indicating the spatial ability of FYE stu-

dents?
3. To what extent do characteristics, such as item

difficulty and item discrimination, vary across

the items in the Revised PSVT:R?

4. Towhat extent does theRevised PSVT:R relate

to academic-related variables?

2. Methods

2.1 Data source

The target population of this study includes all

engineering freshmen enrolled in the First Year
Engineering (FYE) Program in a large,Midwestern

public university in the United States in the fall of

2010 and 2011. The acceptance criteria to enter the

FYE program are the same as the university’s

general freshman admission criteria. In other

words, students are accepted if they provide evi-

dence of high academic performance and demon-

strate that their academicaspirationsarealigned toa

designatedprogram.Studentswhowereacceptedby

the engineering program were invited to participate

inweb-basedassessments by theSchool ofEngineer-
ing Education prior to their entrance to the FYE

program during the summers of 2010 and 2011. The

Revised PSVT:R was administered as a part of the

online assessments. For this study, we retrieved data

of the Revised PSVT:R scores gathered from 2,469

FYE students, as well as relevant academic and

demographic information of those students from

the university archive. Of the 2,469 students, 1,888
(76.5%)weremale, 580 (23.5%)were female, andone

student did not report his/her gender information.

Their age ranged from 15 to 38 years old, with an

average age of 18.01. However, 97% of the students

were in the range of 17 to 19 years old.

2.2 Data

The Revised PSVT:R responses. The Revised

PSVT:R was administered online and respondents

were given a maximum of 25 minutes to answer the

30 multiple choice items in the test. We considered

the 25-minute time frame to be sufficient to control

the impact of problem solving speed on their scores

because Yoon andMann [33] found that more than

95%of undergraduate students fromvariousmajors
could complete the test within 25 minutes when no

time limit was introduced. Individual’s raw

response on each of the 30 items was recoded as a

dichotomous variable (1 for correct, 0 for incorrect)

for the proceeding analysis. A raw total score was

also computed by counting the number of correct

responses among the 30 items.

Academic-related performance and demographics.

The FYE students’ academic aptitude test scores,

such as SAT and/or ACT mathematics as well as

composite scores, ACT science scores, and high

school core and overall GPAs were retrieved from

the university archive and used to evaluate the

criterion-related validity of the Revised PSVT:R.

The web-based assessment battery also contained

several questions related to students’ demographic
backgrounds, including gender. The demographic

informationwas used only for preliminary analyses.

2.3 Data analyses

As preliminary analyses, a series of descriptive

analyses and an exploratory factor analysis (EFA)

were first conducted on the Revised PSVT:R raw

scores. Means and standard deviations of the
Revised PSVT:R total scores were computed with

participants as a whole and by cohort to examine if

there is a significant cohort effect. Differences in

mean scores and standard deviations between the
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2010 and 2011 cohorts (M = 22.87, SD = 5.20 in

Cohort 2010 and M = 22.24, SD = 5.19 in Cohort

2011) were negligible (Cohen’s d = 0.12), but statis-

tically significant, t(2,467) = 2.71, p = 0.01. We

concluded that the significant differences are due

to the large sample size, because there was no
specific explanation to suspect a systematic differ-

ence in the Revised PSVT:R scores between two

cohorts. Therefore, we merged two data sets for the

proceeding analysis.

An EFA was performed to investigate whether a

single underlying factor structure exists in the

Revised PSVT:R, because the test intended to

measure one sub-dimension of spatial ability (the
spatial visualization ability of mental rotation). The

Mplus 6.0 program [34] was used for the analysis

because the robust weighted least squares estimator

(WLSMV) method for estimation is recommended

to handle categorical data in factor analysis [35].

This analysis also served for examining the unidi-

mensionality of the data, which is the major

assumption of unidimensional IRT-based analysis
[36]. There was a large difference between the

estimated eigenvalue of the first factor (9.11) and

the eigenvalue of the second factor (2.27), whichwas

represented by the steep slope of the line connecting

the first and the second factors. The eigenvalues for

the rest of the factors were similar, and the line

connecting these factors became horizontal [37].

The results suggest that the Revised PSVT:R has a
single factor structure, and the unidimensionality

assumption for the IRT (item response theory)

analysis was also satisfied.

To address the first question, a confirmatory

factor analysis (CFA) was conducted to provide

evidence of appropriateness of the assumption on

the structure of theoretical construct measured by

the Revised PSVT:R. More specifically, the CFA
was performed using the Mplus 6.0 program to test

whether the one-factormodel of the construct fit the

sample data obtained from the FYE students. The

model fit was evaluated with a Chi-square test as

well as multiple CFA fit indices, including Root

Mean Square Error of Approximation (RMSEA),

Comparative fit index (CFI), and Tucker Lewis

index (TLI). Finally, we reported descriptive statis-
tics and frequency distributions of both raw total

scores and IRT-based ability scores to summarize

the score distribution of the Revised PSVT:R

among the FYE students in the sample.

The item analyses applying both classical test

theory (CTT) and item response theory (IRT)

were conducted to address the second and the

third questions. CTT and IRT are the two major
frameworks frequently used in measurement

research. CTT defines the observed test scores

with two components: a person’s true ability score

and measurement error. This measurement frame-

work has been used in a variety of testing situations

because of the simplicity of its theoretical model,

weak theoretical assumptions, and the small sample

size requirement for applying the framework in

practice [38–40]. In the CTT-based framework,
item difficulty is defined as the proportion of exam-

inees who successfully answered a particular item.

Item discrimination is typically defined as the point-

biserial correlation between responses (i.e., correct

or incorrect response coded as a dummy variable)

on a particular item and the raw total scores. One of

the largest drawbacks of applying the framework is

that these item statistics depend on the sample
characteristics used for the analysis and the exam-

inees’ observed scores (e.g., the Revised PSVT:R

raw total scores) are also determined by the selec-

tion of the items used for testing [36].

IRT is a measurement framework used to esti-

mate the probability of obtaining a correct response

on the particular item, given a respondent’s ability

level, that is independent of both respondents’
group characteristics and the items used for testing.

In the framework, a family of probability models is

mathematically defined with given item parameters,

including item difficulty, item discrimination, and/

or guessing, depending on the selected IRT model.

Although the IRT-based analysis shows some

advantages over CTT-based analyses, the applica-

tion of IRT is generally restricted by its strong
theoretical assumptions and large sample size

requirement.

Based on the CTT framework, Cronbach’s alpha

coefficient of internal consistency was computed

using IBM-SPSS 18. Item statistics for each item,

such as item difficulty and item discrimination were

also computed using BILOG-MG 3.0 [41]. Follow-

ing theCTT-based itemanalyses, a three- parameter
logistic (3-PL) IRT model was used to generate the

item parameter estimates, and an individual’s abil-

ity parameter estimates based on the examinees’

response patterns on the Revised PSVT:R. The 3-

PLmodel was a reasonable choice, since it wasmore

realistic to assume the effect of guessing on

responses (because the Revised PSVT:R consists

of multiple choice items with five alternatives).
Moreover, our preliminary analyses with a 1-PL

IRT model, as well as the analysis using the CTT

framework, have shown that items vary in their

difficulties and discrimination powers [42]. In addi-

tion, the sample size is large enough to use the 3-PL

model. Chi-square item-fit indices were used to

evaluate the adequacy of the 3-PL IRT model to

the sample data [38].
To address the last research question, we com-

puted Pearson’s product–moment correlation coef-

ficients between the Revised PSVT:R total scores
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and other academic variables (i.e., SAT composite

or ACT composite scores, and high school core and

overall GPAs). These academic variables were

selected because the correlations between these

variables and mental rotation ability scores mea-

sured by other tests and the original PSVT:R were
often reported in empirical studies [e.g., 7], and it

relates to our investigation of the similarities of the

magnitude of the relationship among these with the

Revised PSVT:R.

3. Results

3.1 The structure of the theoretical construct

measured by the Revised PSVT:R

A CFA was conducted to test the fit of the data

obtained from the Revised PSVT:R to the hypothe-
sized factor structure, a single factor model. As

shown in Table 1, factor loadings were reasonably

high, ranging from 0.377 to 0.663 across items with

M = 0.528 and SD = 0.081. As expected from the

fact that the Chi-square test is well known for its

sensitivity to a large sample size [35, 38, 39], the

result of the Chi-square test (�2= 1623.06, df= 405,

p < 0.001) was significant. Other fit indices revealed
evidence that the single factor model was a good fit

to the sample data [35, 43]: the Root Mean Square

Error of Approximation (RMSEA) = 0.035, the

comparative fit index (CFI) = 0.928, and Tucker

Lewis index (TLI) = 0.923. Results from both the

EFA and CFA supported the fact that the Revised

PSVT:R measures a single factor.

3.2 Item and test characteristics of the Revised

PSVT:R

Score reliability. The Cronbach’s alpha coefficient

of internal consistency for theRevised PSVT:Rwith

the current sample was 0.839, which is considered to

be reasonably high, meaning that at least 83.9% of

the total score variance is due to true score variance.
All 30 items of the test appeared to be worthy of

inclusion because the removal of any items did not

increase the score reliability.

Item characteristics. The CTT-based item diffi-

culty and item discrimination statistics are reported

in Table 2. Item difficulties represented by percent

correct values ranged from 32.7 to 93.6 with a mean

of 74.7. Most of the items were answered correctly

bymore than half of the students, except for Item 22
(45.6 percent correct responses) and Item 30 (32.7

percent correct responses). These two items are

considered to be difficult items for the given

sample. On the other hand, Item 4 (93.6 percent

correct responses) is considered as the easiest among

these 30 items. While there was wide variation in

item difficulties across items, the item difficulty

overall was considered as appropriate because
Lord [44] indicated that, with five-option multiple

choice items, the ideal average item difficulty is 70 to

maximize the discrimination among respondents.

As also shown in Table 2, CTT-based item dis-

crimination estimates ranged from 0.198 (Item 3) to

0.441(Item 18) with a mean of 0.351, indicating that

the discrimination power of the items varies,

although all items appeared to contribute to cor-
rectly discriminate students for their ability. For

example, the correlation was low for the five easiest

items (Item 1 through Item 5), meaning that these

items are less useful in differentiating students by

their levels of spatial visualization ability. This is

because almost all students could identify the cor-

rect response on these items regardless of their level

of spatial visualization ability. For the rest of the
items, they discriminated moderately between stu-

dents with low and high total scores.

Following the item analyses based on the CTT,

the item analyses with a 3 parameter logistic (3-PL)

IRT model were conducted. The estimates of item

discrimination parameter (a), itemdifficulty (b), and

guessing (c) for each item are also reported in Table

2. Item discrimination parameter (a) estimates
ranged from 0.74 (Item 1) to 1.842 (Item 26). As

consistentwith theCTT results, relatively easy items

showed low item discrimination power. Item diffi-

culty parameters ranged from –3.128 (Item 3, the

easiest item) to 0.966 (Item 30, the most difficult

item)with ameanof –0.021, which indicates that the

Revised PSVT:R consists of relatively easy items for

the population. Note that the easiest item (Item 3)
identified by the IRT analysis is different from the

one (Item 4) identified by the CTT analysis, while

Item 3 was the second easiest according to the CTT

analysis. The guessing parameter estimates ranged

from 0.064 to 0.260 with an average of 0.186. The

estimates are in the expected range because the

Revised PSVT:R items are five-option multiple

choice items. Interestingly, the hardest item
showed the lowest guessing parameter estimate

(0.064), which indicates almost no probability of

answering the item (Item 30) correctly for students
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Table 1. Factor loadings by Confirmatory Factor Analysis

Item
Factor
loading Item

Factor
loading Item

Factor
loading

1 0. 398 11 0. 610 21 0. 546
2 0. 414 12 0. 624 22 0. 382
3 0. 377 13 0. 426 23 0. 523
4 0. 452 14 0. 593 24 0. 526
5 0. 502 15 0. 426 25 0. 497
6 0. 605 16 0. 511 26 0. 607
7 0. 553 17 0. 454 27 0. 563
8 0. 564 18 0. 663 28 0. 541
9 0. 630 19 0. 556 29 0. 542
10 0. 632 20 0. 616 30 0. 516



with low ability levels. Finally, Chi-square item fit

indices were also included in Table 2. All but Items

17, 27, and 30 fit the 3-PL IRTmodel relatively well.

Although the significant Chi-square statistics were

expected, given the large sample size, the interpreta-

tion of the results requires caution.
In Fig. 2, we report the item characteristic curve

(ICC) and its corresponding item information func-

tion (IIF) for the easiest (Item 3) and the most

difficult (Item 30) items to highlight the differences

in their item characteristics. The ICC represents the

probability of obtaining the correct response by a

respondent given his or her ability level.As shown in

the ICCs in Fig. 2, the probability of obtaining the
correct response has a curvilinear relationship with

respondents’ ability. The guessing parameter esti-

mate of the easiest item (Item 3) was 0.194, which is

the second largest among 30 items. It means that

with about 19%of chance, students can get a correct

answeron this itemwithguessing.The itemdifficulty

estimate (b3) for Item 3 was –3.128, which is the

outside of range of the ability continuum in Figure
2(a). The probability of answering the item correctly

at the ability of –3.128 was 0.597, which is substan-

tially shifted up from0.50 because of the influence of

guessing. In addition, the item discrimination

estimate for the item was 0.781, which is low

(Fig. 2(a)). Therefore, the ICC for Item 3 depicts a

shallow curve across ability levels, which suggests

that the probability of answering Item 3 correct is

above 0.6, regardless of student’s level of spatial

ability, however, the probability increases as the

ability level increases and becomes almost 1.0

when the ability level is at 1.0.
In contrast, the ICC of Item 30 shows that the

probability of obtaining the correct response on this

itemwas extremely low for students with low ability

and that the inflection point of the curve was shifted

to the right of the middle point along the ability

continuumwhere the item difficulty is located (b30 =

0.966) (Fig. 2(b)). Also the ICC indicates that the

probability of getting a correct response does not
increase much until the ability level of –1.0, but the

probability shows a steep increase as the ability level

increases. This is because the item discrimination

estimate of Item 30 was high (a30 = 1.268). The item

discrimination of the hardest item was much larger

than that of the easiest item. Therefore, the ICC for

the Item 30 was far steeper than that for the Item 3.

This indicates that the probability of answering
Item 30 correctly was highly sensitive to the varia-

tion of ability around the point at the item difficulty,

b30 = 0.966. The guessing parameter estimate for

Item 30 was close to zero (i.e., 0.064). This indicates

that guessing does not havemuch impact on obtain-

ing a correct response.
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Table 2. Item characteristics based on Classical Test Theory (CTT) and the 3-parameter logistic Item Response Theory Model (IRT)

CTT 3-PL IRT

Item
Percent
correct

Item total
correlation

Item
discrimination (a)

Item difficulty
(b)

Guessing
(c)

Chi-square
item-fit (p)

1 90.8 0.208 0.740 –3.068 0.182 18.0 (0.081)
2 91.0 0.218 0.821 –2.806 0.206 4.5 (0.953)
3 92.0 0.198 0.781 –3.128 0.194 9.6 (0.475)
4 93.6 0.226 0.967 –2.940 0.182 17.3 (0.100)
5 88.4 0.295 1.054 –2.067 0.175 9.5 (0.579)
6 82.2 0.403 1.519 –1.121 0.219 6.9 (0.736)
7 87.2 0.335 1.264 –1.701 0.190 19.5 (0.053)
8 80.6 0.372 1.305 –1.178 0.181 13.3 (0.277)
9 89.6 0.373 1.557 –1.700 0.196 4.8 (0.903)
10 81.0 0.422 1.487 –1.173 0.142 11.7 (0.385)
11 75.3 0.427 1.559 –0.734 0.198 16.4 (0.128)
12 70.6 0.443 1.469 –0.651 0.121 11.2 (0.427)
13 65.4 0.300 0.931 –0.376 0.187 10.1 (0.606)
14 78.3 0.404 1.515 –0.864 0.228 14.8 (0.139)
15 74.0 0.294 0.884 –0.926 0.214 9.8 (0.630)
16 79.1 0.345 1.069 –1.276 0.152 18.3 (0.075)
17 68.9 0.320 0.866 –0.805 0.122 21.8 (0.040)
18 83.3 0.441 1.710 –1.313 0.119 11.9 (0.371)
19 78.0 0.381 1.408 –0.855 0.246 14.1 (0.228)
20 75.9 0.430 1.491 –0.848 0.160 8.3 (0.595)
21 71.7 0.385 1.404 –0.516 0.232 11.1 (0.436)
22 45.6 0.271 1.470 0.893 0.242 16.4 (0.128)
23 70.6 0.367 1.148 –0.695 0.152 11.4 (0.408)
24 77.2 0.357 1.151 –1.069 0.164 7.6 (0.752)
25 67.0 0.354 1.337 –0.209 0.260 13.4 (0.265)
26 64.6 0.439 1.842 –0.159 0.215 15.6 (0.155)
27 63.4 0.404 1.766 –0.029 0.250 29.9 (0.002)
28 68.9 0.385 1.372 –0.408 0.215 9.8 (0.547)
29 55.4 0.390 1.410 0.118 0.157 16.4 (0.127)
30 32.7 0.337 1.268 0.966 0.064 20.0 (0.045)



The item information function (IIF) indicates
how precisely a particular item of the test measures

the spatial visualization ability at each level of the

ability. Item information is maximized at the point

where the item difficulty is located. The amount of

information depends on the item discrimination of

a given item. In comparing the IIF for the two

items in Fig. 2(c) and (d), Item 30 provided greater

amount of information (0.355) than Item 3 (0.102)
because Item 30 had the larger discrimination

parameter. The IIF of Item 30 was quite peaked

and its maximum was shifted to the right (b30 =

0.966) of the middle on the ability continuum. Item

30 functioned best at the ability level in terms of

the precision of ability estimation and estimated
spatial ability more precisely at the identified item

difficulty level than Item 3. On the other hand,

the IIF of Item 3 was relatively flat and its

maximum information at the ability of –3.128

was substantially low (0.102). This means that

Item 3 produces the most precise estimate of

spatial ability at a substantially low ability level

with an insufficient amount of information. The
precision of the ability estimate slightly decreases

as the ability level increases. In other words, the

IIF of Item 3 implies that the item is not so helpful

in measuring spatial ability because it is too easy

for the population.
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Fig. 2. Item characteristic curves and item information functions for the easiest item (Item 3) and the hardest Item
(Item 30) from the 3-PL IRT model.



Figure 3 shows the test information function
(TIF), which was produced by summing up the

IIFs of all 30 items in the Revised PSVT:R. The

TIF is symmetric and peaked, where the maximum

information is available, between the ability levels

of –1.0 and 0.0. The information level dropped off

rapidly in both directions from the peak, indicating

that the Revised PSVT:R will provide the most

precise estimates when the test is used to measure
students whose ability levels are somewhere

between –1.0 and 0.0. It also indicates that the test

will provide less precise estimates of spatial ability

when it is used for students with high or low spatial

ability. This result is consistent with the fact that the

3–PL IRT item difficulty parameters were mostly

located below zero (i.e., an average ability level),

except three items (Items 22, 29, and 30).

3.3 Correlations with academic variables

Pearson product–moment correlation coefficients

among academic variables and the Revised

PSVT:R scores were reported in Table 3. All corre-

lations are statistically significant at the alpha of

0.05. We found weak to moderate correlations
between the standardized aptitude tests (SAT or

ACT) and the Revised PSVT:R scores (r = 0.271

with ACT composite scores; r = 0.251 with SAT

composite scores). Note that the ACT/SAT mathe-

matics scores showed higher correlations with the

Revised PSVT:R than the composite scores (r =

0.319 with ACT math and r = 0.321 with SAT

math). Interestingly, these correlations were
higher for female than male students; the correla-

tion between ACT science scores and the Revised

PSVT:R with all examinees is 0.249, while male

students showed a lower correlation (0.173) than

female (0.289). On the other hand, the correlation
between the Revised PSVT:R and high school over-

all GPA was negligible (r = 0.071).

4. Discussion

Engineers are required to visualize and represent

their ideas involving abstract objects on paper or

computer screens and to communicate with others
about the ideas graphically [45, 46]. Many research

findings support a positive relationship between

spatial ability, especially spatial visualization and/

ormental rotationability, and success in engineering

courses [e.g., 4, 15,18, 47].Oneof the frequentlyused

spatial ability tests in the field of engineering is the

Purdue Spatial Visualization Tests: Visualization of

Rotations (PSVT:R).However, the literature review
indicated a lack of empirical studies in which item

and test properties of the PSVT:R were evaluated

under a measurement framework. In addition, the

original PSVT:R contained errors in certain items

[30, 31]. Thus, after the revision of these errors in the

test, it is important to provide the psychometric

evidence of the Revised PSVT:R [32] for use with

FYE students. We first summarize and then discuss
our findings for each research question and, finally,

if applicable, we present potential future directions

of research related to the questions.

4.1 To what extent is the one-factor model of the

theoretical construct measured by the Revised

PSVT:R appropriate?

The results of EFA and CFA supported the uni-

dimensionality of the construct measured by the

Revised PSVT:R. While several studies reported

correlations between the original PSVT:R and

The Revised PSVT:R for Measuring Students’ Spatial Ability 771

Fig. 3. Test information function of the three-parameter logistic (3-PL) IRT model.



other mental rotation ability as convergent validity

evidence [48–50], the result of this study suggested

additional evidence of constructed-related validity
regarding the adequacy of the theoretical assump-

tion of a single latent factor structure measured by

the Revised PSVT:R. However, these results only

support the fact that all items in the Revised

PSVT:R contribute to measuring a single factor.

The analysis itself does not indicate whether or not

the factor is the subcomponent of spatial ability,

which is spatial visualization ability in mental rota-
tion as Guay intended [27]. Thus, further studies

investigating construct-related validity of the

Revised PSVT:R with other spatial tests will help

to define the spatial factor that the test measures.

4.2 How reliable are scores on the Revised

PSVT:R for the first year engineering students?

With the sample of 2,469 FYE students, we found a

Cronbach’s internal consistency reliability of 0.839,

which indicates high score reliabilitywhenusedwith

FYE students. Note that the magnitude of relia-

bility depends on the characteristics of the sample to

which the test was administered. The obtained

reliability for the Revised PVST:R with FYE stu-

dents was comparable to those with other engineer-
ing student cohorts reported by Sorby and

Baartmans (r = 0.82) [15] and with general under-

graduate cohorts (e.g., r= 0.81 [51]; r= 0.86 [49]; r=

0.86 [32]).

4.3 To what extent do characteristics, such as item

difficulty and item discrimination, vary across the

items in the Revised PSVT:R?

Guay attempted to order items by difficulty in the

test, which would be the order of complexity in
rotation. However, the analyses of item difficulty

conducted by applying both CTT and IRT frame-

works revealed that the items were not ordered by

item difficulty level [27]. We found that the fourth

item of the test was the easiest according to the CTT

analysis, and the third item was the easiest accord-

ing to the IRT-based analysis. The last item was the

most difficult according to both frameworks, as
Guay intended. Fatigue might affect respondents’

motivation and selection of the correct responses at

the end of the assessment session, which resulted in

an increase in item difficulty for the items located at

the endof the instrument.However, we gave a closer

look to the relatively easy and difficult items to

provide insight into the nature of the items and its

link to item difficulty for future research.
In Fig. 4, we summarized the visual differences of

item characteristics among relatively easy and hard

items (i.e., Items 3, 4, 22, and 30), whichmight affect

the item difficulty levels. Guay ordered the items

based on the degree of rotation and the number of

rotations required to solve the spatial tasks. The first

six items, including two of the easiest items (Items 3

and 4), can be solved by a single 908 rotation around
one of the three axes of a 3-D Cartesian coordinate

Yukiko Maeda et al.772

Table 3. Pearson product–moment correlation coefficients among the spatial ability and academic variables

2 3 4 5 6 7 8

1. Revised PSVT:R 0.271
0.320
0.239

0.251
0.298
0.241

0.071
0.154
0.101

0.055
0.101
0.094

0.319
0.349
0.246

0.321
0.379
0.262

0.249
0.289
0.173

2. ACT Composite 1.000 0.783
0.826
0.763

0.306
0.377
0.307

0.301
0.388
0.296

0.675
0.734
0.651

0.599
0.704
0.552

0.806
0.832
0.800

3. SAT Composite 1.000 0.352
0.326
0.371

0.269
0.344
0.252

0.617
0.704
0.580

0.617
0.661
0.613

0.594
0.607
0.564

4. HS GPA Overall 1.000 0.767
0.775
0.761

0.241
0.323
0.262

0.237
0.229
0.275

0.181
0.221
0.211

5. HS GPA Core 1.000 0.223
0.317
0.247

0.171
0.187
0.203

0.177
0.249
0.204

6. ACT Math 1.000 0.732
0.781
0.691

0.548
0.618
0.496

7. SATMath 1.000 0.516
0.576
0.459

8. ACT Science 1.000

Note.First row is the correlationof total sample. Second row is the correlationof femaleFYEstudents.Third row is the correlationofmale
FYE students. Missing cases were excluded pairwise. All correlations were statistically significant at p < 0.05.



system. The next eight items (Items 7 to 14) in the

PVST:R can be solved by a single 1808 rotation

around one of the three axes, and the next eight
items (Items 15 to 22) can be solved by two 908
rotations around two different axes. The last eight

items (Item 23 to 30), including the most difficult

item (Item 30), can be solved by a combination of a

single 908 rotation and a single 1808 rotation around
two different axes [28, 32]. The shape of the objects

used in the item for rotation might also affect the

item difficulty, because some shapes may be more
difficult than others to mentally rotate. While the

objects used in the two easiest items (Item 3 and 4)

are simple 3-D shapes, the objects used in the two

most difficult items are relatively complex. Accord-

ing to Hegarty and Waller:

Performance on tests of spatial abilities depends on
execution of basic cognitive processes such as encoding
a visual stimulus, constructing a visual image, retaining
an image in working memory, transforming an image,
and comparing a visual stimulus to an image in work-
ing memory. [52, p. 136]

Mumaw et al. [53] also mentioned that individual

differences in spatial ability tend to occur at any step
of cognitive processing. Although we could identify

the level of item difficulty and probability of gues-

sing responses, further investigation of required

cognitive processing for each items would be bene-

ficial to understand how specific components of a

figure (e.g., the degree of complexity of the shape

defined with inclined, oblique, and/or curved sur-
faces, etc.) and the required tasks to solve the item

(the degrees and/or direction of rotations) contri-

bute to the determination of item difficulty and

response style (e.g., random guessing), given an

individual’s ability level.Mumawandothers further

suggested that the speed of cognitive processing to

solve spatial tasks would produce differences in

individuals’ test scores. It may be also interesting
to scrutinize the features of 3-D objects in the

Revised PSVT:R and to investigate their relation-

ship to the level of cognitive processing and proces-

sing speed.

Another important finding regarding the item

characteristics was that, in general, items were rela-

tively easy to solve for the population, although our

results showed that the test functions well to dis-
criminate the level of spatial visualization ability

among FYE students. Our IRT-based analysis indi-

cates that the test provides themost precise estimate

for students whose ability level are somewhere

between –1.0 and 0.0 (i.e., raw total scores between

about 16 and 23). As an examinee’s ability level

becomes progressively either lower or higher than

the range, the amount of measurement error
increases. This may have an important implication
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Fig. 4. Rotations required solving problems in Item 3, 4, 22, and 30.



for setting up a cut-off score for selecting individuals

fora remedial programoradvising students to takea

certain course. Moreover, additional items with

different item difficulty levels may be need to adapt

thetest tostudentswithawidevarietyofability levels.

Finally, we found a significant gender difference
in both raw total scores and ability scores. On

average, male students outperformed female stu-

dents by about three points. The magnitude of the

difference was relatively large (Cohen’s d = 0.678),

which is consistent with the size reported in the

meta-analytic study [54]. It is worth investigating

whether items functions differently by gender,

which may result in differential performances by
gender as a future study.

4.4 To what extent is the Revised PSVT: R related

to academic variables?

Pearson’s correlation coefficients between the

Revised PSVT:R scores and the standard aptitude

scores (used as a proxy of academic outcomes)

showed positive, but weak, correlations. As we

speculated, slightly higher correlations were

observed for mathematics and science sub-scores.
Interestingly, the sub-score correlations with the

Revised PSVT:R were higher for female than male

students. We found almost no correlation with high

school overall and core GPAs. Thus, weak to

moderate correlations with the aptitude test scores

provided evidence that the test scores on theRevised

PSVT:R may probably provide different informa-

tion when used to predict FYE academic outcomes
along with other standardized test scores as criter-

ion variables.

Related to this point, one of the most important

analyses, which we could not investigate in the

current study, is to investigate the predictive

power of the test scores on the Revised PSVT:R.

Because one of the main purposes of using the

Revised PSVT:R scores in a FYE program is to
predict future academic performance, it is worth-

while, for example, to investigate how performance

on the Revised PSVT:R is related to the first

semester GPA or retention in the FYE program.

Furthermore, it may be interesting to establish

evidence to support the use of the spatial ability

scores to predict student retention in the engineering

program. The evidence of predictive validity for the
inferences will provide further implication for the

use of theRevised PSVT:R scores in instruction and

curriculum design to ascertain the role that ability

plays in students’ academic success.

5. Conclusions

Cognitive assessments are used in a variety of

instructional settings in the current educational

system. On some occasions we make serious educa-

tional decisions based on assessment results. For

example, providing appropriate educational gui-

dance for selecting courses based on assessment

results is one of the main reasons that assessments

are used in educational settings. The PSVT:R is one
of the cognitive assessments used to measure exam-

inees’ mental rotation ability, and has been used to

make inferences about examinees’ future academic

success in STEM fields. The PSVT:R has also been

used as a placement test in some programs. How-

ever, without a full understanding of the nature of

the test, fair use of the test in making educational

decisions cannot be guaranteed. In particular, the
use of a psychometrically sound instrument is

critical for ensuring appropriate interpretation

and valid application of the results in order to

make decisions and/or judgments.

This study was conducted to investigate the

psychometric properties of the Revised PSVT:R

for use with FYE students. We focused on FYE

students because the PVST:R has been used fre-
quently with this population. Thus, identifying item

functions specific to this population can help future

users of the test enhance their understanding of test

scores. We found that the Revised PSVT:R mea-

sures an unidimensional concept with high reliabil-

ity. Scores on the Revised PSVT:R represent a

different student attribute from those that are

typically represented by academic variables, such
as GPA and standardized test scores (e.g., SAT and

ACT scores). Although the instrument seems

slightly easy for the FYE population, items vary in

terms of difficulty and discrimination power to

measure different levels of student ability with an

acceptable amount of measurement error. How-

ever, with further analyses of the relationship

between item functions (i.e., item difficulty and
discrimination) and item structures (e.g., the com-

plexity of the required mental rotation of an object

to solve an item), the utilities (e.g., appropriateness

of cut-off scores) and interpretation of the test

scores could be enhanced.

In summary, the study provided sound and

detailed psychometric evidence of the Revised

PSVT:R for the use of the FYE population. We
encourage current and future users of the test to

scrutinize the information provided by the study to

ensure appropriate use and interpretation of the

scores for their educational purposes.
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