
The Role of Collaborative Capstone Projects—Experiences

from Education, Research and Industry*

ANNE HESS1,2, DIETER ROMBACH1,2, RALF CARBON2, DANIEL F. MURPHY3,

MICHAEL HOEH4 and CHRISTIAN BARTOLEIN4

1 Software Engineering Chair, Computer Science Department, University of Kaiserslautern, Gottlieb-Daimler Straße 47, 67663

Kaiserslautern, Germany. E-mail: {anne.hess; dieter.rombach}@cs.uni-kl.de
2 Fraunhofer Institute for Experimental Software Engineering, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany.

E-mail: {anne.hess; dieter.rombach; ralf.carbon}@iese.fraunhofer.de
3 John Deere, Moline Technology Innovation Center, One John Deere Place, Moline, IL 61265, USA.

E-mail: MurphyDanielF@JohnDeere.com
4 John Deere GmbH & Co. KG, Intelligent Solutions Group, Strassburger Allee 3, 67657 Kaiserslautern, Germany.

E-mail: {HoehMichael; BartoleinChristian}@JohnDeere.com

An integral part of software engineering curricula at universities are practical classes or projects that enable students to

apply theoretical knowledge gained in lectures on concrete practical examples. Practical projects, in particular, defined as

university-industry collaborations provide the potential of being very beneficial especially in graduate education: in such

realistic project settings, students can experience real-life software engineering challenges and achieve learning objectives

that go beyond typical learning objectives of practical assignments during classes or even practical projects defined by

facultymembers.However, such collaborative projects have to beplanned carefully andalso comewith various challenges.

In this article, authors from academia and industry share their experiences gained during a history of successfully

conducted collaborative projects. These experiences comprise objectives, benefits, challenges and lessons learned both

from an educational viewpoint (i.e., students, supervisors), research viewpoint (supervisors), and industry viewpoint

(customer). The experiences summarized in this article could serve as motivation and valuable information for other

universities and industry companies intending to plan and organize collaborative projects of this kind.

Keywords: collaborative project; software engineering education; capstone project; industry-university collaboration; experiences;
lessons learned; challenges

1. Introduction

Practical projects that offer the possibility for stu-

dents to apply knowledge and skills gained in soft-

ware engineering lectures in a realistic project

setting are considered very effective in software

engineering education [1]. Practical projects, in

particular, which are defined as university-industry

collaborations, provide the potential of being very
interesting and beneficial compared to assignments

provided during university classes [2]: In addition to

working on a real problem provided by a real

customer, students get the chance to experience

how to interact with a real client, how to cope with

unclear requirements or changing demands from

the customer, how to deliver products of high

quality within a typically short timeframe, etc.
But not only students can benefit from such

projects. The industrial customers providing a spe-

cific problem to be addressed in such a project are

also offered great opportunities: About 10 to 15

‘‘engineers’’ work on a particular problem and

develop meaningful solutions within a short time-

frame (typically one semester). Such solutionsmight

include prototypical implementations and evalua-
tions of initial ideas, which could later on be refined

and incorporated into the customer’s product port-
folio and be brought to market.

Finally, software engineering researchers who act

as supervisors in such projects can also profit from

such projects as they have the chance to use such

project settings to apply and evaluate newly devel-

oped software engineering methods. Furthermore,

empirical evidence collected during such controlled

project settings (e.g., data about effort, defects
detected during testing) and derived software devel-

opment improvements can serve as a valuable feed-

back mechanism to the students [5].

However, in order to be beneficial, such colla-

borative projects have to be planned carefully. They

also come with various challenges. For example,

faculty members or researchers from universities

and collaborating research institutes acting as
supervisors in such project settings are often faced

with several problems. These problems include how

to support the students in transferring theoretical

knowledge in such a project setting [3], or how to

enable students to experience the benefits of disci-

pline and to overcome the gap between real profes-

sional scenarios and scenarios used in software

engineering university courses [4].
In this article, the authors share their experiences

* Accepted 11 March 2013.1088

International Journal of Engineering Education Vol. 29, No. 5, pp. 1088–1099, 2013 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2013 TEMPUS Publications.

gained during a history of successfully conducted

projects over several years. These projects were

offered as ‘‘Team-based Software Development’’

(in the following referred to as ‘‘capstone projects’’)

in the form of collaborative projects between the

Software Engineering Research Group ‘‘Processes
and Measurement’’ headed by Prof. Rombach at

the University of Kaiserslautern (in the following

referred to ‘‘AGSE’’), the Fraunhofer Institute for

Experimental Software Engineering (Fraunhofer

IESE), as well as John Deere in the role of the

customer. The experiences shared in this article are

discussed from three different viewpoints, which

play a crucial role in such projects: (1) students,
who have the chance to apply theories learned

during lectures in a realistic project setting; (2)

supervisors and researchers, who support the stu-

dents in applying methods during the project; (3)

customers, who provide specific problems to be

solved by the students.

The remainder of this article is structured as

follows: In chapter 2, we introduce a typical project
setting and discuss a history of collaborative pro-

jects aimed at briefly introducing particular custo-

mer problems and solutions developed within these

projects. Chapter 3 is dedicated to reflecting on our

project history by discussing objectives, challenges,

and recommendations based on lessons learned

gained during our history of collaborative projects

from the three different viewpoints: the viewpoint of
students (section 3.1), the viewpoint of supervisors

(section 3.2), and the viewpoint of the customer

(section 3.3). Finally, the article concludes in chap-

ter 4 with a summary of our main findings.

2. History of collaborative projects

Since 2001,AGSEhas conducted a capstone project

once a year in cooperation with an industrial

customer and Fraunhofer IESE [1]. During these

projects, a team of students work together in a

laboratory environment for the duration of

approximately eleven weeks. Researchers from

both AGSE and Fraunhofer IESE supervise the

students during these projects. These projects are
especially offered to students being in their master

studies, i.e., the students are expected to have

already a sound knowledge of software engineering

processes and activities. In fact, according to the

curriculum offered at the AGSE, this is the first

practical project where students run through a

complete software engineering process while being

fully responsible for eliciting the requirements,
designing the prototype, and implementing and

delivering the system on time. Furthermore, each

student is assigned to particular roles and assumes

the corresponding responsibilities. These roles

include management-oriented roles such as project

manager and technical roles such as requirements

engineer, architect, UI designer, developer or tester.

After this capstone project the students are expected

to [1]:

� know and understand the different roles and

responsibilities in a software development pro-

ject;

� execute awell-defined software development pro-
cess;

� understand the importance of software and

experience documentation for future projects

(i.e., to document observations and experiences

during the project);

� be aware of their own thinking and decision-

making processes;

� reflect about events and changes of situations that
originate from performed actions;

� communicate and interact with a real customer

� carry out project estimation (i.e., effort, time,

quality).

On the customer’s side, these capstone projects are

typically set up within the organization as an

applied research project aimed at exploring a tech-

nology or businessmodel for future implementation

or further evaluation.

In the following, three projects will be introduced

including their particular goals, and the results

achieved by the students.

2.1 The grower’s notebook

Oneof the first capstone projects conductedwith the

industry partner John Deere was the so-called

‘‘Grower’s Notebook’’. The project aimed at
designing a demonstrator setup for agricultural

task management. The realized demonstrator con-

sisted of two parts: (1) a simple browser-based user

interface allowing a contractor to negotiate field

operation tasks with a grower and to assign these to

a specific worker in the field (see Fig. 1), and (2) a

mobile device application (iOS app) enabling the

worker to look up assigned tasks and to report on
the current task status. The reported task status

could then be monitored by the contractor or

grower via the web application. Synchronization

of tasks between the workers’ iPhones and the web

application was realized by means of a cloud-based

approach.

The typical development phases were supplemen-

ted by an evaluation of applicable technologies
comparing suitable candidates in terms of (1) a

cloud-based data storage back-end and (2) available

mobile device platforms against the set of defined

requirements.

The Role of Collaborative Capstone Projects—Experiences from Education, Research and Industry 1089

2.2 The mobile configuration assistant

The Mobile Configuration Assistant targeted a
customer challenge associated with the configura-

tion of implements (e.g., hay, harvest, or seed

equipment), via a display located in the cabin of a

tractor. This is indeed a very complex task, espe-

cially for novice field workers who are often faced

with complex configuration procedures and data

entry tasks before any field work can be accom-

plished. The project demonstrated a configuration
engine and a domain model editor. The domain

model editor (located on the server side) was devel-

oped to support developers in creating and main-

taining domain models that capture all relevant

parameters and their relationships required for the

configuration of implements. The models created

with the domain model editor are then sent to an

iPadwhere the configuration engine creates an easy-

to-use user interface based on the information
contained in the domain model. After the user has

configured the systemon the iPad, the configuration

settings are sent to the vehicle (see Fig. 2 and Fig. 3).

This project delivered an evaluation of multiple

architecture concepts and a prototype relative to

Anne Hess et al.1090

Fig. 1. Data flow between grower, contractor, and field worker involving task assignment and
reporting realized for the Grower’s Notebook prototype.

Fig. 2. High-level architecture concept of the mobile configuration assistant.

the business scenario, and demonstrated improve-

ments to the industrial partner’s display configura-
tion process.

2.3 The agile dashboard

With the introduction of Agile Software Develop-

ment at the Intelligent Solutions Group (ISG) of

John Deere, a large number of Scrum Teams were

created at several ISG locations worldwide. Agile
Development and especially Scrum require certain

planning activities that are typically done on white-

boards, which supported the teams in making the

development status transparent (see Fig. 4).

This worked quite well for each location but the

exchange of information with other locations was a

challenge. Clearly, an electronic communication

tool was needed and the software called ‘‘Rally’’
[6] was introduced at the ISG. However, simply

accessing current status information stored in

Rally required several interaction steps. This was

quite time consuming for the users and resulted in a

totally different user experience compared to a

whiteboard, where the user just needs to walk by

and look at the information. That is, the informa-

tion on the whiteboards is absorbed at a glance,

which is fast and easy. This situation was the
motivation for the capstone project. So the idea

was to find a solution that would combine the

advantages of analog and electronic visualization:

an electronic version of an Agile Dashboard.

The Agile Dashboard is a browser application

developed in Ruby. A typical main screen of the

application is shown below in Fig. 5. Within the

application, up-to-date planning and status infor-
mation is shown, comprising for instance sprint

burn-down, critical defects, user stories, as well as

defects and their respective status. With the excep-

tion of the build status information, which is pro-

vided from Jenkins (a tool used for continuous

integration [7]), all information is retrieved from

Rally. Besides displaying sprint status information,

the Agile Dashboard also offers interaction possi-
bilities to the user, such as selection of a particular

section (e.g., user stories) for more details or the

ability to switch views between different teams.

3. Discussion of objectives, challenges and
lessons learned

In the following, experiences are discussed from the

viewpoint of students (section 3.1), supervisors

(sections 3.2), and customers (section 3.3), with

the capstone projects introduced in the project

history used as examples.

3.1 Students’ viewpoint

3.1.1 Educational background

Students enrolled in computer science are offered

three different practical software engineering

courses and projects at the AGSE where they can

apply theoretical knowledge gained from lectures in

The Role of Collaborative Capstone Projects—Experiences from Education, Research and Industry 1091

Fig. 3. User interface supporting implement configuration on an iPad and underlying domain model editor.

Fig. 4. Sprint planning and status information
on whiteboard.

a practical context. These courses differ in the

complexity of the development tasks and the parti-

cular learning objectives.

Already in one of their early bachelor semesters,
the students can sign up for a practical course, where

they are asked to develop a component-size piece of

software supplemented by some specification and

verification activities. In their later bachelor studies,

the students can register in a practical project. In

this project, they basically have to run through all

development phases, starting from requirements

engineering, via architecture design, component
engineering, and implementation to testing.

During this course, the students (divided into

teams of 5–6 students) typically follow a waterfall

process model, i.e., all students are involved in all

activities within these phases. The problem to be

solved is typically provided by the university, often

in collaboration with a third party delivering

requirements, but not from an industry context.
This project also has a strong focus on high-quality

documentation, i.e., the students are asked to create

and deliver detailed specification documents at the

end of each phase.

Finally, within the scope of their master studies,

the students can now sign up for the capstone

project. At this stage, they already have a sound

knowledge and understanding from their bachelor
studies of the processes, methods, techniques, and

tools that are used to develop large and complex

software systems.

3.1.2 Learning objectives and expectations

As already mentioned in the introduction section,

the capstone project is offered as ‘‘Team-Based

Software Development’’ project, and this is, in

fact, one of the main learning objectives: The

students have to learn how to develop complex

software in a team. To address this learning objec-

tive, the students are now assigned to particular
software engineering roles and are in charge of the

corresponding responsibilities. These responsibil-

ities include the creation and delivery of high-

quality specifications as well as consolidation of

the achieved results and communication to the

other team members. On top of that, the students

experience software development in a real-life pro-

ject with an industry customer providing a problem
to be solved. That is, they are fully responsible for

eliciting and negotiating the customer’s require-

ments.

When talking to students that have participated

in these projects within the last years they often say

that ‘‘this project was the best experience I had

during my studies’’. In order to get a better under-

standing of the particular expectations that students
have when registering to these projects, we have

recently conducted a survey within the scope of the

current capstone project (which officially started 1

October 2012). The aim of this survey was to first

collect the students’ expectations at the beginning of

the project and then evaluate the fulfillment of these

expectations at a later stage in the project.

One week before the official start of the project,
the students were asked to share their thoughts on

the question ‘‘What do you expect to learn/experi-

ence in the upcoming project?’’ by filling out a sheet.

These thoughts were consolidated and classified

into expectations related to ‘‘real-life project with

customer from industry’’, ‘‘team work’’ and ‘‘spe-

cific software engineering disciplines’’ (see Table 1).

After the second iteration of the project (i.e., 7

Anne Hess et al.1092

Fig. 5. Sprint planning and status information on Agile Dashboard.

weeks after project kick-off), we evaluated the

fulfillment of these expectations by using a ques-

tionnaire. In this questionnaire, the students were

asked to rate a given statement related to the

captured expectations on a scale from 1 to 5 (with

1= ‘‘I totally agree’’, 2 = ‘‘I agree’’, 3 = ‘‘neither/
nor’’, 4 = ‘‘I disagree’’, 5 = ‘‘I totally disagree’’).

Each statement started with ‘‘The project enables

me to. . .’’ and supplemented with the respective

expectation. For example: ‘‘The project enables me

to collaborate in an international teamof students’’.

The results of the captured and consolidated expec-

tations as well as the assessment of their fulfillment

in the current project are summarized in Table 1.
The collected expectations and results show, that

such capstone projects offered as collaboration

projects between industry and university provide

great opportunities for students. Especially the

interaction with the customer, both in requirements

elicitation interviews/discussions and presentations

of results, are really beneficial for the students.

During these meetings, the students basically
experience how to cope with possibly unclear

requirements at the beginning of a project and

learn the usefulness of certain techniques such as

low-fidelity prototypes (e.g., paper prototypes) for

getting a better and clearer understanding of the

requirements. ‘‘Selling’’ their achievements to the

customer in presentations, sharing their experi-

ences, and possibly convincing the customer regard-
ing their solutiondecisions is also a very positive and

motivational experience for the students. This also

includes the fact that the results produced for the

customers are of real value to them and will be

reused. This is also a very motivational aspect for

the students to develop something ‘‘useful’’.

Depending on the scope of the project, the

students also get very good insights into current

software engineering processes on the customer

side. A very good example illustrating this possibi-

lity was the ‘‘Agile Dashboard’’ project (introduced

in section 2.3). During the requirements elicitation

activities, the students got directly in touch with
agile software development teams at JohnDeere. To

get a better understanding of the requirements, in

particular of the information to be displayed on the

dashboard, the students were given the opportunity

to participate in daily stand-up meetings and

learned what it meant to fill backlogs for more

than five Scrum teams worldwide. In addition, the

other projects also enabled the students to gain very
deep insights into the agricultural domain, current

products, and open challenges related to their

development.

3.1.3 Challenges

As stated above, one of themain learning objectives

associated with the capstone project is related to

experience working in a team. And this is indeed

also one of the greatest challenges. As reflected in

the expectations summarized in Table 1, the stu-

dents form an international team of students with

different backgrounds. That is, besides Computer
Science students enrolled at the University of Kai-

serslautern, students enrolled in the so-called ‘‘Eur-

opean Master of Software Engineering’’ program

are also given the opportunity to participate in this

project. These students come from different univer-

sities in Europe and spend two or more semesters in

Kaiserslautern. Thus, the students typically do not

know each other at the beginning of the project and
have different educational backgrounds, which is

also quite challenging.

To allow the students to get a good start into team

The Role of Collaborative Capstone Projects—Experiences from Education, Research and Industry 1093

Table 1. Expectations from students’ viewpoints and their fulfillment in current capstone project 2012
(average values are calculated based on the questionnaires filled out by 20 out of 24 students; 1 = ‘‘I totally
agree’’, 2 = ‘‘I agree’’, 3 = ‘‘neither/nor’’, 4 = ‘‘I disagree’’, 5 = ‘‘I totally disagree’’)

Real-life project with customer from industry
Experience interaction with a customer 1.85
Understand which parts of the project are more important for the customer 1.95
Experience how to elicit customer requirements 2.15
Bring software engineering (SE) concepts learned in class to a real work environment 1.95
Develop code for real-life tasks 1.80
Experience Fraunhofer IESE SE knowledge 1.95
Experience Fraunhofer IESE work environment 1.85

TeamWork
Collaborate in an international team of students 1.5
Gain the technicalities and skills to work in a team 1.9
See what appropriate communication in a team should look like 1.9

Specific software engineering disciplines
Extend and improve programming skills and knowledge 2.35
Experience how requirements are brainstormed into design 2.05
Get insight into requirements engineering and business analysis 2.05
Learn how to create and manage priorities of tasks 2.15
Get acquainted with different tools and technologies used during a SE project 1.95

work, the capstone projects typically start two to

three weeks before the other lectures start at the

university in the respective semester. During these

weeks, the students basically work full-time, which

enables them to get to know each other, obtain a

common understanding of the goals and require-
ments to be achieved in the project, and familiarize

themselves with their assigned roles and responsi-

bilities.

Once the lectures start, the students have to care-

fully coordinate and plan their activities, and com-

municate the current status and possible problems

on a regular basis. This is really one of the most

difficult tasks for them, as they are also expected to
deliver good results at the end within a rather short

development time.

3.2 Supervisors’ viewpoint

3.2.1 Objectives and challenges

As already stated in the introduction of this article,

the role of a supervisor is challenged by various

questions, such as how to support the students in

transferring theoretical knowledge in such a project

setting, or how to enable the students to experience

the benefits of such real professional scenarios com-
pared to scenarios provided by university settings.

To overcome this challenge, these capstone pro-

jects have to be planned and organized carefully,

which is one of the main responsibilities of the

supervisor in charge of organizing the project

from theAGSE side. The planning activities already

start fourmonths before the official project start. At

this stage, the supervisor has to approve and discuss
practical problems to be solved in the project

together with the customer. This is important in

order to announce the project at the university, but

also to organize suitable support for the students.

This includes both methodological support pro-

vided by a team of researchers working at Fraunho-

fer IESE with competencies in the various software

development disciplines relevant within a particular
project as well as technical support, such as prepar-

ing and setting up a suitable technical infrastructure

and development environment.

Apart from these challenges, such capstone pro-

jects are also very beneficial for researchers acting as

supervisors: They provide a very good setting for

designing and running empirical studies such as

experimental comparisons or case studies aimed at
investigating particular aspects of newly developed

software engineering methods. In the past, several

empirical studies have been conducted during these

capstone projects, for example [8, 9].

3.2.2 Recommendations based on lessons learned

Supervisors must be very talented project managers:

The skills required by the supervisors being respon-

sible for managing the overall capstone project are

manifold. They need to manage an industry-style

project with a team of typically less experienced

software engineers. Thereby, the expectations of the

students enrolled in the project are quite high as they
have not yet experienced the challenges ofmanaging

a project in an industrial setting and expect an

extremely smooth course of the project. Supervisors

in the role of project coordinators/managers need to

consider the different concerns of various stake-

holders that even might be in conflict. The customer

expects a running prototype with the functionality

discussed up-front, the students expect to get the
chance to learn without too much time pressure,

researchers are interested in empirical results which

requires amore or less strict adoption of pre-defined

methods, processes, and tools under investigation.

Supervisors that typically have a university back-

ground and by themselves have not led many large

projects, especially in an industrial setting, are

challenged by all these issues.
Iterative software development is very beneficial

for capstone projects: As part of the project planning

activities, decisions have to be made regarding

suitable software engineering process models to be

followed during the project. In the Grower’s Note-

book project (see section 2.1), we followed a water-

fall approach. This proved tobequite efficient in this

project as some of the students already started a
little bit earlier than the official project kick-off and

did detailed requirements analysis beforehand.Also

in the Mobile Configuration Assistant project (see

section 2.2), we deliberately decided to follow a

waterfall approach initially, as the elicitation of

current configuration processes and an understand-

ing of the domain at the beginning of the project

were very crucial for the success of the project.
Therefore, the project started with detailed require-

ments analysis in which basically all students were

involved. Afterwards we parallelized development

activities in order to avoid ‘‘waiting times’’ for

students involved in downstream activities such as

coding and testing. That is, we divided the group of

13 students into two teams, with one team respon-

sible for UI design and testing, the other one for
architecture design and implementation. This

resulted in the problem that the students started

thinking in two different teams and did not manage

to communicate and align their results.

The setting of the Agile Dashboard project (see

section 2.3) was very suitable to decide upon an

iterative approach. This turned out to be very

beneficial as, for instance, both development and
testing activities started quite early in the first

iteration (i.e., after three weeks). In fact, the avail-

ability of early prototypical solutions was very

Anne Hess et al.1094

helpful for the students to get abetter understanding

of requirements and to get early experiencewith new

technologies. This is in fact a risk in waterfall

approaches as due to the late implementation

phase the prototype might not be implemented in

the end (especially if the students would have to
cope with new technologies).

However, iterative development also comes with

a challenge that is attributed to the typically short

development cycles and interrelationships of devel-

opment activities: The students have to understand

all the information needs of their own and other

roles of each development phase and align their

elicitation, documentation, and communication
activities to these information needs. In order to

support this, we asked the students in the current

project to elaborate an ‘‘artifact landscape’’ captur-

ing the flow of information between the various

roles involved in the development activities. This

landscape is intended to visualize which artifacts are

relevant for which role on what level of detail and

for which task. We expect that reflecting their
experience in the form of such a landscape will be

very beneficial for the students and help them

understand that providing the right information at

the right point in time on the right level of detail is

very crucial when working in a team.

Regular intermediate presentations with the custo-

mer should be planned: During all of our projects, we

planned and conducted intermediate presentations
to the customer. This was also beneficial for the

students, as they had a chance to present and discuss

initial ideas quite early in the project and to validate

their understanding of the customer requirements.

Furthermore, these presentations also supported

the elicitation of requirements quite well, as we

experienced in the Agile Dashboard project where

the requirements were not really clear and detailed
at the beginning. This was the chance for the

students to start thinking about creative ideas.

They presented their ideas in the form of early

paper prototypes at the first intermediate meeting.

This technology was really helpful for eliciting and

negotiating more detailed requirements. Finally,

early positive customer feedback turned out to be

very motivational for the students.
Each student should take over more than one role:

During our history of projects, we observed that the

students started thinking in different ‘‘teams’’ when

they were assigned to a particular role. They talked

about ‘‘the requirements engineering guys’’ or ‘‘the

architects’’ and had problems communicating their

current ideas and status to the other disciplines. To

interfere this thinking and to increase awareness and
understanding of their own role as well as respon-

sibilities of other roles, we assigned the students to a

combination of two different roles. This means that

a student assigned to the role combination ‘‘require-

ments engineer and tester’’ is mainly responsible for

the coordination of requirements engineering activ-

ities and for the delivery of requirements reports.

But it is also expected that the student should also be

actively involved in testing activities. We consider
such role assignments as very effective because the

students gain a deeper insight into different disci-

plines, and the communication flow between differ-

ent disciplines can be supported as well. In the

current project, we asked the students to define

and agree their individual roles and responsibilities

within the team by creating a persona [10] for each

student (e.g., dependent on competencies or inter-
ests). This was a nice exercise at the beginning of the

project and helped the students to get to know each

other a little bit.

Experiences should be discussed in retrospective

meetings: As the students should experience a soft-

ware development project in a real life setting, they

should also face typical real-life problems, e.g., how

to cope with unclear requirements or delays due to
inappropriate communication. Of course, some of

these problems could be avoided upfront by taking

suitablemitigation strategies by the supervisors, but

in fact we consider such ‘‘negative experiences’’ with

problems and their consequences as valuable experi-

ence for the students. Therefore, we established

retrospective meetings during the project where

the students are expected to share their positive
experiences as well as particular problems, and

discuss possible solution or mitigation strategies.

At the kick-off meeting of the current project, we

also elicited important factors when working in a

team and had the students elaborate ideas on how

these factors can be achieved (such as regular status

meetings in the team to support communication and

coordinate activities). At the end of the project, we
plan to confront the students in the final retro-

spective with their initial ideas so that they can

reflect onwhichmethods turned out to be successful

and which did not.

Short tutorials should be used to brush up key

knowledge required in the project: We experienced

that students cannot easily adopt the knowledge

they gathered in lectures from the beginning of the
project without some brush up of their knowledge.

Typically, they participated in the related lectures

some time ago. Furthermore, students from other

universities joining the master course and the cap-

stone project might have a different knowledge base

that should be aligned with the rest of the team.

Therefore, in half-day tutorials on requirements

engineering, architecture, etc. key knowledge is
presented again to polish up the students’ minds.

Short tutorials can also be used to introduce tech-

nologies to be used in the project that are not yet

The Role of Collaborative Capstone Projects—Experiences from Education, Research and Industry 1095

familiar to the students. In our capstone projects

involving iOS (such asMobile Configuration Assis-

tant, see section 2.2) we introduced the students to

the ObjectiveC programming language and Apple’s

XCode development environment because the

majority of the students never dealt with such
technologies and tools.

3.3 Customer’s viewpoint

3.3.1 Objectives and challenges

Capstone projects provide unique opportunities for

industrial partners to develop competencies within
the technicalandbusinesscommunities.The intent is

to acquire students who have an interest in the

subject area as well as a newly acquired knowledge

of the most modern design, technology, and archi-

tecture skills. As a concept, the combination of

enthusiasticandengagedstudentswithachallenging

problemyieldsextraordinarysolutionsatapricethat

would be hard to reproduce within the industry.
Though the organization andmanagement of the

student resources is left to the university leaders, the

organization of a capstone project by the industrial

partner for its own use is equally important and

critical for success.

In fact, capstone projects also present challenges

in the formof project organization and socialization

of their output and purpose. Industrial partners
should take care to select projects that are both

important to the business and will provide challen-

ging experiences for the students. It is equally

import to engage the business as they need to

develop competencies in the use of these technolo-

gies in parallel. Project ownership must be shared

between the business and technical staff members.

Both enrich the project deliverables and the student
experience.

Capstone project planning should be approached

differently than typical operational projects, with

more emphasis on organizational learning and net-

work development than on near-term deliverables.

Technical organizations can use these investments

to engage their employees and excite their business

partners regarding new capabilities and opportu-
nities.Network development between the university

and the industry partner should also be a priority as

it can lead to a recurrent source of new skills and

innovative ideas.

Finally, the challenges faced by industrial part-

ners are that staff members are not practiced in

project selections that review multiple design alter-

natives.Most project managers will seek to limit the
scope of a project to a single design too early in the

project phase. The creation of sustaining networks

outside the organization is not a practiced skill.

These activities are often viewed as unnecessary

and time consuming. Industrial partners are chal-

lenged to engage their employees and to excite their

curiosity regarding changes in their approach to

problem solutions and product content. Capstone

projects offer an opportunity to do this. However,

industry partners are challenged by the time it takes
to involve their best resources and incrementally

transfer capstone learning.

Themost effective project organization will lever-

age a partner’s critical skills, knowledge of the

problem statement, and understanding of how to

monetize the ideas. Successful project organization

by the partner must focus on organizational learn-

ing. Projects should produce valued results.

3.3.2 Customer reflections on project history

In the following, some customer reflections on the

previously introduced projects are summarized.

The Grower’s Notebook project (see section 2.1)

generally delivered the expected result. A prototype

setup could be realized to serve as a test-bed for
investigating upcoming technologies regarding

mobile devices and Cloud-based data storage. The

students were able to produce a result incorporating

various technologies that were new to them includ-

ing iOS and the Google Apps Engine. The key

functionality to demonstrate the scenario (illu-

strated in Fig. 1) has been implemented. In follow-

up projects, the implemented prototype was suc-
cessfully used as a basis for further technology

investigations.

However, someof the initially planned features of

the prototype could not be realized within the

capstone project. This did, for example, concern

certain security features, which were initially speci-

fied and designed into the architecture, but due to

time constraints were not implemented till the
project’s end. Multiple reasons that slowed down

progress during the project could be identified. On

the one hand, students were not familiar with the

agricultural use case the system was intended for.

For this reason, incorrect assumptionsweremade in

some points, even though several requirements

analysis meetings took place with the industry

partner. On the other hand, the applied mobile
device and cloud technologies as well as the corre-

sponding development tools were new to most

participants. In addition, due to the restricted

amount of time, the students were divided into

two groups working in parallel. It was found that

due to inefficient alignment between the teams,

some parts of the architecture, the UI, and the

already implemented software had to be reworked,
causing additional effort.

In summary, considerable lessons were learned

from the capstone project in terms of how such a

short-term effort can be conducted efficiently. Valu-

Anne Hess et al.1096

able insights were gained regarding aspects and

circumstances that can potentially slow down the

progress of such a project.

While theMobile Configuration Assistant project

(see section 2.2) was successful as a technical evalua-

tion and functional demonstration, it failed in its
ability to engage product program leaders who

stood the most to benefit from its results. These

failures were the results of incomplete project orga-

nization by the industry partner and unavailability

of critical stakeholders.

During project execution, the capstone team was

supported by partner product architects, customer

services staff, product managers, and advanced
marketing staff. These resources ensured that the

project remained on target to solve the business

problem, deliver a proof of concept that could be

realized in production, and delivered a user experi-

ence thatmet the needs of both an expert and a lesser

skilled user. The project addressed the complexity of

detailed code structures related to creating config-

uration applications and represented the needs of
the second stakeholder, the application developer.

It is this second set of stakeholders whose needs

were addressed, but involvement was unintention-

allyminimized,which turnedout tobecomea source

of failure. In this case, the failure to engage and

excite the production developers who were respon-

sible for current deliverables created a disruption in

the adoption of these project results into future
product program planning. The approach demon-

strated by the prototype created a gap between the

incumbent solutions and emerging technology sup-

porting model-based solutions. As a result, the

developers rejected the concepts in part because

the project was not organized to develop their

knowledge and competencies with the solution.

In summary: The project was extremely success-
ful on many important dimensions of organiza-

tional learning but failed to deliver all that it could

have to improve the products program.

In theAgileDashboard project (see section 2.3) the

students surprised the customer in a very positive

way and delivered a very nice visualization that is

now in use at the ISG of John Deere in Kaiserslau-

tern, Germany as well as in Des Moines, USA.
Initially, the software was intended to be a typical

Windows C++ application. This was mainly

because of the knowledge and experience of the

project stakeholders at ISG. The students listened

to this request but came back to ISG a few days later

with a quite different approach: They clearly men-

tioned that amodern application is web-based using

a client-server architecture that can easily be
extended to mobile devices or multiple clients

when more screens are needed. Also, the entire

visualization should be created using HTML. This

was great feedback, of course. It was clearly the

better approach for the project. It showed the

students’ minds were not limited by the few tech-

nologies that are introduced in a department over

the years and thatmost employees are familiar with.

So in addition to the project result itself, which was
great, it helped to trigger the employees to start

thinking differently and to look at other technolo-

gies as well. This effect is similar to the one achieved

by companies running Hackathons or having Inno-

vation Days.

3.3.3 Recommendations based on lessons learned

The following list provides practitioner guidelines

for supporting the organization of successful cap-

stone projects by an industry partner.

Select important problems that are both needed

and supported by your company. Do not make the

assumption that a project of little interest to your

organizationwill be of interest to the students. Also,

you will be investing some of your most talented
resources to help guide these projects. This invest-

ment requires that these problems matter.

Secure both technical and business ownership in the

project. It is easier to value the technical learning of a

capstone project than the development of business

competencies that provide new business opportu-

nities. Use these projects to develop an understand-

ing and competencies in the business.
Select problems in which you want to evaluate

multiple solutions or when a solution is not known.

If you know how to deliver a solution, then that

project should be done internally or by a commer-

cial consultant, not as a capstone project. Such

projects really just need to be done cost-effectively.

Capstone project candidates should include an

element of uncertainty related to the solution
method. Be willing to explore the alternative solu-

tion paths provided by the capstone team and

consider that the outcome you envisioned during

planning may not be the outcome of the project.

Experience states that project outcomes that are

very different from those proposed during the plan-

ning stage are oftenmore valuable because they take

advantage of an innovation made possible through
the diversity of the team thinking.

Engage the organization to ensure that there are

paths for learning and adoption by both the technical

and business stakeholders. Technical members

should be engaged to review the technical approach

and merit of the solution developed. Business sta-

keholders need to understand the possibilities that a

capstone project offers. Together these stakeholders
should be responsible for evaluating and, when

appropriate, transferring the proof of concepts

created by the capstone project into product road-

maps.

The Role of Collaborative Capstone Projects—Experiences from Education, Research and Industry 1097

Consider the above requirements when selecting

your industrial project lead. Consider also that your

best operational project managers may not be

appropriate leaders of a capstone initiative. Cap-

stone project management should focus on

organizational learning, on developing employee
engagement, and on creating excitement for the

solution. Project deadlines, deliverables, and pro-

ject management should remain the domain of the

university students and staff, as these are funda-

mental lessons for student participants. Industry

partners should be willing to compromise on deli-

verables in support of advances in learning and

innovative solutions.
Finally, good operational project managers are

effective because they quickly reduce the scope of a

project, kill disruptions that impede forward pro-

gress, and focus on tangible deliverables with

immediate and clear value. These are appropriate

ambitions for projects done with consultants but

may reduce your ability to innovate on a solution

and reduce the value of a capstone project. It also
limits the partner’s ability to maximize innovation,

which is a key benefit of doing capstone projects.

4. Conclusion

From an educational viewpoint, capstone projects

defined as university-industry collaborations pro-
vide the potential of being very beneficial especially

in graduate education.

During a history of successfully conducted pro-

jects over several years between the Software Engi-

neering Research Group headed by Prof. Rombach

at the University of Kaiserslautern, the Fraunhofer

IESE, as well as JohnDeere the authors have gained

experiences comprising objectives, benefits but also
challenges that come with such projects. These

experiences supplemented with recommendations

derived from lessons learned are discussed from

three different viewpoints: (1) students, who have

the chance to apply theories learned during lectures

in a realistic project setting; (2) supervisors and

researchers, who support the students in applying

methods during the project; and (3) customers, who
provide specific problems to be solved by the

students.

The most valuable learning objectives from the

students’ viewpoint (that go beyond learning objec-

tives of practical assignments during classes or even

practical projects defined by faculty members) are

related to the interaction with a real customer and

working on a real problem in a realistic setting. This
enables students to face typical real-life problems

that are similar to those they might also experience

after their university education in their jobs.

However, the success of such collaborative cap-

stone projects is also strongly dependent on careful

planning, management and organization. That is,

the supervisor being in charge of coordinating these

projects from the university side has to have mani-

fold skills in order to cope with the challenges that

come with these projects and to fulfill concerns of
different stakeholders involved in the project.

Finally, from the customer’s viewpoint, the role

of capstone projects is to explore technologies and

business models outside the constraints of an orga-

nization that must produce a product for profit.

Thus capstone projects provide access to new think-

ing and increase the diversity of culture, knowledge,

and curiosity of an organization when solving
complex problems. While the outcome is typically

a technical solution, a capstone project provides a

safe environment for organizations to create global

teams, gain knowledge of new technologies, and

create new business competencies. Capstone pro-

jects also enable an organization to observe poten-

tial employees on a technical and cultural basis and

make it easier to select those who have the needed
skills and fit within the organization’s culture.

Finally, capstone projects provide unique opportu-

nities for industrial partners to develop competen-

cies within the technical and business communities.

To conclude, the concept of a capstone project is

simple in nature, but the successful implementation

of such aproject becomes a complex activity if it is to

ensure that the needs of the customer, the university,
research institutes and the students are fulfilled. The

experiences shared in this article could serve as

valuable information and as guidelines for other

universities and industry companies intending to

plan and organize collaborative projects of this

kind.

References

1. E. Ras, R. Carbon, B. Decker, and J. Rech, Experience
Management Wikis for Reflective Practice in Software Cap-
stone Projects. IEEE Transactions on Education 50(4),
November 2007, pp. 312–320.

2. E. P. Katz, Software Engineering Practicum Course Experi-
ence. In Proceedings of the 2010 23rd IEEE Conference
on Software Engineering Education and Training (CSEET
’10). IEEEComputer Society,Washington, DC,USA, 2010,
pp. 169–172.

3. R. Bareiss and E. Katz, An exploration of knowledge and
skills transfer froma formal software engineering curriculum
to a capstone practicum project. In Proceedings of the 2011
24th IEEE-CS Conference on Software Engineering Educa-
tion and Training (CSEET ’11). IEEE Computer Society,
Washington, DC, USA, 2011, pp. 71–80.

4. D. Rombach, J. Muench, A. Ocampo,W. S. Humphrey and
D. Burton, Teaching disciplined software development.
Journal of Systems and Software. 81(5), May 2008, pp. 747–
763.

5. D. Rombach, A Process Platform for Experience-Based
Software Development. In Software Reuse—Requirements,
Technologies and Applications. Proceedings of International
Colloquium of the Sonderforschungsbereich 501University of

Anne Hess et al.1098

Kaiserslautern Computer Science Department Kaiserslau-
tern, March 10–11, 2003, pp. 47–57.

6. Rally Software, http://www.rallydev.com/, last visited
November 2012.

7. JenkinsContinuous IntegrationServer, http://jenkins-ci.org/,
last visited November 2012.

8. M. Naab, Enhancing Architecture Design Methods for
Improved Flexibility in Long-Living Information Systems,

PhD Theses in Experimental Software Engineering, Fraun-
hofer IRB Verlag, 41, 2012.

9. R. Carbon, Architecture-Centric Software Producibility
Analysis, PhD Theses in Experimental Software Engineering,
Fraunhofer IRB Verlag, 38, 2012.

10. T. Adlin and J. Pruitt, The Essential Persona Lifecycle: Your
Guide to Building and Using Personas, Morgan Kaufmann,
Burlington, MA 01803, USA, 2010.

Anne Hess holds a German Diploma degree in Computer Science from the Saarland University of Saarbruecken,

Germany. SinceOctober 2006, she has beenworking as a researcher at the Fraunhofer Institute for Experimental Software

Engineering (Fraunhofer IESE), where she is assigned to the requirements engineering group in the department

‘‘Information Systems Development’’. Since 2010 she has been responsible for organizing and coordinating capstone

projects at theAGSE of theUniversity ofKaiserslautern. Furthermore, she also providesmethodological support in these

projects in the field of requirements engineering.

Dieter Rombach studied mathematics and computer science at the University of Karlsruhe and obtained his Ph.D. in

computer science from the University of Kaiserslautern (1984). Since 1992 he has held the Software Engineering Chair in

the Department of Computer Science at the University of Kaiserslautern. In addition, he is the founding and executive

director of the Fraunhofer Institute for Experimental Software Engineering (Fraunhofer IESE) in Kaiserslautern.

Previous career steps included the Institute for Data Processing in Technology at the Karlsruhe Nuclear Research

Center (scientist; 1978–79) and the Department of Computer Science at the University of Kaiserslautern (scientist; 1979–

1984). This was followed by positions as a guest professor at the University of Maryland and at NASA (1984–1986), as a

professor for computer science at theUniversity ofMaryland (1986–1991), and as a professor at the Institute forAdvanced

Computer Studies at the University of Maryland and project manager at the Software Engineering Labor (SEL) at

NASA’s Goddard Space Flight Center (1986–1991). Prof. Rombach spent the summer semesters of 1988 and 1989 as a

visiting professor at the Software Engineering Institute of Carnegie Mellon University in Pittsburgh, USA.

Ralf Carbon holds a diploma (2002) and a doctor’s degree (2012) in computer science from the University of

Kaiserslautern. He was a member of the AGSE of the University of Kaiserslautern from 2002 to 2005. Since then he is

a researcher at Fraunhofer IESE. From2004 to 2010 hewas responsible for organizing and coordinating capstone projects

involving the AGSE of the University of Kaiserslautern, Fraunhofer IESE and various industrial customers including

John Deere. His personal research focuses on Software Architecture and Mobile Apps.

Daniel F. Murphy is an Enterprise Architect, located at the Moline Technology Innovation Center. He holds diploma

degrees in electronics, computer science, and business administration. He has worked at John Deere since 1979 holding

multiplemanagement roles in product engineering, information technology, and innovation leadership.He has sponsored

and participated in capstone projects between JohnDeere and theFraunhofer IESE.He remains an active contributor and

is involved in various scientific activities supporting vehicle architecture and advance information technology.

Michael Hoeh is Manager Software Engineering, Decision Support in the Intelligent Solutions Group located in the

EuropeanTechnology InnovationCenter.He holds a diploma degree in electrical engineering and is with JohnDeere since

1998where he started as embedded softwaredeveloper in thePrecisionFarming group. In 2005he initiated the contactwith

Fraunhofer IESE and he is still supporting the cooperation between the institute and John Deere. He is an active

contributor to capstone projects and is involved in various scientific activities around software engineering and

architecture.

Christian Bartolein holds a diploma degree in computer science received from the University of Mannheim. From 2004

until 2009 he worked as a research assistant at the Automation Lab of the University of Heidelberg. Since 2009 he is with

the Intelligent Solutions Group at the John Deere ETIC located in Kaiserslautern. As part of the Advanced Engineering

amongst other responsibilities he worked on mobile device projects during this time.

The Role of Collaborative Capstone Projects—Experiences from Education, Research and Industry 1099

