Contents

Contributions in: Simulations and Simulators, Web-based Instruction and Evaluation, Cooperative Learning, Assessment, Curriculum Design and Integration, Sustainability, Creativity, STEM Learning, and International Experiences

Ahmad Ibrahim	215-216	Editorial
Joel D. Hewlett and Bogdan M. Wilamowski	217–224	SPICE as a Fast and Stable Tool for Simulating a Wide Range of Dynamic Systems
T. J. Mateo Sanguino and J. M. Andújar Márquez	225–237	3D-RAS: A New Educational Simulation Tool for Kinematics Analysis of Anthropomorphic Robotic Arms
Fermín Sánchez, David Megías and Josep Prieto Blázquez	238–247	SiMR: A Simulator For Learning Computer Architecture
Victor R. L. Shen and Cheng-Ying Yang	248-256	Intelligent Multiagent Tutoring System in Artificial Intelligence
Piroska Stanic Molcer and Vlado Delic	257-265	Exploring the Effectiveness of Interactive On-line Exercises in Project Accomplishing in the Course: Intelligent Control Systems
Luis Paya, Oscar Reinoso, Fernando Torres and Santiago T. Puente	266–283	A Web-based Platform for Remote Interaction with Mobile Robots in Higher Education
Nir Keren, Steven A. Freeman, Jay D. Harmon and Carl J. Bern	284–291	Testing the Effectiveness of an On-Line Safety Module For Engineering Students
Nuria Forcada, Miquel Casals, Xavier Roca, Marta Gangolells and Alba Fuertes	292-302	Improving Design Competences: Experiences in Group-based Learning Based on ICTs in a Blended Learning Environment
Chin-Min Hsiung	303-309	Empirical Investigation into the Ability-condition Interaction Effect of Cooperative Learning
Y. Cinar and A. Bilgin	310-322	Peer Assessment for Undergraduate Teamwork Projects in Petroleum Engineering
Mukasa E. Ssemakula, Gene Liao, R. Darin Ellis, Kyoung-Yun Kim, Celestine Aguwa and Shlomo Sawilowsky	323-332	Manufacturing Integrated Learning Laboratory (MILL): A Framework for Determination of Core Learning Outcomes in Engineering Curricula
Ganesh Balasubramanian, Vinod K. Lohani, Ishwar K. Puri, Scott W. Case and Roop L. Mahajan	333–353	Nanotechnology Education—First Step in Implementing a Spiral Curriculum
P. Ortiz, J. Montoya, C. Hernández, A. Manrique and W. Nieto	354–363	Thermodynamic Approach in Chemical Plant Design: Teaching Chemical Engineering in the First Year
C. Depcik, A. Hausmann, J. Lamb, B. Strecker, C. Billinger, W. Pro and M. Gray	364–379	Incorporating Sustainable Automotive and Energy Design into the Engineering Curriculum using Remote Control Cars
Shun Takai	380-388	Pre-Post Assessment of Creativity Methods in an Experimental Course
Lyn D. English, Peter Hudson and Les Dawes	389–398	Perceived Gender Differences in STEM Learning in the Middle School
Shi-Jer Lou, Yi-Hui Liu, Ru-Chu Shih, Shun-Yuan Chuang and Kuo-Hung Tseng	399–410	Effectiveness of On-line STEM Project-Based Learning for Female Senior High School Students
Raymond Lynch and Michael Walsh	411–421	Second Level Education and the Decline in Popularity of Engineering within an Irish Context
Hoda Baytiyeh and Mohamad K. Naja	422–430	Contributing Factors in Pursuit of a Ph.D. in Engineering: The Case of Lebanon
Feng-Kuang Chiang, Heinz Dietrich Wuttke, Rainer Knauf, Chung-Shan Sun and Tai-Cheng Tso	431–446	Attitudes of German University Students towards the Integration of Innovation Information Technology
Hua-Li Jian	447–457	Experiences Teaching Norwegian Engineering Students from a Taiwanese Perspective
B. Abdul, B. J. Van Wie, J. T. Babauta, P. B. Golter, G. R. Brown, R. B. Bako, A. S. Ahmed, E. G. Shide, F. O. Anafi and O. Olaofe	458–476	Addressing Student Learning Barriers in Developing Nations with a Novel Hands-on Active Pedagogy and Miniaturized Industrial Process Equipment: The Case of Nigeria
	477	Guide for Authors