Contents

Contributions in: PBL, Innovation, Team work, Creativity, Entrepreneurship, Service Learning, Leadership, Engineering Thinking, Motivation, Academic Performance, Laboratory Development, STEM, Outreach, Professional Skills, International Engineers, Technological Tools, Mechanical Engineering, Computer Engineering, Process Automation, Control Systems, Manufacturing

Ahmad Ibrahim	1–2	Editorial
Fenzhi Zhang, Anette Kolmoz and Erik de Graaf	3–16	Conceptualizations on Innovation Competency in a Problem- and Project- Based Learning Curriculum: From an Activity Theory Perspective
Kali Prasad Nepal	17–22	Comparative Evaluation of PBL and Traditional Lecture-based Teaching in Undergraduate Engineering Courses: Evidence from Controlled Learning Environment
Andreas Jaeger, Walter Mayrhofer, Peter Kuhlang, Kurt Matyas and Wilfried Sihn	23-32	Total Immersion: Hands and Heads-On Training in a Learning Factory for Comprehensive Industrial Engineering Education
Aditya Johri, Christopher Williams and James Pembridge	33–44	Creative Collaboration: A Case Study of the Role of Computers in Supporting Representational and Relational Interaction in Student Engineering Design Teams
Sarah Zappe, Kirsten Hochstedt, Elizabeth Kisenwether and Angela Shartrand	45–62	Teaching to Innovate: Beliefs and Perceptions of Instructors Who Teach Entrepreneurship to Engineering Students
Shi-Jer Lou, Chih-Chao Chung, Ru-Chu Shil Huei-Yin Tsai and Kuo-Hung Tseng	h, 63–76	Design and Verification of an Instructional Model for Blended TRIZ Creative Learning
David M. Bowen	77–84	Technological Innovation and Engineering Education: Beware the Da Vinci Requirement
Ryan Shelby, Farzana Ansari, Eli Patten, Lisa Pruitt, Gretchen Walker and Jennifer Wang	85–98	Implementation of Leadership and Service Learning in a First-Year Engineering Course Enhances Professional Skills
Hsiu-Ping Yueh	99–106	Engineering Students' Perceptions of and Reflections on Portfolio Practice in Leadership Development
Elena Trotskovsky, Shlomo Waks, Nissim Sabag and Orit Hazzan	107–118	Students' Misunderstandings and Misconceptions in Engineering Thinking
Shane Brown, David Street, Fred Barker and Larry Flick	119–131	Motivational Factors Influencing In-Class Peer Tutors in Engineering: A Functional Approach
Stuart Palmer	132–138	Modelling Engineering Student Academic Performance Using Academic Analytics
M. Jouaneh, J. Boulmetis and W. Palm, III	139–153	Take-Home Experiments in Engineering Courses: Evaluation Methods and Lessons Learned
Ibrahim Zeid, Jessica Chin, Sagar Kamarthi and Claire Duggan	154–169	New Approach to Effective Teaching of STEM Courses in High Schools
Ning Fang, Karen Nielson and Stephanie Kawamura	170–180	Using Computer Simulations with a Real-World Engineering Example to Improve Student Learning of High School Physics: A Case Study of K-12 Engineering Education
Magdalena Walczak, Jacek Uziak and M. Tunde Oladiran, Claudia Cameratti Baeza and Patricia Thibaut Paez	181–192	Industry Expectations of Mechanical Engineering Graduates. A Case Study in Chile
Sandra Ingram, Marcia Friesen and Anita Ens	193–204	Professional Integration of International Engineering Graduates in Canada: Exploring the Role of a Co-operative Education Program
Breno Barros Telles Do Carmo and Renata Lopes Jaguaribe Pontes	205–214	Collaborative Learning Concept Implementation through Web.2.0 Tools: The Case of Industrial Engineering Fundamentals' Discipline
Wira D. Mulia, David J. Fritz, Sohum A. Sohoni, Kerri Kearney and Mwarumba Mwavita	215–229	PLP: A Community Driven Open Source Platform for Computer Engineering Education
Daniela Perdukova and Pavol Fedor	230-238	Virtual Laboratory for the Study of Technological Process Automation
Dogan Ibrahim and Jamal F. Abu Hasna	239–247	Teaching PID Auto-Tuning Using a Low-Cost Control Kit
Giustina Secundo and Giuseppina Passiante, Aldo Romano and Pasquale Moliterni	248–262	Developing the Next Generation of Engineers for Intelligent and Sustainable Manufacturing: A Case Study
Mauricio Hincapié, Oscar Salas, Miguel Ramírez, Baltazar Carranza Itesm and Carina Viteri	263–273	Implementation of a Teleoperated Didactic Manufacturing Cell through Internet2 as a Means of Engineering Education
	274	Guide for Authors