Contents

Section I

Special Issue

Computer-Aided creativity enhancement in engineering education

Guest editors

Gaetano Cascini—Politecnico di Milano, Dipartimento di Meccanica Noel Leon Rovira—ITESM-Campus Monterrey, Centro de Diseño e Innovación de Productos

Ahmad Ibrahim	275-276	Editorial
Gaetano Cascini and Noel Leon-Rovira	277_279	Guest Editorial
Jennifer Harlim and Iouri Belski	280–290	Long-term Innovative Problem Solving Skills: Redefining Problem Solving
Marina Carulli, Monica Bordegoni and Umberto Cugini	291-303	An Integrated Framework to Support Design & Engineering Education
Denis Cavallucci and David Oget	304–317	On the Efficiency of Teaching TRIZ: Experiences in a French Engineering School
Niccolò Becattini, Yuri Borgianni, Gaetano Cascini and Federico Rotini	318–333	A TRIZ-based CAI Framework to guide Engineering Students towards a Broad-spectrum Investigation of Inventive Technical Problems
Valentino Birolini, Caterina Rizzi and Davide Russo	334–345	Teaching Students to Structure Engineering Problems with CAI Tools
Iouri Belski, James Baglin and Jennifer Harlim	346-354	Teaching TRIZ at University: A Longitudinal Study
Marco A. de Carvalho	355-364	IDEATRIZ—A Methodology for New Product Ideation
Shi-Jer Lou, Chih-Chao Chung, Wei-Yuan Dzan, Kuo-Hung Tseng and Ru-Chu Shih	365–379	Effect of Using TRIZ Creative Learning to Build a Pneumatic Propeller Ship while Applying STEM Knowledge
Carlos Rivera-Solorio, Alejandro J. García-Cuéllar and Abiud Flores	380–387	Design and Construction of a Boat Powered by Solar Energy with the Aid of Computational Tools

Section II

Contributions in: Service Learning, Gender Issues, Non-Technical Competencies, Professional Communicating, Project-Based Learning, Engineering Design, Design-Based Learning, Online Teaching, Blended Learning, Assessment, Modeling, Pneumatic Systems

Holly M. Matusovich, William Oakes and Carla B. Zoltowski	388-402	Why Women Choose Service-Learning: Seeking and Finding Engineering-Related Experiences
Elisabeth Larsson, Stefan Pålsson, Jarmo Rantakokko, Lina von Sydow and Michael Thuné	403–414	Gender-Aware Course Reform in Scientific Computing
Brenda M. Capobianco and Irene B. Mena	415-425	Longitudinal Profiles of Children's Conceptions of an Engineer
Richard LeBoeuf, Matías Pizarro and Ricardo Espinoza	426–438	Identification of Non-Technical Competency Gaps of Engineering Graduates in Chile
Tharwat El-Sakran, David Prescott and Mujo Mesanovic	439–449	Contextualizing Teamwork in a Professional Communication Course for Engineering Students
Steven C. Zemke and Diane L. Zemke	450-458	Cognitive Hindrances to Learning Mechanical Design
Oenardi Lawanto, Deborah Butler, Sylvie Cartier, Harry B. Santoso and Wade Goodridge	459–475	Task Interpretation, Cognitive, and Metacognitive Strategies of Higher and Lower Performers in an Engineering Design Project: An Exploratory Study of College Freshmen
Andrés Díaz Lantada, Pilar Lafont Morgado, Juan Manuel Munoz-Guijosa, José Luis Muñoz Sanz, Javier Echávarri Otero, Julio Muñoz García. Enrique Chacón	476–490	Towards Successful Project-Based Teaching-Learning Experiences in Engineering Education
Tanarro and Eduardo de la Guerra Ochoa		

Sonia M. Gómez Puente, Michiel 491-503 Empirical Validation of Characteristics of Design-Based Learning in van Eijck and Wim Jochems Higher Education Can B. Aktaş and Yıldırım Omurtag 504-509 Online Teaching of Engineering Statistics: A Comparative Case Study Lorenzo Moreno, Carina González, Teaching Computer Architecture using a Collaborative Approach: 510-519 Evelio J. Gonzalez, Beatrice Popescu and The SIENA Tool, Tutorial Sessions and Problem Solving Claudia O. L. Groenwald K. Jo Min, John Jackman and 520-532 Assessment and Evaluation of Objectives and Outcomes for Continuous Doug Gemmill Improvement of an Industrial Engineering Program R. Payri, J. Javier López, F. J. Salvador Development of a Methodology to Learn the Characteristics and 533-547 and P. Martí-Aldaraví Performances of Common Rail Injection Systems Based on Simulations with AMESim J. Falcão Carneiro, M. R. Barbosa, 548-563 An Introductory Undergraduate Course on Fluid Power Systems P. Abreu and F. Freitas 564 Guide for Authors