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One of the uses of EngineeringMathematics is to provide underpinning knowledge which is useful and often essential for

Engineering modules later in an undergraduate engineering degree course. It can be the case, however, that students

perceive distinct boundaries between an EngineeringMathematics module and Engineering modules and fail to link what

is being taught in both. The purpose here is to help alleviate this problem by incorporating a computer algebra system into

an Engineering Mathematics module, so making the teaching and learning process more accessible and meaningful,

providing studentswith amore realisticwayof howprofessional engineers tackle problems today, increasing student skills,

hopefully increasing their interest and finally breaking down the boundary alluded to above. The inclusion of the computer

algebra system gave students a better appreciation of how essential Engineering Mathematics is within Engineering

modules in general. However, its inclusion had a detrimental effect on interest. It was noted from the survey that the

students liked the hands-on and self-discovery approach.
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1. Introduction

EngineeringMathematics is usually used to provide
underpinning knowledge which is useful and often

essential for Engineering modules later in an under-

graduate engineering degree course. It can be the

case, however, that students perceive a distinct

boundary between the Engineering Mathematics

module(s) and Engineering modules by failing to

link what is being taught in both. Of course, many

engineering examples are usually incorporated into
the Engineering Mathematics curriculum using the

traditional textbook method, but these examples

are often quite restrictive in that they do not reflect

‘‘real’’ engineering problems. One way to break out

of this mold is to incorporate computer software

into the Engineering Mathematics module(s), so

providing students with a more realistic way of

how professional engineers tackle problems today,
increasing student skills, hopefully increasing their

interest and finally breaking down the boundary

alluded to above.

It is not easy to integrate computer technology

into traditional teaching and learning courses [1].

Very commonly the complexity of computer pro-

gramming and getting students to a suitable stan-

dard of programming can be daunting, and often
the wider ramifications have been overlooked,

underestimated or even denied [1]. Many surveys

have been carried out [2] to elicit schemes to start

tackling some of these difficulties with an emphasis

on the integration of computer algebra systems into

university teaching [3]. Even though computer alge-

bra systems have been used for some time in

engineering education, there is little in the literature
describing their effective integration and evalua-

tion. It is the purpose of the current work to

contribute to this by using proper experimental

rigour to show advantages and disadvantages of

using such a system.

What is integrated here is a computer algebra

system Mathematica [4, 5]. Although Mathematica

was chosen here, the current work could have been
carried out using many other computer algebra

systems, including the well-known Maple [6] and

part of the symbolic mathematics toolbox, Matlab

[7]. Computer algebra systems are gradually being

introduced into traditional mathematical courses in

an effort to make the teaching and learning process

more meaningful [8]. It is argued here that in

addition to making the teaching and learning pro-
cess more meaningful, computer algebra systems

have a wider, though sometimes implicit, use in that

they provide essential skills necessary during a

student’s future career. Technology in general is

being widely incorporated into teaching and learn-

ing of mathematical subjects, for example [9–11].

Slavit et al. [12] conducted an experimental study

with the purpose of identifying the effect of a
computer algebra system on students’ attitudes

and outcomes by using simulations and an instruc-

tional approach for teaching differential equations.

Godarzi et al. [13] conducted an experimental study

concerning the impact of a computer algebra system
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on the teaching of double integrals focusing on their

procedural and conceptual understanding. The

results showed that the experimental group per-

formed better than the control group. It has been

shown that conceptual understanding can be devel-

oped through procedural understanding and a
learning goal can be achieved if a computer algebra

system is properly utilized. This has also been shown

to lead to an improvement in students’ attitudes

towards learning mathematics [14].

2. Integration of computer algebra system

The computer algebra system, Mathematica was

integrated into the students’ Engineering Mathe-
matics curriculum with the primary aims of enhan-

cing cognitive development [15], exposing students

to modern professional practice and to break down

barriers perceived by students between engineering

mathematics and other engineering modules taught

in the degree course.

All students, including the students used as the

control group, had already been taught the rudi-
ments of the computer algebra system during a 12

week course (1 hour/week) during their previous

year of study.

For the course considered here, the engineering

mathematics course covered partial differential

equations, and vector calculus, was 12 weeks in

length, with two one-hour lectures and two two-

hour tutorials per week. The computer algebra
system was used during one of these two-hour

tutorials for one of the two groups tested. For

each of these software laboratories, a hand-out

consisting of the laboratory objective, a narrative

(including relevant theory), the task description and

additional necessary comments was distributed to

the students.

Six software laboratories were used during the
twelve week period entitled:

� Laboratory 1: To investigate the use of Lagrange

multipliers in engineering [16, 17].

� Laboratory 2: To investigate the use of Fourier

Series as approximations to input functions [16].

� Laboratory 3: Solution of the heat equation by
Fourier integrals and transforms [18].

� Laboratory 4: Exploration of usingMathematica

with the Divergence and Stokes’ theorems [16].

� Laboratory 5: Analysis of a single-span Euler-

Bernoulli beam [19, 20]

� Laboratory 6: Flow over and downstream of a

cylinder [18].

Students were asked to write short reports on each

of these laboratories and two long reports on two of

the laboratories.

2.1 Example—laboratory 5

To give an idea of the type of work involved in the

laboratories used, extracts of a student’s report for

Laboratory 5 is now presented.

Cantilever beam analysis

Consider a uniform beam of length L with cross-

section area A and second moment of area I with

any number of discrete elements (e.g. springs,

masses, oscillators) attached. With use of the
Euler-Bernoulli theory the governing equation of

a uniform beam can be written as:

EI
@4gðx; tÞ
@x4

þ �A
@2gðx; tÞ
@t2

¼ Fðgðx; tÞ� ð1Þ

where � is themass density of the beammaterial,E is

Young’smodulus, g is the function of deflection and

the operator F depends on the characteristics of the

attached discrete systems. For free transverse vibra-

tions, Equation 1 becomes:

EI
@4gðx; tÞ
@x4

þ �A
@2gðx; tÞ
@t2

¼ 0 ð2Þ

The natural frequencies associated with the beam

are harmonic in nature with gðx; tÞ ¼ GðxÞei!t
where ! is the natural frequency of the beam.

Putting this expression into Equation 2 gives:

d4GðxÞ
dx4

� �A

EI
!2GðxÞ ¼ 0 ð3Þ

This is a 4th order ordinary differential equation

with the general solution given by:

GðxÞ ¼C1 cos�xþ C2 sin�xþ C2 cosh �x

þ C4 sinh�x ð4Þ

where the constants of integration Ci are specified

according to the boundary conditions.

Here, for the beam illustrated onFig. 1, the lowest

four eigenfrequencies !i together with the corre-

sponding eigenmodes XiðxÞ are to be determined.
The material and geometry variables to be speci-

fied are: density (�), cross-section area (A), Young’s
modulus (E), secondmoment of Area (I), the length
of the beam (L) and themass of theweight at the free
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Fig. 1. Cantilever beam with mass on the free end.



end (m). The boundary conditions, considering one

end of the beam is clamped, while the other is free

can be summarized as:

Gð0Þ ¼ 0
@Gð0Þ
@x

¼ 0
@2GðLÞ
@x2

¼ 0

EI ¼ @2GðLÞ
@x2

¼ �m!2GðLÞ ð5Þ

These boundary conditions together with the

general solution (Equation 4) provides a system of
linear simultaneous equations and from these anon-

trivial solution exists for their vanishing determi-

nant leading to the characteristic equation:

m 

�

cos sinh � cosh sin 

1þ cos cosh 

� �
þ 1 ¼ 0

 ¼ L � �a!2

EI

� �1
4

ð6Þ

This transcendental equation is solved numerically.

With the eigenfrequencies found from Equation 6

and the general solution (Equation 4) it is possible to

write the ith eigenmode as:

GiðxÞ ¼
sin�i þ sinh�i
cos�i þ cosh�i

cos�ix� sin�ix

� sin�i þ sinh�i
cos �i þ cosh �i

cosh�ixþ cosh�ix ð7Þ

The characteristic equation (Equation 6) is solved

using a graphical method within Mathematica as
shown below.

The exact coordinates for the point of intersec-

tion couldbe foundby simplyusing the cursor.Once

the values of are determined, the eigenfrequencies

can be found. Equation 7 plus the eigenfrequency

values found in the last subsection were now used to

plot the four lowestmode shapes for the beam again

using Mathematica. For example, for the fourth
lowest eigenfrequency the mode shape, calculated

using the coding below, was as shown on Fig. 3.
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Fig. 2. Graphical solution of the characteristic equation.

Fig. 3. Fourth lowest mode shape for cantilever beam.



2.2 Comments on the incorporation of mathematica

into the solution process

Again using Laboratory 5 as the vehicle for expla-

nation, the purpose of this laboratory was to con-

struct a method to compute solutions for Equation

3, with given boundary conditions. The outline of

the stages in the method is shown on Fig. 4.

Basically, the code was first written to provide a
convenient user-friendly facility for entering data

concerning material properties, geometry and to

display clearly the boundary conditions imposed.

This was followed by some ‘manual’ work carried

out by the student (remembering that a ‘black box’

solution is not the goal here), where a system of

homogeneous equations are formed and a charac-

teristic (transcendental) equation derived. Mathe-

matica takes over again, in that it is used to solve for

the four lowest eigenfrequencies for the character-

istic equation. This is followed by the calculation

and plotting of the eigenmodes.

This example shows that it is important to care-

fully plan for when Mathematica can contribute to

the conventional mathematical tasks and not con-

struct a laboratory whereMathematica is all perva-
sive. Also the graphical method was chosen to solve

the characteristic equation as it was thought more

educationally instructive.

3. Evaluation of teaching and learning

The evaluation process was subdivided into two
investigations, one in the form of an experiment

comparing the knowledge of the group with the

computer algebra system in their course with those

of a control group using only the conventional text

book approach. Participation in the control group

was voluntary, and the computer algebra system

was not required by the curriculum. The second part

of the evaluation is in the form of an online ques-
tionnaire eliciting the views of students on the use of

the computer algebra system.

3.1 Controlled experiment

To investigate the effectiveness of introducing the
software laboratories into the Engineering Mathe-

matics course, a controlled experiment applying a

pre-test-post-test control group design was con-

ducted [21, 22]. The students had to undertake two

tests, one before the respective course (pre-test) and

one after the respective course (post-test) with the

introduction of the computer algebra system being

evaluated by comparing within-student post-test to
pre-test scores, and by comparing the scores

between students in the experimental group (A),

i.e. those who were taught using the course contain-

ing the software laboratories, to those students in

the control group (B), i.e. taught using the conven-

tional method of lectures and tutorials only. The

various possibilities of the methods of teaching are

summarized on Fig. 5. Conventional extra tutorials

were given to students of the control group (B) so

that approximately similar total time was spent to
learn by all students.

To measure the performance of the two groups,

four constructs were used with each construct

represented by one dependent variable. Each depen-

dent variable has the hypotheses:

1. There is a positive learning effect in both groups

(A: experimental group, B: control group). This

means post-test scores are significantly higher

than pre-test scores for each dependent vari-

able.
2. The learning is more effective for group A than

for group B, either with regard to the perfor-

mance improvement between pre-test and post-

test (the relative learning effect), or with regard

to post-test performance (absolute learning

effect). The absolute learning effect is of interest

because it may indicate an upper bound of the

possible correct answers depending on the
method of teaching.

The design starts with random assignment of stu-
dents to the experimental group (A) and control
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Fig. 4. Flow diagram of the method of solution.

Fig. 5. Scheme outlining the two methods of teaching.



group (B)with themembersofbothgroups complet-

ing a pre-test and post-test. The pre-test measured

theperformanceof the twogroupsbefore thecourses
and the post-test measured the performance of the

two groups after the courses. The students did not

know that the post-test and pre-test questions were

identical and neither were they allowed to retain the

pre-test questions with the correct answers only

given to the students after the experiment.

The students were in the penultimate year of an

engineering course with the number of students in
group A, NA = 68, and in group B, NB = 68. The

personal characteristics of the students are summar-

ized in Table 1.

The initial testing was conducted after a short

introduction as to the purpose of the experiment

and general organizational issues. The pre-test was

then carried out with the data for the dependent

variables collected. Following the pre-test, the stu-
dents were placed in either the control group or the

experimental group and all students participated in

both the pre-test and post-test. After completing

their courses, both groups of students performed the

post-test using the same questions as during the pre-

test, thus providing data on the dependent variables

for the second time. In addition the students were

asked to answer questions about subjective percep-
tions.

Data for two types of variables were collected, the

dependent variables (J.1, . . . , J.4) and the subjective

perception variables (S.1, S.2). These variables are

listed in Table 2. The dependent variables are

constructs used to capture aspects of learning pro-

vided by the courses and each was measured using 5

questions. Selected examples of questions used are

shown in Table 3.
The results for the dependent variable J.1 were

found by applying a five-point Likert-type scale [23]

with each answer mapped to the value range R=

[0, 1].

The values for variables J.2–J.4 are average scores

derived from five questions for each. Missing

answers were marked as incorrect. The data for

the subjective perception variables was collected
after the post-test. The values for variable S.1 are

normalized averages reflecting the time needed for

understanding and doing the tasks associated with

Weeks 2–12.

The descriptive statistics for the experiment are

summarized in Table 4. The columns ‘Pre-test

scores’ and ‘Post-test scores’ show the calculated

values formean,median (m) and standard deviation
of the raw data collected, and the column ‘Differ-

ence scores’ shows the difference between the post-

test and pre-test scores.

Table 5 shows the calculated values for mean,

median and standard deviation of the raw data

collected on subjective perceptions.

The students in control group (B) expressed less

need of additional time than those of the experi-
mentalgroup(A),whilestudentsofbothgroupswere

fairly equal in their perception of their respective

courseusefulness, engagement,difficultyandclarity.

Standard significance testing was used to investi-

gate the effect of the treatments on the dependent

variables J.1 to J.4. The null hypotheses were:

H0,1: There is no difference between pre-test scores

and post-test scores within group (A) and control

group (B).

H0,2a: There is no difference in relative learning

effectiveness between group (A) and control
group (B).

H0,2b: There is no difference in absolute learning

effectiveness between group (A) and control

group (B).

For H0,1 and focusing on the experimental group

(A), Table 6 shows the results using a one-tailed t-

test for dependent samples. Column one specifies

the variable, column two represents theCohen effect

size, d, [24, 25], column three the degrees of freedom,

column four the t-value of the study, column five the
critical value for the significance value � = 0.10 and

column six lists the associated p-value.

It can be seen from Table 6 that all dependent

variables achieve a statistically and practically sig-

nificant result.
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Table 1. Personal characteristics

Characteristics

Average age
Percentage female
Preferred learning style(s)
Reading with exercise
Lecture
Tutorial
Laboratory
Working in groups (with peers)

Opinion of most effective learning style(s)
Reading with exercise
Lecture
Tutorial
Laboratory
Working in groups

20.8 years
52%

19%
10%
27%
20%
24%

14%
12%
28%
21%
25%

Table 2. Experimental variables

Dependent variables
J.1 Interest in Engineering Mathematics (‘Interest’)
J.2 General knowledge of Engineering Mathematics

(‘Understand general’)
J.3 Understanding of ‘simple’ Engineering Mathematics

(‘Understand simple’)
J.4 Understanding of ‘difficult’ Engineering Mathematics

(‘Understanding difficult’)

Subjective perceptions
S.1 Available time budget versus time need (‘Time pressure’)
S.2 Course evaluation (useful, engaging, easy, clear)



Table 7 shows the results of testing hypothesis

H0,1 for the control group (B) using a one-tailed t-

test for dependent samples. The structure of the

table is the same as that of Table 7.

It can be seen fromTable 7 that the control group

(B) achieved statistically and practically significant

results for dependent variables J.2 and J.4. For J.1

and J.3 no significant results can be found.

ForH0,2a which states that the difference between

post-test and pre-test scores of group A is not
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Table 3. Example questions (pre-test, post-test, subjective perceptions)

J.1 example question
I consider it very important for engineering students to know as much as possible about engineering mathematics.
(1 = fully agree/5 = fully disagree) Circle number below.

Agree 1 2 3 4 5 Disagree

J.2 example question
(a) Let f ðx; yÞ ¼ 2x3 � 24xyþ 16y3. Determine the nature of the critical points of f .
(b) Use the Lagrange Multiplier technique to find the point on the circle

ðx� 1Þ2 þ ðy� 2Þ2 ¼ 4

that is closest to the point (2,4).

J.3 example question
A function is defined in the interval ½0; k� as f ðyÞ ¼ 1. Sketch the function in the interval ½�3k; 3k� and show its Fourier
Sine series expansion is:

f ðyÞ ¼ 4

�

X1

m¼1

1

2m� 1
sin

2m� 1Þ�y
k

� �

J.4 example question
A surface is represented by the following equation

x2 þ y2 � 4x� 2y� zþ 9 ¼ 0

(a) Complete the squares and identify the surface.
(b) Let z ¼ k ¼ constant and determine the standard form of the contours.
(c) The surface intersects the plane z� 2y ¼ 4. Parametrically define the line of the intersection.
(d) Consider the point (3, 2, 6) on the above surface.

(i) What direction produces the greatest increase in z.
(ii) What direction is normal to the surface.

S.1 example question
I did not have enough time to:

– complete the tutorials
– complete the laboratory/extra tutorial sessions
– write-up the laboratory/extra tutorial reports
– complete the post-test

S.2 example question
I consider the explanations/information provided for laboratory/extra tutorial sessions

1 2 3 4 5

Useful Useless
Boring Engaging
Difficult Easy
Clear Confusing

Table 4. Scores of dependent variables

Pre-test scores Post-test scores Difference scores

J.1 J.2 J.3 J.4 J.1 J.2 J.3 J.4 J.1 J.2 J.3 J.4

Group A
(�x)
(m)
(�)

0.77
0.81
0.12

0.70
0.66
0.30

0.39
0.40
0.27

0.35
0.32
0.24

0.79
0.84
0.11

0.86
0.78
0.24

0.48
0.50
0.16

0.54
0.41
0.21

0.02
0.03
0.11

0.16
0.12
0.19

0.09
0.1
0.24

0.19
0.09
0.20

Group B
(�x)
(m)
(�)

0.86
0.84
0.13

0.61
0.63
0.17

0.46
0.43
0.19

0.29
0.26
0.11

0.87
0.86
0.21

0.67
0.65
0.19

0.48
0.45
0.17

0.41
0.31
0.14

0.01
0.02
0.09

0.06
0.02
0.18

0.02
0.02
0.28

0.12
0.05
0.17



significantly larger than the one for groupB. Table 8

shows for each dependent variable separately the

results of testing hypothesis H0,2a using a one-tailed

t-test for independent samples.

It can be seen that the hypothesis H0,2a can be

rejected for the variables J.2, J.3 and J.4.
Table 9 shows for each dependent variable sepa-

rately the results of testingH0,2b using a one-tailed t-

test for independent samples.

The two variables which show statistically sig-

nificant results are J.2 and J.4 and henceH0,2b can be

rejected for these variables. The variables J.1 and J.3

indicated that the students thought Engineering

Mathematics more important to their engineering
studies than those who used the computer algebra

system in their course whilst students got equal

results for J.3 irrespective of whether they used the

software or not.

3.2 Online questionnaire

An anonymous online survey was conducted after

students obtained their grades for the laboratory
reports to aid formative evaluation of the introduc-

tion of the computer algebra system. Only students

in the experimental group (A) were surveyed. A

questionnaire using 10 statements as listed in

Table 10 was designed for this survey. Students

were requested to respond to each item in the

questionnaire using a five-point scale: strongly

agree, agree, neutral, disagree and strongly disagree
plus a column for no opinion. An opportunity was

also provided for students to comment on their

experience at the end of the questionnaire to collect

qualitative feedback on their experience so far with

the computer algebra system.

Generally, student feedback surveys have a very

low response rate [26, 27]. However the response

rate here was high (>75%) and overall, the results
from the survey were positive. The responses to the

survey are shown on Fig. 6 and indicate that

students felt that they benefited from their exposure

to the computer algebra system.

From Fig. 6 it can be seen that for the first six

statements there was generally a strong positive
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Table 5. Scores of subjective perceptions

S.1 S.2

Group A
(�x)
(m)
(�)

0.64
0.62
0.13

0.58
0.57
0.08

Group B
(�x)
(m)
(�)

0.59
0.57
0.11

0.59
0.56
0.10

Table 6. Results for ‘post-test’ versus ‘pre-test’ for group A

Variable d df t-Value Crit.t0.90 p-Value

J.1 0.1738 67 1.423 1.294 0.080
J.2 0.5890 67 4.820 1.294 0.000
J.3 0.3605 67 2.951 1.294 0.002
J.4 0.8426 67 6.897 1.294 0.000

Table 7. Results for ‘post-test’ versus ‘pre-test’ for group B

Variable d df t-Value Crit.t0.90 p-Value

J.1 0.0573 67 0.469 1.294 0.320
J.2 0.3328 67 2.724 1.294 0.004
J.3 0.1109 67 0.908 1.294 0.184
J.4 0.9532 67 7.802 1.294 0.000

Table 8.Results for ‘performance improvement’ (GroupAversus
Group B)

Variable d df t-Value Crit.t0.90 p-Value

J.1 0.0995 134 1.152 1.289 0.126
J.2 0.5404 134 6.256 1.289 0.000
J.3 0.2301 134 2.664 1.289 0.004
J.4 0.3772 134 4.366 1.289 0.000

Table 9. Results for ‘post-test improvement’ (Group A versus
Group B)

Variable d df t-Value Crit.t0.90 p-Value

J.1 –0.477 134 –5.522 1.289 1.000
J.2 0.877 134 10.152 1.289 0.000
J.3 0.000 134 0.000 1.289 0.500
J.4 0.728 134 8.427 1.289 0.000

Table 10. A list of questions/statements used in the survey for students’ feedback

No. Statement

1 I found the software easy to use.
2 The use of software laboratories enhances my understanding of the theory course.
3 The combination of software and traditional Engineering Mathematics helps me concentrate on mathematical concepts better.
4 The use of this software would help with those engineering concepts I have already encountered in other modules.
5 I like the ‘hands-on’ and ‘self-discovery’ approach when using the software.
6 By using the software, I now feel Engineering Mathematics is a more important part of Engineering than I did before.
7 I now have a knowledge of programming skills sufficient for me to work on without help.
8 The software has added to my skills needed for future professional projects.
9 I will attempt to make use of this software in future engineering modules.
10 The skills provided by this software will make me more confident in my future career.



response. This included the important opinion that

the students did indeed feel that Engineering

Mathematics was now viewed as a more important

part of general engineering than before using the
software package (Statement 6). For statements 7

and 8 the results were more balanced but the

students were still reasonably positive about the

skills imparted to them. For statements 9 and 10

there was a distinct reserve in the students’

responses with no opinion either way resulting as

the mode.

In additional comments, most of the students
expressed the view that the amount of material

introduced was correct, although some felt that

they were not yet comfortable with the mechanics

of programming within the computer algebra

system and that they took a long time to complete

correctly. Students were particularly appreciative

that they could visualize their results very easily

which they felt helped with their understanding of
the problem/topic at hand. Students generally

agreed that the combination of traditional teaching

and software laboratories led to better understand-

ing of engineering mathematics and of how profes-

sional engineers work in industry and research.

Students showed some enthusiasm for learning

more about the software package.

In addition to the questionnaire of Table 10, the
students were asked ‘‘Would you recommend that

the computer algebra system remains as part of the

EngineeringMathematics course in the future?’’ To

this 73% said yes so showing that the majority

thought the software package as having a positive

impact on their studies.

4. Discussion

4.1 Controlled experiment

When considering the positive learning effect within

the experimental group (A), a statistically significant

positive changeof scoreswas found fromthepre-test

to post-test for the dependent variables J.1 to J.4,

showing that the course which included the compu-

ter algebra system had raised understanding and
interest in learning aspects of Engineering Mathe-

matics. The results for the control group (B) were

muchlesspositivewherevariablesJ.2andJ.4showed

improvement but variables J.1 and J.3 did not. The

reasons for this disturbing lack of growth of interest

in the subject could bemany ranging from ‘students

do not really see Engineering Mathematics as an

important part of the overall engineering pro-
gramme’ to ‘the fact that Engineering Mathematics

canbe in theeyesof somestudentshighlydemanding

with good attention to detail needed’.

With the exception of the variable J.1 testing the

performance of relative learning effectiveness

between groups (hypothesis H0,2a) showed that the

experimental group (A) yielded significantly better

scores for relative effectiveness for all dependent
variables. For absolute learning effectiveness the

results were more mixed. There was a definite

absolute increase in interest of Engineering Mathe-

matics amongst the control group (B) and it was

found that the inclusion of the computer algebra

system made no difference to the understanding of

‘simple’ Engineering Mathematics. More reassur-

ingly it was found that the inclusion of the computer
algebra system did make a significant difference in

the understanding of ‘difficult’ Engineering Mathe-

matics.

It should benoted that the timeneeded to conduct

the six laboratories, which generated additional

time pressure on the subjects in the experimental

group (A) did not seem to have any negative effect

on the scores of variables J.2, J.3 and J.4.

4.2 Questionnaire

From the results shown on Fig. 2 and in Table 11,

the overall response by the students in the experi-
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Fig. 6. Chart showing survey results.



ment group (A) was positive to the inclusion of the

computer algebra system within the Engineering

Mathematics course. It did become clear however

that students need to be better ‘primed’ regarding

the use and programming of Mathematica in that

frustration can lead to concentration on the
mechanics of getting a solution rather than under-

standing and exploring the concepts behind the

given problem. In particular it became obvious

that the input of numerical using the current

method inside lines of coding was particularly

frustrating and prone to error, and therefore a

better interface needs to be generated for this

function. It was found however, that the interface
design provided by the computer algebra system

and in particular, the ease of using the provided

‘Help’, which had lots of clear examples, built in,

does provide students with hands-on experience,

gained through an interactive and reasonably

user-friendly environment, and encourages student

self-learning. This type of approach is quite normal

in today’s modern professional environment [3]. It
was noted from the survey that the students liked the

hands-on and self-discovery approach.

4.3 Mathematica as a cognitive tool

The computer algebra system used here allowed

students to concentrate on difficult concepts with-

out focusing on routine skills and procedures. Why

was this so? Using an axial coding scheme, inter-

relationship of categories [28] was explored. The

categories which contributed to cognitive demand

based on students’ similar ideas and/or comments
emerged from interviews (formal and informal),

observations and transcripts, and, were refined to

recollection, cooperation, construction, Mathema-

tica and frustration. There were subcategories of

the category Mathematica referring to calculation,

organization and visualisation. The relationships

deduced between the categories are shown on Fig.

7. As the computer algebra system ‘took care’ of

these three subcategories in a supportive and struc-
turedway, this allowed and encouraged the students

to explore concepts and think at a higher level.

According to Day [29], the emergence of categories

frustration and recollection are indicators of higher

levels of cognitive demand.

The most unexpected result from the above

analysis was the degree to which the category

cooperation played a significant role. For example
assistance was frequently offered when one member

of the students had difficulty with the computer

algebra system, and many valuable discussions

concerning mathematics broke out. There was also

evidence of cooperation between students to recall

already learned concepts and apply them in a new

context. Because the students were not so burdened

with routine skills and procedures, time was avail-
able for students to share mathematical meanings.

The importance of visualization can hardly be

overestimated in general cognitive skill acquisition

and problem solving processes [30, 31]. Pictures

activate mental processes such as the perception of

spatial relationships, intuitive comprehension of

complex processes, or the observation of patterns

and therefore, aid the process of understanding. It
was observed here that the computer algebra system

did indeed provide the necessary algorithms needed

to compute visualizations. It was appreciated that

much less effort was needed to produce quality

representations than with classical approaches,

especially in 3-dimensions. It may be, after noting

the interest and satisfaction of students when

achieving a particular plot, that in future, a good
starting point in teaching the basic rudiments of

Mathematicawould be to include asmuch visualiza-

tion as possible.

Inaddition togreatlyhelpingwithvisualization, it

was found that this particular computer algebra

system was efficient in handling the input of data. It

has often been the case that the method of entering

data involved students writing lines of code leading
to mistakes and frustration. The Manipulate envir-

onment provided byMathematica can be used, but

this takes some effort and expertise, so the function

CreateDialogwaschosen toprovideaquickandeasy

method of entering data. For example, for Example

5:Analysis of a single-spanEuler-Bernoulli beam,as

mentioned above, a few lines of code produces the

Dialog box for input of data as shown on Fig. 8.
Finally, in this subsection, the managing of

intrinsic cognitive demand is discussed. Intrinsic

cognitive demand is the demand placed on the
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learner by the nature of the materials being learned.

Ayers [32] notes that ‘‘as expertise develops in a

domain, the intrinsic load caused by a specific task

decreases as the interactions become learned and

incorporated into schemas’’. This was taken advan-

tage of when use was made of Mathematica in

learning EngineeringMathematics.With anymath-

ematical problem there are sub-problems to be
solved which can easily be done using a computer

algebra system, so alleviating some of the intrinsic

demand from the learner. Care must be taken

however that unless the design of the computer

algebra system is done carefully additional extra-

neous cognitive demand could be imposed. Possible

sources of extraneous cognitive load could be the

‘‘split-attention’’ effect, when the syntax of the
computer algebra system and the normal mathema-

tical syntax do not match, and, when there is a need

to recall what work has been already done. The

split-attention effect has been discussed by Sweller

[33] and occurs when a student needs to integrate

information from several sources when studying a

particular problem. When using Mathematica, this

effect became evident when there was a sequence of
input and output statements. Another hurdle to

overcome was that the mathematical notation and

the syntax of the computer algebra system did not

always match. This was particularly evident when

trying to understand both the mathematics and the

Mathematica syntax at the same time. The last of the

sources of extraneous cognitive loads, i.e. trying to

keep a trace of what had been done before, was to
some extent alleviated by the cooperation of other

students.

4.4 Validity

The validity of the present work is now discussed. It

is recognized that interest in a topic and evaluation

of a teaching session are difficult to measure, and to

alleviate this problem the instruments formeasuring

variables J.1 and S.2 were derived from measure-

ment instruments that have already been success-

fully applied in similar kinds of studies [21, 34].

To alleviate selection threats when dividing the
students into two groups, a randomization proce-

dure was used. This, together with the student

characteristics of similar age, level of experience of

mathematics (especially in calculus) and general

level of education when starting the respective

Engineering Mathematics courses gave reasonable

assurance of minimum bias. Also, there was no

change in teaching staff throughout the courses, so
reducing any ‘selection history effect’, and, as none

of the subjects left their respective group, there was

no ‘dropout interaction effect’. Students in both

groups were asked not to discuss their course with

members of the other group to try to reduce ‘diffu-

sion or contamination’ effect. Also, it was men-

tioned to all students that each course was a

legitimate method of acquiring mathematical skills
and knowledge necessary for later engineeringmod-

ules, and one course was not necessarily better than

the other. This was an effort tominimize any ‘rivalry

or resentment’ threats.

After selection any differences in the ability of the

groups was captured by collecting pre-test scores.

Regarding the use in general of a computer

algebra system, although most authors concentrate
on their advantages, there were early reports on

continuing controversies [35] such as gadgetry over

intellect and proof-abuse. Although there have been

rebuttals to each of the concerns expressed, it is still

the case today that computer algebra systems are

still not in universal use for Engineering Mathe-

matics instruction.

5. Conclusions

This paper has described the use and efficacy of

integrating a computer algebra system into a tradi-

tional engineering mathematics course. It has been

shown that the incorporation of the computer

algebra systemhas enhanced cognitive development
in that an improvement was seen in relative and

absolute results from a controlled experiment.

However, the inclusion of the computer algebra

system had a detrimental effect on interest when

compared to the control group possibly due to the

fact that the programming needed can be a tedious

business even though the results can be very satisfy-

ing. The students were also exposed to what they
might expect inmodern professional practice in that

it is now expected they should efficiently and

thoughtfully integrate technology when appropri-

ate. They should not however succumb to using
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technology as a ‘‘black box’’. With appropriate

choice of laboratory content it was possible to

include within the engineering mathematics more

complex and relevant material found in later engi-

neering modules of the degree course so helping to

break down any perceived barrier.
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