
Programming Assignments in Virtual Learning

Environments: Developments and Opportunities for

Engineering Education*

VALENTINA DAGIENE and BRONIUS SKUPAS
Vilnius University Institute of Mathematics and Informatics, 4 Akademijos Street, Vilnius 08663, Lithuania.

E-mail: valentina.dagiene@mii.vu.lt, bronius.skupas@mii.vu.lt

EUGENIJUS KURILOVAS
Vilnius University Institute of Mathematics and Informatics, 4 Akademijos Street, Vilnius 08663, Lithuania.

Vilnius Gediminas Technical University, Sauletekio Ave. 11, 10223 Vilnius, Lithuania. E-mail: eugenijus.kurilovas@itc.smm.lt

The aim of the paper is to present observations on automatic and semi-automatic assessment for programming

assignments used in different e-learning contexts. Teaching of programming is an important part of different Informatics

Engineering, Computer Science or Informatics, Computing, Information Technology and Communication courses in

Universities and high schools. Students taking these courses have to demonstrate competences in problem solving and

programming by creating working programs. Checking program validity is usually based on testing a program on diverse

test cases. Testing for batch-type problems involves creating a set of input data cases, running a program submitted by a

contestant with those input cases, analysing obtained outputs, etc. Assessment of programming assignments is as complex

as testing of software systems. A lot of automatic assessment systems for programming assignments have been created to

support teachers in submission assessment. However the problem of balance between the quality and the speed of

assessment for programming assignments is important. Authors conducted the research on the possibilities of advanced

semi-automatic approach in assessment, which can be used as compromise between manual and automatic assessment. A

semi-automatic testing environment for evaluating programming assignments is developed, and the practical use of this

system inLithuania’s optional programmingmaturity examination is presented. Presented research is useful for evaluating

results of engineering education in general, and informatics/computer engineering education particularly.

Keywords: engineering education; programmingassignments; computer programassessment; automatic and semi-automatic assessment;
personalised feedback; virtual learning environment

1. Introduction

The aim of the paper is to present observations on

automatic and semi-automatic assessment for pro-

gramming assignments. Problem solving is an

important part of most modern Informatics related

studies (including Software Engineering, Computer
Science, Computing, Information Technologies,

Communication Sciences, etc.). Is problem solving

in Informatics different from that of other science?

Yes, it is. The main difference is that the student is

designing an algorithm (program) following the

exact requirements—rules of the game.

One of the main goals in teaching computer

programming is to develop students’ understanding
of the programming principles. The understanding

of programming concepts is closely related with the

practice on solving programming exercises.

Programming assignments are typical to use as an

indicator of problem solving competencies. How-

ever, programming is not an easy job: it requires

much effort and specific skills. Programming is a

creative process that encourages thinking and the
integration of knowledge from various fields.

The teaching of programming influences the

development of thinking (computational, algorith-

mical, logical. operational, etc.). Capability of con-

structing programs (algorithms) helps a student to

conceive technical performance of a computer,

forms conceptual understanding of information

technologies. Constructing an algorithm (program)
is a discovery for a student, training of his/her

creative capabilities.

The problem is that it is not an easy task to

evaluate a program created by a student. In com-

puter science educational community, the widely

spread manner of checking program validity is

based on testing a program on diverse test cases.

Testing for batch-type problems involves creating a
set of input data cases, running a program sub-

mitted by a contestant with those input cases,

analysing obtained outputs, etc.

There are two major approaches in evaluating

programming assignments: automatic and manual

evaluation. Automatic assessment of programming

exercises has become an important method for

grading students’ programming exercises as well as
giving feedback on the quality of their solutions.

* Accepted 23 July 2013.644

International Journal of Engineering Education Vol. 30, No. 3, pp. 644–653, 2014 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2014 TEMPUS Publications.

Apart from being time-consuming, manual assess-

ment hinders the consistency andaccuracy of assess-

ment results as well as it allows ‘‘unintended biases

and a diverse standard of marking schemes’’ [1].

The automatic evaluation is a method in which a

software system provides for the teacher student’s
work testing and grading results and facilitates the

feedback process. The automatic approach tends to

be very fast but still have problems with quality of

evaluation. Manual evaluation on the contrary is

fully performed by human evaluator and it is quite

slow and requires a lot of time.

We faced a real life problem in assessment of

maturity programming exam in Lithuania. It faces
with problem of assessment for thousands of stu-

dent solutions to programming assignments. Dis-

cussion on the maturity exam in Informatics has

been presented in [2–4]. Assessment of student

submissions is complicated as high percentage of

solutions has different type of problems— they are

failing to compile or to output correct answers.

However results of this exam have high importance
for student future as students are entering Univer-

sities by order provided by exam results.

We analysed automatic and manual assessment

approaches and performed constructive research on

mix of these approaches—semi-automatic assess-

ment.

The rest of the paper is organised as follows:

methodology of the research is described in Section
2, presentation and discussion are presented in

Section 3, and conclusion—in Section 4.

2. Methodology of the research

Weselected constructive research touse as amethod

for research. Kasanen et al. [5] propose six phases of
the constructive approach: (1) find a practically

relevant problem, which also has research potential;

(2) obtain a general and comprehensive understand-

ing of the topic; (3) innovate, i.e., construct a

solution idea; (4) demonstrate that the solution

works; (5) show the theoretical connections and

the research contribution of the solution concept;

(6) examine the scope of applicability of the solu-
tion.

In practice the steps of our research have been in

other sequence— the process was both iterative and

recursive. Main reason for this was that research

was started seven years ago and some of solutions

have been innovated for several times. The national

exam rules and requirements have been changed

also.
We selected problem to create high quality and

efficient assessment method for programming

assignments. For step (2), we performed analysis

of publications and surveys, and also analysis of

publically available tools. Some of tools were used

for competitions in lessons. Other were analysed by

use in their websites. Some of tools were analysed by

documentation, as they were not publically avail-

able.

Innovative idea generated in step (3)was based on
possibility to include interactivity to semi-auto-

matic assessment for programming assignments.

We made assumption that iterative process of

fixing errors and solution testing by black box

testing can help to evaluator to decide level of

achievements of student.

For step (4), we developed a software system for

semi-automatic assessment of programming assign-
ments, which was used for experimental maturity

exam assessment in Lithuanian secondary schools

in 2006. Testing of innovative idea in real world was

successful. The system for semi-automatic assess-

ment of programming assignments was used in

assessment of national-wide programming exam in

Lithuania. It was improved several times through

years and it is under constant development.
For step (5), we performed quantitative analysis

of assessment results. Use of the system was ana-

lysed by qualitative analysis of specific set of student

submissions and their errors.

In step (6), we made assumption that improved

method for semi-automatic assessment can be

applied for other assessment systems for program-

ming assignments. Analysis of required changes to
include new approach into Edujudge plug-in (see:

http://uva.onlinejudge.org) for Moodle virtual

learning environment (VLE) was performed.

3. Presentation and discussion

Automated evaluation of programs is useful for
faster evaluation of tasks of maturity examination

in programming. However, unpreparedness of the

candidates to strictly specified automated evalua-

tion causes some problems. Therefore, using semi-

automated evaluation cannot be avoided in this

situation.

Semi-automated evaluation raises high demands

to the quality of criteria and the common attitude of
the evaluators in the evaluation situations. The

quality of semi-automated evaluation is increasing

when big amount of submissions are evaluated.

However, it is difficult to force group of evaluators

to very similar thinking in algorithm analysis.

More precise evaluation of the students’ program

codes can be achieved by combining automated

testing and manual evaluation of programs into
semi-automated evaluation. It poses higher require-

ments to the quality of criteria and the attitudes of

evaluators at the evaluation situations. The criteria

should be precisely developed together with the

Programming Assignments in Virtual Learning Environments 645

exam tasks, tested, and after examination, reason-

ably discussed by the evaluators. The quality of the

semi-automated evaluation grows recognisably

when number of evaluated programs increasing.

A system for semi-automatic assessment of pro-

gramming assignments has been developed and
used in assessment of national-wide programming

exam in Lithuania. It can be integrated in VLE and

used as a formal grading method or as self-evalua-

tion tools for the students.

3.1 Observations in publications and tools analysis

The research questions addressed were as follows:

What kind of improvements to automatic or semi-

automatic assessment for programming assign-

ments can help to improve quality of assessment

for not finished programs? How to make automatic

or manual assessments more efficient?

Several high quality surveys of automatic testing

systems have been published since 2005 (Table 1).
We have found analysis of most important trends in

development of assessment tools for programming

assignments. However, our specific issue with

assessment of the quality of not finished programs

was not addressed there.

There are twomain areas of use for these systems:

curricular (e.g. practical classes, assignments and

exams) and competitive (e.g. corporative contests
like Google Code Jam or learning society organised

contests like International Olympiad in Informatics

or ACM-ICPC International Collegiate Program-

ming Contest). Our analysis of requirements for

systems has found that exam requirements are

somehow different, but major problems in quality

of assessment are the same: automated assessment is

usually based on back-box testing, which is good for
speed. However, black-box testing has some set of

concerns, most important is formulated byDijkstra

in 1972: ‘‘program testing can be a very effectiveway

to show the presence of bugs, but it is hopelessly

inadequate for showing their absence’’ [11].

3.2 Alternative evaluation and semi-automatic

testing

Our research was directed to maturity exam, but

most research results can be applied to other sys-

tems. It is quite clear that automatic testing of

student’s codes is not enough for the maturity

exam. Problem is that most students are not at

high level in programming. Quite a lot of submitted

codes are not functional even with data set provided

in task description.
Researchers found [12, 13] that combination of

two totally different approaches (automatic and

manual) can give semi-automatic assessment,

which combines talents of human and machine.

As stated by Ahoniemi and Reinikainen [14],

semi-automatic assessment can generate much

higher quality feedback.

The typical semi-automatic system include auto-
matic evaluation component, which provide data

about student’s program passed tests. These results

are visualised for human evaluator, who is respon-

sible for filling evaluation form, confirming final

grade and providing feedback for student. Our

experience in teaching of programming shows that

in stress (exam, important test)most students failing

to provide properly functioning program. About
80% of student submitted programs are failing to

compile. However, this does not mean that students

are incapable to write good programs.

Several our group researches demonstrated that

incorporating semi-automatic assessment could

help achieve higher quality in assessment for not

functioning programs while providing acceptable

speed. We made hypothesis that most important
part of these results are based on interactive

approach which we included into system developed

for national matura exam in programming of

Valentina Dagiene et al.646

Table 1. High quality surveys of automatic testing systems

Author Methodology Trend

Douce et al. [6] Details features of systems organised in 3
generations.

Evaluation of GUI programs, meta-testing (evaluation of
the students’ tests), Service Oriented Architectures and use
of interoperability standards.

Ala-Mutka [7] Organises systems in dynamic and static
evaluators.

Content and communication standardisation.

Liang et al. [8] Details dynamic and static analysis methods
of systems.

Security, algorithms for automatic generation of test data
and content standardisation.

Ihantola et al. [9] Discuss features of 2006–2010 systems
(e.g. tests definition, resubmission policies
and security).

Integration with VLE and assessment of web applications.

Romli et al. [1] Evaluate approaches for test data generation. Test data generation techniques, interoperability and
security.

Queirós et al. [10] Analyse interoperability features of systems. Integration with VLE, export and import features of
systems.

Lithuania. This approach is providing ability for

evaluator to retest student program after modifica-

tion while tracking the changes. Such system can be
classified to filled area in Fig. 1. Main idea of

improvement to typical semi-automatic assessment

can be presented like diagram in Fig. 2.

Evaluators’ team is trying to evaluate solutions

positively. This means that students getting points

for their shown effort, e.g. correct input/output

routines can be assessed with several points. Also

some points can be received for dividing program to
subroutines, for using complex data structures like

array or record, forwriting nice comments, for good

programming style, etc. These criteria can be easily

evaluated by a person, but computer evaluation is

not so obvious. This is the reason for manual

evaluation of solutions.

Several years’ observation of evaluation process

of the national exams showed that evaluators need
an interactive semi-automatic evaluating environ-

ment, as some solutions have only some small

syntax problems, like semicolon missing.

Automatic evaluation in most cases is one of the

most objective ones as it is highly related to strict

programmed rules [15, 16]. However, discussions
about maturity exam in programming evaluation

raised the hypothesis that evaluation in this exam

cannot be limited to automated testing. Such

hypothesis is based on opinion that students

should get score for their effort in not working

programs. We also tried to identify typical pitfalls

in automatic assessment which can be overcome by

using semi-automatic evaluation. Some typical
human-evaluator errors were identified in the

research process.

During semi-automated evaluation, the evalua-

tor can use the data obtained during static and

dynamic analysis, modify the submitted program

and re-run automated evaluation. At this stage, the

evaluator has to decide how significant were the

mistakes of the candidates, which important parts
of the assignment he/she solved, which program-

ming constructions the candidates mastered. Many

problems arise at this point due to splitting opinions

Programming Assignments in Virtual Learning Environments 647

Fig. 1. Different approaches in assessment for programming assignments.

Fig. 2. Improvement to semi-automatic assessment for programming assignments process.

of the evaluators, different level of their experience,

etc.

It is highly important to prepare properly for this

evaluation stage, i.e. thoroughly prepare and spe-

cify the evaluation scheme.However, it is not easy to

prepare for the alternative evaluation because:
The criteria have to:

� be clear, unambiguously understandable to the
evaluators,

� exactly match possible acceptable solutions,

� award the points to the candidates for the knowl-

edge and skills they demonstrated.

The points for the criteria should:

� correspond to the matrix of the examination,

� be proportional to weight of knowledge.

The use of small dichotomic (yes/no) criteria

increases objectivity [14]. So, usually criteria are

corrected and divided into smaller ones (Table 2)

after several packages of work of evaluators. After

this, evaluated codes must be re-graded with mod-

ified criteria. The biggest problem of such evalua-
tion is that it requires a lot of humanworking hours.

The researcher’s task is to probe the data in a way

that helps to identify the crucial components that

can be used to explain the nature of the evaluation

process of the exam. In our research, we are focuss-

ing on a mixed approach of widely spread ‘quanti-

tative’ and ‘quality’ research. We are starting with

categorising the data, looking for recurrent issues,
capturing ideas, and then we are making interpreta-

tion of the findings and alternative explanations

that is more common to qualitative research. As

Valentina Dagiene et al.648

Table 2. Programming task evaluation criteria after reviewing of evaluators

First task: evaluation criteria Points Comments

All tests. 20 Full points if the program provides correct
outputs to all tests.

Correct reading from file:
1. Preparing file for reading, closing after the reading is finished.
2. Number of students.
3. The first loop for reading the number of students.
4. Reading the pieces brought by the students (only part of data are read

correctly).

4
(1)
(1)
(1)

(1)

Calculation of paws, knights, rooks and bishops (it might be either in the
function or in other place of the program, e.g. in the input).
5. Initial values of sums.
6. The loop.
7. Cumulating the sum (for small mistakes –1 point).

4

(1)
(1)
(2)

The function, which calculates the number of chess sets that can be
collected from the pieces brought by the students is created (search for the
smallest number among the calculated pieces):
8. Initial value of minimum (e.g. min : = 100 – 1 point).
9. Search loop, conditional sentences.
10. Assigning new value to the minimum.

5

(2)
(2)
(1)

Evaluated only if the program scores no points
for the tests.
(Alternative evaluation criteria)

The result is outputted correctly:
11. File is prepared for printing, closing it after printing is finished.
12. Outputting the result.

2
(1)
(1)

13. Correct calculation of sets for each different piece (there are some
mistakes, but it is correct in general – 1 point).

2

Other functions, procedures (if there are ones) and the main program are
correct:
14. A user declared one-dimensional array data type. If the array is not

used in the calculations or is used unreasonably, then 0 points.
15. No loop and other auxiliary global variables.
16. No syntax errors.

3

(1)

(1)
(1)

The data type of one-dimensional array and the corresponding variables
are declared correctly.

1 Always evaluated manually

The function which performs the indicated calculations is crated and the
call to the function is correct.

2

Meaningful names of the variables. Program parts are commented,
spelling is correct. (If at least two items are followed – 1 point).

1

Programming style is consistent, no statements for working with the
screen (if at least one item incorrect – 0 points).

1

Total 25

we know, quantitative approaches tending to shape

their data more consciously and more explicitly in

earlier stages of the process and focus more on

number compared with qualitative approaches.

The analysis of research data in relation to both

quantitative and qualitative methods tends to
follow a process involving some stages, e.g. data

preparation, initial exploration of the data, analysis

of the data, representation and validation of the

data.

3.3 Data preparation and analysis procedure

The first stage in the analysis of quantitative data is

to organise the data in a way that makes themmore

easily understood. There were investigated the pro-

grams designed during the maturity examination in

programming in 2010. All data of exam evaluation

(including programs, criteria’s, evaluators, every

evaluator’s scores for program) was put into
MySQL database. Specific web-based tool for

easier analysis was built using PHP language.

After initial browsing of programs and evalua-

tions one interesting feature was found: a lot of

programs have rather high evaluation in alternative

evaluation. This can occur when program is really

close to good one. It was difficult to select which

score is best showing this phenomenon. Decision
was made that all points for alternative evaluation

should show something important.

For the case study, there were selected programs

that failed the tests but scored full points from at

least one evaluator in the alternative evaluation.

Quantitative data about the number of analysed

programs are presented in Table 3.

The programs were chosen for the case study
because presumably they were close to the working

ones. Otherwise, they would not have scored full

points in the alternative evaluation. Such programs

comprise 5% of the submitted programs and that

confirms the hypothesis that evaluation in the

maturity exam in programming cannot be limited

to automated testing.

3.4 Analysis of interactivity influence to semi-

automatic evaluation

The research highlighted certain attitudes of the

evaluators: the scores of alternative evaluation

were not identical, i.e. if one evaluator assigned

full points, the other one might have not done so.

We analysed the criteria, marking which resulted in

most disagreements (i.e. different scores for the

same program) among the evaluators. There was

identified that either the criterion was applied not

precisely enough, or its formulation was too vague
to apply in unambiguously for some programs.

National maturity programming exam in Lithua-

nia consists of several parts; one of them is based on

programming practice. Students must write two

batch style programs. These programs are assessed

using common grading schema which is made of

three steps. The first step is automatic assessment

based on black box testing. The third step is manual
assessment on criteria like programming style, com-

ments, use of known algorithms and data struc-

tures. The second step involving semi-automatic

assessment is most important to our research.

Semi-automatic assessment in exam takes place

only in case when student submitted program fails

to provide correct answer to at least one test. In this

case, all points for automatic testing are rejected but
teacher gains possibility to write points for other

student achievements during semi-automatic

assessment process.

Assessment of student submission is done by two

independent evaluators, and in case of difference in

points higher than 2, submission is evaluated by

third evaluator. In all exam sessions, it was

observed, that no more than 20% of submissions
get third evaluation, which is performed by the best

experts and assumed as finale grade.

An example of such a criterion could be the use of

global variables. Programs with a globally declared

array were interpreted differently by the different

evaluators. Another example could be the need to

initialise a global variable for storing the sum. Some

evaluators assumed that there was no need to
initialise it because Free Pascal performs initialisa-

tion automatically.

During the case study, therewere analysed typical

mistakes and the reasons why the programs failed

during automated testing.

One of common situations was that the students

used different dialects of Pascal. The evaluation

systemuses Turbo Pascal 7.0 dialect which standard
de facto for teaching and for various programming

contests. Free Pascal has many different language

extensions which allow using name of function as a

parameter, allow using empty parenthesis when

declaring functions, etc. The evaluators modified

the sources as little as possible and the programs

passed the tests during retesting. Different evalua-

tors interpreted the feature of the program which
required modification in different ways depending

upon their experience.

Another group of mistakes are programs with

Programming Assignments in Virtual Learning Environments 649

Table 3. The number of submitted and analysed programs

Tasks

Programs
submitted
in exam

Analyzed
programs

1 1224 34
2 1019 62

Total 2243 96

errors which occurred due to carelessness and rush:

misspelled file names, important source fragments
are commented, the variables are left uninitialised.

We may guess that it is hard to avoid such mistakes

due to the exam stress and the limited time.

The level of disagreement between the evaluators

varied depending upon the criteria (Fig. 3). Besides

the criteria that were already mentioned, the eva-

luators had different attitudes at initialisation, cal-

culation and return of function parameters passed
by reference. This shows that manual evaluation of

these criteria causes problems for the evaluators.

Purely technical criteria can also be distinguished

in the histogram, e. g. reading data from a file.

Apparently they caused no doubts for the evalua-

tors because the programs did function properly

and it was easy to estimate the value of the mistake.

It can also be concluded that there were less
differences between the third and the second evalua-

tion than between the first and the second. This can

be explained by the rising qualifications and experi-

ence of the evaluators in terms of the task.

Typical marking scheme for programming

assignment involves 20 points for automatic testing
(all or nothing scoring schema), 20 points for semi-

automatic assessment (only in case when automatic

testing provides 0 points), and 5 points for manual

assessment. In Fig. 4, histogramdemonstrates influ-

ence of semi-automatic evaluation to final score. It

is clear that students after semi-automatic assess-

ment are spread in histogram in better way.

InFig. 4, points (0–25) are presented inhorizontal
axis and student count in vertical. Histogram in

black present results without semi-automatic

assessment, and grey histogram present final results

for assignment.

We have also made experimental evaluation of

the same student submissions. Evaluators had to

evaluate 50 programs for the second time after two

months. They had no possibility to use semi-auto-
matic exam system and worked in manual manner.

This experimental evaluation took at least twice

more time. This proves that interactive semi-auto-

matic assessment is more efficient than manual.

Valentina Dagiene et al.650

Fig. 3. The level of disagreement between the evaluators varied depending upon the criteria (cases between
second and third evaluator are marked in darker colour).

Actually, this result was such as expected. We also

checked difference in points in both evaluations. 5%

of submissions hadbigger than 2points difference of

evaluation.

Qualitative analysis of student submissions with

maximumpoints reached in semi-automatic evalua-
tion demonstrated that most students had almost

finished program, but failed in syntax errors, like

unfinished comment, missing semicolon, not proper

I/O file name, etc. However, these programs are

evaluated in 0 points onmost automatic assessment

systems. This demonstrates higher quality of exam

evaluation to failing submissions.

Our goal is not only to improve the evaluation
process of thematurity exambut also to enhance the

students’ motivation while choosing the program-

ming module. Studies on teaching programming

have indicated various difficulties faced by the

students when learning to program. In our opinion,

this should not be an excuse for not teaching

programming at lower levels of education, e.g. at

secondary schools. On the contrary, we feel that the
well-organised and well-structured maturity exam

should serve as a motivating factor for introducing

programming at an early stage. Personalised learn-

ing style based learning programming with indivi-

dual assessment also should be taken into account

[17].

On the other hand, improved process of semi-

automatic evaluation has a high potential for VLEs.
This approach can be easily implemented intomany

VLE systems likeMoodle by using third party plug-

ins like Edujudge or Virtual Programming Lab (see:

http://vpl.dis.ulpgc.es/). It was found that most

changes can be done by simple modifications [18–

23]. Most of attractive features of new method like

more precise feedback with ‘‘fixed’’ program for

student and ‘‘the movie of program fixing’’ can be

implemented without extraordinary effort.

4. Discussion

Constructed interactive semi-automatic method for

programming assignments is suitable for specific
task. However, it provides ideas for further devel-

opments.

One of possible use for such style assessment is

high quality feedback generation for VLEs. We

performed analysis on possibilities to use specified

method in Edujudge plug-in for VLE Moodle. It

was found that most changes can be done by simple

modifications. The most complicated part is related
to storage of teacher submitted fixed student solu-

tion.

In the future, we would like to put more attention

to errorsmade in the examby evaluators and to look

for correlations with mistakes made by the students

during the learning process. A thorough analysis on

the students’ program codes must be done and

student survey after exam should be conducted. It
could help to develop a better exam and assist the

students in preparing for the exam.

Automated evaluation of programs is useful for

faster evaluation of tasks of maturity examination

in programming. However, unpreparedness of the

candidates to strictly specified automated evalua-

tion causes some problems. Therefore, using semi-

automated evaluation in this situation cannot be
avoided.

More precise evaluation of the students’ program

codes can be achieved by combining automated

testing and manual evaluation of programs into

Programming Assignments in Virtual Learning Environments 651

Fig. 4. The histogram of one assignment in matura exam.

semi-automated evaluation. It poses higher require-

ments to the quality of criteria and the attitudes of

evaluators at the evaluation situations. The criteria

should be precisely developed together with the

exam tasks, tested, and after examination, reason-

ably discussed by the evaluators. The quality of the
semi-automated evaluation grows recognisably

when number of evaluated programs increasing.

Studies on teaching programming have indicated

various difficulties faced by the students when

learning to program. In our opinion, this should

not be an excuse for not teaching programming at

lower levels of education, e.g. at secondary schools.

On the contrary, we feel that the well-organised and
well-structured maturity exam should serve as a

motivating factor for introducing programming at

an early stage. Personalised learning style based

learning programming with individual assessment

also should be taken into account.

Further studies could also include qualitative

analysis of the student knowledge in the preparation

period before programming exam and the compar-
ison with their achievement during the exam to

verify hypothesis that psychological stress during

the exam influences the results of the exam signifi-

cantly.

5. Conclusions

Presented research on interactive semi-automatic

method for programming assignments assessment

is useful for evaluating results of informatics/com-

puter engineering education. Combination of two

totally different approaches (automatic and
manual) can give semi-automatic assessment

which combines talents of human and machine.

Semi-automatic assessment can generate much

higher quality feedback. Constructed interactive

semi-automatic method for programming assign-

ments assessment is effective and provides higher

quality points to not functioning student submis-

sions.
Semi-automated evaluation raises high demands

to the quality of criteria and the common attitude of

the evaluators in the evaluation situations. The

quality of semi-automated evaluation is increasing

when big amount of submissions are evaluated.

However, it is difficult to force group of evaluators

to very similar thinking in algorithm analysis.

The goal of the presented research is not only to
improve the evaluation process of the maturity

exam but also to enhance the students’ motivation

while choosing the programming module.

References

1. R. Romli, S. Sulaiman and K. Zamli. Automatic program-
ming assessment and test data generation a review on its

approaches, International Symposium in Information Tech-
nology (ITSim 2010), 3, 2010, pp. 1186–1192.

2. J. Blonskis and V. Dagienė, Evolution of informatics matur-
ity exams and challenge for learning programming. LNCS
4226, 2006, pp. 220–229.

3. J. Blonskis and V. Dagienė, Analysis of students’ developed
programs at thematurity exams in information technologies,
LNCS 5090, 2008, pp. 204–215.

4. D. Vitkutė-Adžgauskienė and A. Vidžiūnas, Problems in
choosing tools and methods for teaching programming,
Informatics in Education, 11(2), 2012, pp. 271–282.

5. E. Kasanen, K., Lukka and A. Siitonen, The Constructive
Approach in Management Accounting Research, Journal of
Management Accounting Research, 5(1), 1993, pp. 243–263.

6. C. Douce, D. Livingstone and J. Orwell, Automatic Test-
BasedAssessmentofProgramming:AReview,ACMJournal
of Educational Resources in Computing, 5, 2005, pp. 1–13.

7. K. M. Ala-Mutka, A survey of automated assessment
approaches for programming assignments, Computer
Science Education, 15, 2005, pp. 83–102.

8. Y. Liang, Q. Liu, J. Xu and D. Wang, The Recent Develop-
ment of Automated ProgrammingAssessment, International
Conference onComputational Intelligence and Software Engi-
neering (CiSE 2009), 2009, pp. 1–5.

9. P. Ihantola, T. Ahoniemi, V. Karavirta and O. Seppälä,
Review of recent systems for automatic assessment of pro-
gramming assignments, Proceedings of the 10th Koli Calling
International Conference on Computing Education Research
(Koli Calling 2010), ACM, 2010, pp. 86–93.

10. R. Queirós and J. P. Leal, Programming Exercises Evalua-
tion Systems—An Interoperability Survey, CSEDU, 1, 2012,
pp. 83–90.

11. E.W.Dijkstra,Thehumbleprogrammer,Communications of
the ACM, ACM Turing Lecture, 15(10), 1972, pp. 859–866.
Accessed 29 December 2012. http://www.cs.utexas.edu/
users/EWD/transcriptions/EWD03xx/EWD340.html.

12. D. Jackson, A semi-automated approach to online assess-
ment. Proceedings of the 5th Annual SIGCSE/SIGCUE
ITiCSEConference on Innovation and Technology in Compu-
ter Science Education (ITiCSE ’00). ACM, 2000, pp. 164–
167.

13. M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D.
Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I. Utting
and T.Wilusz, A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students.
SIGCSE Bull., 33(4) 2001, pp. 125–180.

14. T. Ahoniemi, T. Reinikainen. ALOHA – a grading tool for
semi-automatic assessment of mass programming courses.
Proceedings of the 6th Baltic Sea Conference on Computing
Education Research (Koli Calling’2006), 2006, pp.139–140.

15. B.Cheang,A.Kurnia,A.LimandW.C.Oon,Onautomated
grading of programming assignments in an academic institu-
tion, Computers & Education, 41, 2003, pp. 121–131.

16. C. A. Higgins, G. Gray, P. Symeonidis and A. Tsintsifas.
Automated assessment and experiences of teaching pro-
gramming. ACM Journal on Education Resource in Comput-
ing (JERIC), 5(3), 2005, Article 5.

17. I. Beres, T. Maguar and M. Turcsanyi-Szabo. Towards a
personalised, learning style based collaborative blended
learning model with individual assessment, Informatics in
Education, 11(1), 2012, pp. 1–28.

18. E. Verdú, L. M. Regueras, M. J. Verdú, J. P. Leal, J. P. de
Castro and R. Queirós, A distributed system for learning
programming on-line, Computers & Education, 58(1), 2012,
pp. 1–10.

19. J. P. Leal and R. Queirós, Integrating the LMS in Service
Oriented eLearning Systems, International Journal of Knowl-
edge Society Research, 2(2), 2011, pp. 1–12.

20. I. Novo-Corti, L. Varela-Candamio and M. Ramil-Dı́az.
Using Moodle Platform Online to Work out on Solving
Multiple Options Questions on Microeconomics: Notes on
Gender Differences, International Journal of Knowledge
Society Research, 3(2), 2012, pp. 65–74.

21. J. E. Labra Gayo, P. Ordóñez de Pablos and J. M. Cueva
Lovelle,WESONET: Applying SemanticWeb Technologies
and Collaborative Tagging toMultimediaWeb Information

Valentina Dagiene et al.652

Systems, Computers in Human Behaviour, 26(2), 2010, pp.
205–209.

22. M. D. Lytras and P. Ordóñez de Pablos, Competencies and
Human Resource Management: Implications for Organiza-
tional Competitive Advantage, Special Issue on Competen-
cies Management: Integrating Semantic Web and
Technology-Enhanced Learning Approaches for Effective

Knowledge Management, Journal of Knowledge Manage-
ment, 12(6), 2008, pp. 48–55

23. M. Lytras, P. Ordóñez de Pablos, M. Mantziou and O.
Mantziou, Information and communication technologies
and challenges for the management of education: new
managerial perspectives, International Journal of Manage-
ment in Education, 1(3), 2007, pp. 199–213.

Valentina Dagiene is professor at Vilnius University, Lithuania (MS in Applied Mathematics, PhD in Computer Science,

Dr.Habil inEducation).Her research interests focus on the computer science (informatics) education, teaching algorithms

and programming, also localization of educational software. She has published over 200 scientific papers and

methodological works, has written more than 50 textbooks in the field of Informatics and Information Technology for

primary and secondary education. She works in various expert groups and work groups, organizing the Olympiads and

contests. She is Editor of international journals ‘‘Informatics in Education’’ and ‘‘Olympiads in Informatics’’. She has also

participated in several EU-funded R&D projects, as well as in a number of national research studies connected with

technology and education.

Eugenijus Kurilovas is Head of International Networks Department of the Centre of Information Technologies in the

Ministry of Education and Science of Lithuania, Associate Professor in Vilnius Gediminas Technical University, and

Research Scientist in Vilnius University Institute of Mathematics and Informatics. He holds PhD in Informatics

Engineering. His research interests focus on technology enhanced learning. He has published over 80 scientific papers,

2 monographs, and 4 chapters in scientific books. He is reviewer and member of 30 editorial boards and committees of

international scientific journals (incl. 6 indexed/abstracted in ISI Web of Science) and conferences (incl. 7 indexed /

abstracted in ISIWeb of Science). He has also participated in about 30 large scale EU-funded R&D projects, as well as in

several international research studies such as STEPS, SITES, and ICILS.

Bronius Skupasworks at Vilnius University Institute ofMathematics and Informatics (Lithuania) and also senior teacher

ofComputer Science atVilniusLyceum.HeholdsPhD in InformaticsEngineering.His research interests focuson teaching

programming. He developed semi-automated assessment system for student programs. He is a leader of Lithuanian

Olympiad in Informatics Technical Committee, member of Lithuanian Computer Society Council. He has published a

number of scientific papers and participated in several EU-funded R&D projects.

Programming Assignments in Virtual Learning Environments 653

