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In the United States and around the world, engineering programs face issues of demotivation and attrition. Many small

studies have examined a few motivational characteristics in engineering education, generally treating variables as discrete

and using simple correlational analyses. Given the complex, interactive nature of motivation for learning and

development, the field of engineering education needs studies that model interactions among multiple variables informed

by amulti-theory approach tomotivation. Once demonstrated, these relationships andmodel can be tested for similarities

or differences in more diverse groups. To address this gap, we present a systematic approach to model and validate

interactions of multiple motivational characteristics. This study assessed the motivational profiles of 80 junior and senior

students in mechanical engineering design, and tested the data for correlations to verify the strength of their overall

relationships. Then, the researchers created an interactive, directional model informed by theory and precedent in the

literature, and further tested the relative influence of the interrelated factors, to identify those most influential on key

outcomes, using multiple regression. Correlations indicated 28 possible paths, which were built into the hypothetical

model, and the multiple regressions eliminated 15 of those pathways, leaving the 9 most influential factors and 13 most

significant predictive pathways modeling the course engagement and the career efficacy and success expectations of these

advanced engineering students. This approach of modeling the influences among different constructs helps to reduce the

noise and confusion frommultiple, sometimes conflicting findings, and refine understanding of students’ motivation that

can contribute to more effective engineering education.
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1. Introduction

Motivation predicts academic success, retention

and completion across schools, groups and levels
of education [1]. Engineering is facing problems of

attrition, and challenges in recruiting minority

groups such as women [2]. Understanding the

motivations that drive successful (junior and

senior) engineering students can provide informa-

tion to support recruitments and the alignment of

course and programs tomeet students’ needs. How-

ever, motivation for learning is not simple or linear.
Educational research on motivation has moved

beyond single-theory frameworks and dividing cog-

nitive from affective and social factors, into a more

integrative conceptualization of human motivation

for learning and change [3].

Students experience different motivational char-

acteristics, some productive, promoting engage-

ment, attention and development, and others

unproductive, reducing and deterring engagement

and success [4]. In the short term, productive

motivation predicts and supports students’ course
attendance, engagement and completion, as well as

educational program retention and completion [5].

In the long term, productive motivation supports

students’ investment in deep learning, the develop-

ment of professional competencies, and persistence

in overcoming challenges and innovating through-

out their careers [6]. Motivation is critical for

student retention across disciplines and competency
development across professions [7]. Engineering

education research can benefit from includingmoti-

vation as a key component in predicting student

retention and success, particularly in engineering

design courses that have been highlighted to engage

and motivate students. An understanding of the

complex interactions among different motivational

characteristics is needed to develop competencies
and increase student retention.
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Consequently, the research question being

addressed in this study is: What are the most

significant predictors among individual goal orien-

tations, beliefs about the profession (success

depending on basic abilities or hard work), course

content perceptions (value, relevance & utility),
course climate perceptions (support of teacher and

peers), and developmental motivational character-

istics (course efficacy & success expectations) on the

productive motivations (course engagement and

career efficacy & success expectations) of mechan-

ical engineering seniors in a design course?

Addressing this research question involved first

identifying a comprehensive set of relevant motiva-
tional characteristics along with relevant construct

measures, from the existing research literature in

engineering education. Second, thesemeasureswere

contextualized for the engineering context and

administered to advanced engineering design stu-

dents. Third, after reliability of the measures for the

participant group and purpose were verified, corre-

lations were computed to determine significant
relationships among the characteristics under

study, and to develop an initial hypothetical

model based on these interactions. Fourth, a regres-

sion analysis was used to refine and validate the

model. The resultingmodel of engineering students’

motivation can be used to improve productive

motivation for engineering design students.

2. Literature review

2.1 Motivational issues in engineering education

Research in engineering education from around the

world underscores the need formotivation research.

The US, in particular, is falling short of market
needs for skilled engineers [8]. Engineering schools

evidence low student success rates, as reflected in

retention (degree completion) and graduation [2, 9–

11], with estimates that half of engineering students

change to different majors in their first and second

years [12–13]. While attrition is high, only about

10% of students leave because of failure [14], which

suggests that the problem of retention is not pri-
marily cognitive, but motivational.

Beyond current trends in higher education, the

hands-on nature of engineering and its integration

of math and science into concrete activities have

made it the focus of programs for elementary and

secondary students and their teachers. Engineering

activities have been demonstrated to promote early

interest in engineering itself, as well as broader
interest in math and science, for secondary students

(e.g., [15–16]). If younger students are to be inter-

ested in, and prepared for, engineering careers, then

their teachers must also have engineering-related

knowledge and skills [17–18]. Funding agencies and

researchers have invested in many projects and

studies demonstrating both learning and motiva-

tional effects of engineering-based teacher profes-

sional development experiences (e.g., [19–20]).

Thus, understanding motivation for engineering
education reaches back from undergraduate pro-

grams into the secondary recruiting pipeline.

A better understanding of students’ motivations

can help engineering educators and curriculum

designers address attrition and quality issues.

Given the role of engineering programs to prepare

students for specific career goals, the scope of

relevant motivations include those directly linked
to course experiences, as well as those related to

success in their future professional roles [2, 21].

2.2 Studies of motivation for engineering

While America’s gaps in skilled engineering have

been most broadly publicized, motivation studies

conducted around the world focus on engineering
education, moving beyond content and activities, to

promoting maximum engagement and integrative

learning (e.g., [22–23]). This bodyofworkhas begun

to illuminate the importance of various motiva-

tional characteristics, both personal (general) and

context or discipline-specific (experiential). Among

these characteristics are: intrinsic interest and suc-

cess expectancies [24–25] perceived relevance and
value through identification with engineering gen-

erally [26] and with engineering subdisciplines (e.g.,

[27]). Research also demonstrates that motivation

improves student engagement, learning and com-

pletion for traditionally content-heavy founda-

tional courses such as Statics [28], as it does for

completion in general (previously ‘‘gatekeeper’’)

math and science courses (e.g., [29]); and that it
promotes more general college success among engi-

neering students (e.g., [30–31]). Among the most

often-usedmotivational constructs are several types

of self-efficacy, all found to promote engineering

learning and performance: general or personal self-

efficacy [32], field or domain-specific self-efficacy

[26] and project or task-specific self-efficacy [25].

Linking course and programeffects are findings that
long-term commitment to the major promotes

short-term motivation to learn in the course [25].

On the negative, or unproductive side of motiva-

tion, some engineering students experience high

levels of performance pressure and anxiety, which

reduce learning and performance quality [24]; and

productive motivations of students decrease during

the first year of engineering study [26], and may
continue to fall over years of progress toward degree

[23]. Learning environments, operationalized in

course climates, can motivate and engage students

individually [23], as well as promote peer collabora-
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tion and student-instructor interaction [29].These

studies illustrate the influential power ofmotivation

in engineering education, for better or worse.

Given that motivation is so influential, it is

important that it is alsomalleable, that instructional

strategies can explicitly promote productive indivi-
dual and environmental characteristics. Self-effi-

cacy for engineering (like other subjects) can be

promoted by the combination of personal success

experiences and explicit verbal encouragement, sup-

ported by communicating skill and task value; and

in the absence of direct success, providing role

modeling and vicarious success [32]. Course cli-

mates that promote productive motivation depend
primarily on instructor support, including: accessi-

bility and openness; motivationally appropriate

instructional strategies; and prompt, meaningful

feedback to students [29]. Service learning projects

offer potential to promote perceptions of outcome

value which supports skill development [33]. Engi-

neering students’ productive motivational percep-

tions for both course and careers can be enhanced
by systematic integration of motivating strategies

[34]. Engineering design courses are often used for

such motivational effects studies (e.g., [10, 34]),

because they present the elements of creativity and

problem-solving which are so critical to the valued

professional outcomes of design thinking and inno-

vation [21]. Recent studies have found both learning

and motivational benefits from interdisciplinary
education [35], e-learning environments [36], and

fully problem-based curricula [37]. These studies

form a foundation on which additional research

can be built, to inform engineering education.

2.3 Frameworks for modeling engineering

motivation

Educational studies, outside of engineering, have

used regression and other modeling methods to

show that maximizing motivation depends on the

relative contributions and dynamic interactions of

multiple personal and experiential variables [38].

The importance of modeling these contributory

variables together is that it tests their relative

influences on the same individuals’ motivations,
providing a clearer picture of what factors are

most influential for this group [39–41]. Engineering

studies have identified a range of productive moti-

vational characteristics for the domain and tasks of

engineering, as identified in the previous review.

A few modeling studies have demonstrated more

complex and interactive relationships among moti-

vational variables and outcomes in engineering
education. Burtner [12] used discriminant analysis

to examine the expectations and perceptions of

professional subject matter, along with personal

attributes, as characteristics of students who

dropped out or changed majors versus remained

and completed their programs. Jones [42] modeled

similar relationships among expectations, values,

achievement and career plans. Lent and others [25]

focused on the predictive role of self-efficacy on

outcome expectations, interest and major choice.
However, a more comprehensive set of variables

have not been tested together to more clearly

identify their nuanced contributions to global moti-

vational outcomes for engineering students.

2.4 Method for modeling relationships among

motivational characteristics for engineering

To model the relationships among a complex set of

motivational characteristics for advanced under-

graduate engineering students, this study was con-
ducted in a senior-level mechanical engineering

design course.

2.4.1 Participants

Study participants were 80 university mechanical

engineering undergraduates in a senior-level engi-

neering design course. The group was: 75 (94%)

male and 5 (6%) female; ages 19-37 (M= 22.79). As

to ethnicity, they identified as: 6 (8%) Hispanic or

Latino; 54 (68%) Non-Hispanic/White; 10 (13%)
Asian/Asian American; 3 (4%) Black/African

American; 3 (4%) American Indian/Alaska

Native; and 4 (5%) Multi-racial. All participants

were seniors majoring in mechanical engineering,

with similar prior knowledge and experience, taking

the same requisite courses (but not all together), and

preparing for similar future careers. All had earned

(required) high math and science aptitude scores
(SAT math 600-700 & composite M= 1280; ACT

math 32-25 & combined M = 28.3), with (self-

reported) GPAs: 2.52-4.08 (M = 3.35).

2.4.2 Measures

A set of multi-scale questionnaire instruments

assessed participants’ perceptual and motivational

characteristics. These constructs were chosen

because they had been demonstrated as influential

on independent or dependent variables related to
engineering motivation (as illustrated in the pre-

vious review). All were multi-item quantitative

scales (7-pt Likert-type; anchored: 1 = ‘‘strongly

disagree’’ to 7 =’’strongly agree’’). The instruments

were contextualized for this study, by making the

questions specific to the course and discipline. All

construct measures demonstrated adequate inter-

item coherence, indicating scale reliability, using the
Cronbach’s alpha reliability statistic, at a target level

of alpha � 0.80 (see [43–44]). The full set of ques-

tionnaires was administered at one time, near the

end of the pre-capstone design course, to control for

order effects, and to the same group of students, to
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control for individual differences. The constructs

and subscales are described below.

Individual goals: Goal orientations frame stu-

dents’ tendencies toward particular reasons for

learning and performance.

Learning and future goals [45–47]. This subscale
assessed the degree to which students’ desire to

learn engineering for personal interest or to con-

tribute to personally-valued future career goals (7

items; alpha = 0.93). Higher values on the scale

indicate internal or intrinsic reasons. Sample item:

‘‘I do my work in this course because I want to

understand the ideas’’.

Performance goals [45–47].This scale assessed the
degree towhich students’ desire to learn engineering

to impress others (group members, teacher, etc.), to

avoid appearing incompetent to others or for grades

(9 items; alpha = 0.95). Higher values indicate

external or extrinsic reasons for learning. Sample

item: ‘‘I do my work in this course to make others

proud of me’’.

Beliefs about the Profession: Items in this scale
assess students’ beliefs about aptitude and charac-

teristics that are needed to be successful in the field

of engineering. These original scales were added by

the engineering experts on the research team, in

consultation with an assessment expert. These

types of perceptions had been discussed generally

in previous engineering studies (e.g., [37]), but

coherent scales to assess them were not available,
so the team created them for this project.

Requires learning, teamwork and creativity. This

subscale assessed students’ belief that success in

engineering as a career depended on a learning

diverse skills (continuous learning, teamwork, crea-

tivity) (3 items; alpha = 0.89). Sample item: ‘‘You

have to be creative to be a mechanical engineer’’.

Math-science aptitude. This subscale assessed
students’ belief that success in engineering as a

career depends on natural aptitudes in math and

science (3 items; alpha = 0.86). Sample item: ‘‘To be

successful as an engineer, you really have to be good

at math and science’’.

Hard work/challenge. This subscale assessed stu-

dents’ belief that success in engineering as a career

depended on hard work and effort, learner-con-
trolled factors (4 items; alpha = 0.80). Sample

item: ‘‘It takes a lot of hard work to be good at

mechanical engineering’’.

Perceptions of the course: Student’s perceptions
that course content has motivating characteristics

for both in and outside of class use, in the near and

distant future, and that the class social climate is

supportive of success.
Content—value [19, 38]. This subscale assessed

students’ perceptions that the course content is

valuable (9 items; alpha = 0.95). Sample item: ‘‘I

seriously value what I am learning about engineer-

ing in this course’’.

Content—relevance [19–38]. This subscale

assessed students’ perceptions that the course con-

tent is relevant to the student’s life and career needs

(7 items; alpha = 0.93). Sample item: ‘‘When we
learn something new in this course, it is clearly

linked to our career goals’’.

Content—utility [19, 38]. This subscale assessed

students’ perceptions that the course content is

useful for the student’s life and career needs (6

items; alpha = 0.93). Sample item: ‘‘The things we

do in this course are really useful for us as engi-

neers’’.
Climate—professor support [38, 46–47]. This sub-

scale assessed students’ perceptions that the climate

provided by the professor was fair, supportive and

encouraging (11 items; alpha = 0.91). Sample item:

‘‘When students make mistakes, the professor

makes it a learning opportunity’’.

Climate—peer support [38, 46–47]. This subscale

assessed students’ perceptions that the climate pro-
vided by student peers was cooperative, supportive

and respectful (7 items; alpha = 0.91). Sample item:

‘‘Students in this class support each other’’.

Course-level motivations and engagement: Assess-
ments to measure success-related factors that pre-

dict investment in class, along with a scale for

overall course engagement.

Self-efficacy—course [19–20, 46–48]. This sub-
scale assessed students’ beliefs that they could

succeed in the course, even in the face of challenges

(8 items; alpha = 0.88). Sample item: ‘‘If I do poorly

on an assignment or project in this course, I have

strategies to help me succeed the next time’’.

Success expectations—course [38, 46]. This sub-

scale assessed students’ beliefs that they would

learn, achieve and be successful in the engineering
design course (7 items; alpha = 0.80). Sample item:

‘‘I am sure that I will do well in this course’’.

Engagement and effort [49–50]. This subscale

assessed students’ self-reported effort to learn and

engage in the course activities and tasks (a depend-

able and commonly-used proxy for overall motiva-

tion) (9 items; alpha = 0.93). Sample item: ‘‘I work

very hard in this course’’.
Career-related motivations: These scales assess

productive motivations for engineering as a career.

Self-efficacy—profession [19, 46–48]. This sub-

scale assessed students’ beliefs that they could

succeed in their future engineering careers, even in

the face of challenges (8 items; alpha= 0.90). Sample

item: ‘‘I believe that I can manage most challenges

that a mechanical engineer faces’’.
Success expectations—career [38, 46]. This sub-

scale assessed students’ beliefs that they would

learn, achieve and be successful in their future
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engineering careers (7 items; alpha = 0.93). Sample

item: ‘‘I expect to be successful in my engineering

career’’.

2.4.3 Initial model building—Correlation analysis

The model-building design and testing procedure

used a multiple regression approach [39–41, 51].

First, to confirm the coherence of the scales for

this participant group, the scales were tested for

internal consistency, using Cronbach’s alpha (at the

target level of alpha� 0.80). Second, to confirm the

general strength of relationships among these con-

structs for this participant group, scale mean scores
were calculated and Pearson’s product moment

correlations computed, with the target of both a

critical magnitude (r � 0.40) and a high level of

significance (p < 0.001).

2.4.4 Model refinement—Multiple regression

Any variables not demonstrating the target level of
correlationwere dropped from the regressionmodel

test. Using the remaining variables, a hypothetical

prediction model of engineering students’ overall

motivation and success expectations was con-

structed. The model consisted of the significantly-

correlated predictor variables, ordered based on

their theoretical relationships and previous research

precedent. Finally, three phases of regression ana-
lysis were used to test the relative magnitude and

power of influences on the theoretical sequence of

factors (regression target level: p < 0.01). Multiple

regression addresses the size of overall relationship

between a group of predictor variables and a single

outcome variable, and also parses out the individual

contribution that each individual variable makes to

that overall influence [41].Anypaths in the hypothe-
tical model falling below the target level of signifi-

cance would be dropped, leaving the most

significant paths to explain prevalent influences on

these engineering students’ course engagement and

career self-efficacy and success expectancies.

3. Results: Model of productive
motivational characteristics of engineering
students

The following sections report the results of the

three-phase model-building and testing procedure

(based on methods in [39–41, 51]).

3.1 Reliability analysis

First, to confirm the coherence of the scales for this

participant group, the scales were tested for internal
consistency, and all subscales demonstrated reliabil-

ities at the target level of alpha � 0.80 (Cronbach’s

alphas 0.80–0.95). Shown in Table 1 are the means,

standard deviations and Cronbach’s alpha reliabil-

ity statistics for each of the subscales.

3.2 Correlation analysis

Second, to confirm the general strength of relation-

ships among these constructs for this participant

group, Pearson’s product moment correlations

were computed on scale means, with the target of

both a critical magnitude (r� 0.40) and a high level

of statistical significance (p < 0.001). In the correla-

tion test, two clusters of the original variables
correlated at an extremely high magnitude, (r >

0.90) and significance (p < 0.000), suggesting that

they were essentially functioning as measures of the

same constructs [43]. To further assess their coher-

ence, a confirmatory factor analysis (CFA) was

conducted using Principal Extraction [39]. These

clusters, the three content perceptions (relevance,

value, utility) and the two climate support percep-
tions (professor, peers) each loaded onto a single

factor, indicating that they were functioning as one

variable in this dataset [43]. Based on these analyses,
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Table 1. Scale descriptive statistics

Scale/Construct Name # of Items Mean Score
Standard
Deviation

Reliability
(Cronbach’s
alpha)

Goals: Learning & Future 7 5.16 1.20 0.93
Goals: Performance 9 3.62 1.32 0.95
Beliefs: Profession Requires Learning, Teamwork, Creativity 3 6.25 0.64 0.89
Beliefs: Profession Requires Math & Science Aptitude 3 4.26 1.12 0.86
Beliefs: Profession Requires Hard Work 4 5.53 1.08 0.80
Content: Value 9 4.37 1.43 0.95
Content: Relevant 7 4.82 1.37 0.93
Content: Utility 6 5.32 1.21 0.93
Climate: Professor Support 11 5.48 0.86 0.91
Climate: Peer Support 7 5.53 0.95 0.91
Course: Self-Efficacy 8 5.59 0.84 0.88
Course: Success Expectations 7 5.82 0.92 0.80
Course: Engagement & Effort 9 5.58 0.86 0.93
Career: Self-Efficacy 8 6.08 0.79 0.90
Career: Success Expectations 7 5.79 1.01 0.93



those two clusters of original variables were com-
bined into single factors for the regression analysis.

All but two of the variables demonstrated the

target level of correlation, and those variables

(performance goals, math & science aptitudes)

were dropped from the regression model test.

Given the goal of developing a directional model,

the researchers excluded correlations indicating

relational paths among variables in the same col-
umns, which could not be clarified using regression

analysis. This process yielded 25 possible directional

paths, to build into the hypothetical prediction

model.

Using the remaining significantly-related vari-

ables, a hypothetical, unidirectional prediction

model of engineering students’ overall motivation

and success expectations was constructed. Position-
ing and sequential ordering were based on their

theoretical relationships, along with previous

research precedents both in engineering and more

general education research studies [51]. They are

presented in three sequential subsets (columns) in

the hypothetical model, shown in Fig. 1: individual

goal orientations and beliefs about the profession

(column 1); course-based content perceptions, cli-
mate perceptions and course motivations (self-effi-

cacy and success expectations) (column 2); and

course engagement along with career-related moti-

vations (self-efficacy and success expectations)
(column 3).

3.3 Regression analysis and model test

Finally, three phases of simultaneous multiple

regression analysis [39–40] were conducted to test

the relative magnitude and power of influences on

the theoretical sequence of factors (target level: p <
0.01). Multiple regressions were utilized to assess

the relative significance of influences of the variables

in each column in the hypothesizedmodel, column 1

on column 2, column 2 on column 3, and column 1

on column 3 [41]. Any paths in the hypothetical

model falling below the target level of significance

would be dropped [51], leaving the most significant

paths to explain the prevalent influences on these
engineering students’ course and career-related

motivations. As a consequence, any variables that

had significant correlations but did not demonstrate

any significant predictive influences at the target

level would also be dropped from the model.

As shown in the model summary statistics (Table

3), all of the multiple regressions demonstrated

significant overall effects, showing the overall
soundness of the hypotheticalmodel as constructed.

As shown in the analysis of the model’s unique

variable coefficients (Table 4), there were one or

more variables in each regression cluster of predic-
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Table 2. correlations among variables

P-Seffic L&FG PrefG C-Seffic P-Succ C-Succ Value Relev Util ProfS PeerS HWk Ma-Sci LTwC C-Eng

P-Seffic 1

L&FG 0.40 1
0.00

PrefG –0.05 0.16 1
0.68 0.17

C-Seffic 0.65 0.65 0.09 1
0.00 0.00 0.45

P-Succ 0.81 0.31 –0.02 0.51 1
0.00 0.01 0.89 0.00

C-Succ 0.52 0.50 0.28 0.45 0.51 1
0.00 0.00 0.02 0.00 0.00

Value 0.38 0.74 0.26 0.60 0.23 0.48 1
0.00 0.00 0.03 0.00 0.05 0.00

Relev 0.44 0.62 0.45 0.64 0.36 0.46 0.83 1
0.00 0.00 0.00 0.00 0.00 0.00 0.00

Util 0.41 0.70 0.44 0.62 0.30 0.50 0.84 0.85 1
0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

ProfS 0.51 0.54 0.26 0.70 0.38 0.48 0.66 0.68 0.66 1
0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

PeerS 0.55 0.46 –0.01 0.62 0.48 0.33 0.57 0.52 0.44 0.66 1
0.00 0.00 0.92 0.00 0.00 0.01 0.00 0.00 0.00 0.00

HWk 0.35 0.36 –0.07 0.29 0.27 0.14 0.39 0.37 0.32 0.21 0.50 1
0.00 0.00 0.55 0.01 0.02 0.22 0.00 0.00 0.01 0.07 0.00

Ma-Sci –0.06 0.18 0.31 0.14 0.02 –0.10 0.13 0.24 0.19 0.09 0.15 –0.10 1
0.59 0.14 0.01 0.23 0.86 0.41 0.29 0.04 0.11 0.47 0.22 0.40

LTwC 0.49 0.17 0.16 0.37 0.46 0.36 0.27 0.36 0.31 0.36 0.48 0.39 0.16 1
0.00 0.16 0.18 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.18

C-Eng 0.44 0.75 0.18 0.62 0.31 0.50 0.71 0.66 0.68 0.54 0.50 0.44 0.17 0.27 1
0.00 0.00 0.12 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.02

Note: bold text indicates those correlations that met the dual standard of magnitude � 0.40 and significance � 0.001.



tors that demonstrated a more highly significant

influence on the outcome variable than the others

(p < 0.01).

The multiple regression analysis eliminated 13
of the 25 original, hypothetically predictive path-

ways, and one original factor (hard work), leaving

the 9 most influential variables and 12 most

statistically-significant influential pathways to

course engagement, and to the career efficacy

and success expectations of these advanced engi-

neering students. The resulting final regression

model is shown in Fig. 2.

3.4 Summary of findings

The final model suggests more complex relation-

ships than are demonstrated by the regression

results alone.

While personal goals and beliefs are strong pre-

dictors of both course-level factors (perceptions and
motivations), they do not have significant direct

paths to all of the outcomes. Thus, the data analyses

indicate both direct effects on course engagement

and career-related motivations, and indirect effects

on the same outcomes, apparently mediated by the

course-level perceptions and motivations.
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Fig. 1. Hypothesized Regression Model Predicting Engineering Students’ Motivation.

Table 3. Results of Multiple Regression

Model Path

R2

(Mult. Correl.
Coefficient) F Change

df
(degrees of
freedom)

Significance
of F Change

Phase 1: Col 1!Col 2
Goals & Beliefs!Course Perc & Motiv

0.575 30.698 3 0.000**

Goals & Beliefs!Climate 0.447 18.556 3 0.000**
Goals & Beliefs!Course Efficacy 0.485 21.624 3 0.000**
Goals & Beliefs!Course Success Expect 0.206 6.052 3 0.001**

Phase 2: Col 2!Col 3
Course Perc & Motiv!Prof Succ Expect

0.393 10.511 4 0.000**

Course Perc & Motiv!Prof Self-Effic 0.469 14.370 4 0.000**
Course Perc & Motiv!Course Engage 0.594 23.730 4 0.000**

Phase 3: Col 1!Col 3
Goals & Beliefs! Prof Succ Expect

0.278 8.993 3 0.000**

Goals & Beliefs! Prof Self-Effic 0.342 12.153 3 0.000**
Goals & Beliefs! Course Engage 0.587 33.199 3 0.000**



Learning and future goals demonstrated signifi-

cant direct effects on perceptions of course content,
class climate, and course and career self-efficacy.

Beliefs about the profession (importance of team-

work and creativity) demonstrated significant direct

effects on perceptions of class climate, course self-

efficacy and success expectations, as well as career

self-efficacy and success expectations. Course con-

tent perceptions demonstrated significant effects on

course engagement and effort, as course efficacy did
on career efficacy, and course success expectations

did on career success expectations. All of these are

theoretically-consistent findings, and while some

individual relationships have been found in pre-

vious engineering studies, the entire complex mod-

eling of these relationships has not previously been

demonstrated for mechanical engineering students.

3.5 Limitations

A limitation of this study, like somany others in this

body of work, is that its scope is a relatively small

sample (80) from one engineering subspecialty

(mechanical). At the same time, the homogeneous

sample controlled for many extraneous factors and
allowed testing a model to clarify the relative con-

tributions of many factors previously found corre-

lated. Having demonstrated the benefit of modeling

to clarify some of the relative influences invites

extension to more diverse samples, to discover

how much divergence exists among subgroups in

the field.

4. Discussion

International research activity on motivation in

engineering education provides ample evidence

that motivation is an issue of concern in the global

community of engineering educators and institu-

tions. The better engineering educators understand

their students’ motivation, the more effectively they

can address the needs of course-level success (vs.
failure) [52], as well as program-level completion

(vs. attrition) [9]. At the same time, the field of

engineering education needs to position itself for

globalization and change [53], future-oriented goals
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Table 4. Influences of Individual Variables in Model

Model Paths

B
Unstandardized
Coefficient

Standard
Error t

Significance of
Contribution

Column 1!Column 2
Learning & Future Goals!Content Perceptions

0.701 0.089 7.899 0.000**

Beliefs: Teamwork & Creativity!Content Perceptions 0.405 0.168 2.415 0.018
Beliefs: Hard Work!Content Perceptions 0.081 0.105 0.771 0.433
Learning & Future Goals!Class Climate 0.307 0.066 4.665 0.000**
Beliefs: Teamwork & Creativity!Class Climate 0.425 0.119 3.584 0.001**
Beliefs: Hard Work!Class Climate 0.076 0.078 0.978 0.331
Learning & Future Goals!Course Self-Efficacy 0.436 0.066 6.569 0.000**
Beliefs: Teamwork & Creativity!Course Self-Efficacy 0.380 0.120 3.176 0.002*
Beliefs: Hard Work!Course Self-Efficacy –0.023 0.078 –0.295 0.769
Learning & Future Goals!Course Success Expect 0.094 0.089 1.050 0.279
Beliefs: Teamwork & Creativity!Course Success Expect 0.601 0.162 3.716 0.000*
Beliefs: Hard Work!Course Success Expect –0.024 0.106 –0.222 0.825

Column 2!Column 3
Content Perceptions!Career Success Expectations

0.012 0.111 0.108 0.915

Class Climate!Career Success Expectations 0.053 0.187 0.284 0.778
Course Self-Efficacy!Career Success Expectations 0.320 0.117 1.815 0.074
Course Success Expect!Career Success Expectations 0.418 0.121 3.462 0.001**
Content Perceptions!Career Self-Efficacy 0.027 0.083 0.323 0.748
Class Climate!Career Self-Efficacy 0.128 0.140 0.914 0.364
Course Self-Efficacy!Career Self-Efficacy 0.351 0.132 2.651 0.010*
Course Success Expect!Career Self-Efficacy 0.218 0.091 2.410 0.019
Content Perceptions!Course Engagement & Effort 0.569 0.102 5.552 0.000**
Class Climate!Course Engagement & Effort –0.095 0.172 –0.552 0.583
Course Self-Efficacy!Course Engagement & Effort 0.199 0.163 1.225 0.225
Course Success Expect!Course Engagement & Effort 0.161 0.111 1.446 0.153

Column 1!Column 3
Learning & Future Goals!Career Success Expectations

0.214 0.019 2.342 0.022

Beliefs: Teamwork & Creativity!Career Success Expectations 0.614 0.165 3.712 0.000**
Beliefs: Hard Work!Career Success Expectations 0.019 0.109 0.174 0.862
Learning & Future Goals!Career Self-Efficacy 0.188 0.068 2.748 0.008*
Beliefs: Teamwork & Creativity!Career Self-Efficacy 0.481 0.124 3.884 0.000**
Beliefs: Hard Work!Career Self-Efficacy 0.065 0.081 0.799 0.427
Learning & Future Goals!Course Effort & Engagement 0.606 0.075 8.091 0.000**
Beliefs: Teamwork & Creativity!Course Effort & Engagement 0.166 0.136 1.223 0.225
Beliefs: Hard Work!Course Effort & Engagement 0.157 0.089 1.763 0.082



that can be promoted by attending to motivation as

well.

Previous studies have used a variety of motiva-
tional measures and constructs, mostly with item-

level and correlational analysis; and while locally

interesting, thesemethods contribute onlymodestly

to the larger scope of data-driven change in the

engineering field and engineering education prac-

tice. As a whole, they can present a cacophony of

findings that may be more confusing than helpful.

Modeling analysis, using well-designed scales and
constructs from previous research precedent,

assessed in one group and point-in-time, holds

many extraneous variables constant, and also

enables sorting out the shared variance to clarify

influential relationships.

Previous studies have included beliefs in the

motivational equation for engineering (e.g., [37]).

The present study used perceptions of the course
and beliefs about the profession to predict not only

course engagement but also career motivations.

Further, this study found some goal orientations

and beliefs about the profession more positively

influential on course motivation and engagement

and on career-related motivation than others.

Given their powerful predictive role across educa-

tion and social science research, it is not surprising
that learning and future goals demonstrated such

dramatic influences among engineering students.

They exerted the most significant influential effects

onmotivational characteristics, both proximal (cur-

rent, course-related) and distal (long-term, career).
Thus, fostering and supporting learning and future

goals for individuals and groups may be the most

important motivational investment that engineer-

ing education instructors and programs can make.

While other beliefs about engineering as a profes-

sion did not demonstrate significant influential

effects, the role of teamwork and creativity in

success showed important influences on both
course and career efficacy and success expectations,

motivational factors that carry students through

challenges and lead to completion and success.

Notably, these beliefs tend to be more diverse and

accessible,moremalleable (learned and changeable)

and more internalized (personally owned and

enjoyed) than the others assessed (math & science

aptitude and hard work). These characteristics
place them in similar motivational frameworks as

productive goals, but discipline-focused rather than

learner-focused.

While performance goal orientations failed to

achieve the target level of correlation with produc-

tive course and career-related motivations, learning

and future goals emerged as one of the most power-

ful predictors in the model. While beliefs that the
engineering profession required high math and

science aptitudes failed to achieve adequate correla-
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Fig. 2. Final Regression Model Predicting Engineering Students’ Motivation.



tion, beliefs that it required learned skills (team-

work, creativity) andhardwork correlated strongly,

and belief in the need for those learned skills

emerged as a powerful predictor of productive

course and career motivations. Thus, among the

important distinctions illuminated in this study was
that more innate abilities and aptitudes (less malle-

able and learner-controlled factors) were less pre-

dictive of productive motivations than learned skills

(more malleable and learner-controlled factors).

This is consistent with research findings in other

fields of education outside of engineering. It also

presents research-based precedent for potential to

enhance productive motivation among engineering
students, because those more productive and influ-

ential factors are also malleable and amenable to

instructional change.

Other recent modeling studies have explored the

interrelationships of multiple motivational con-

structs and critical outcome characteristics (e.g.,

[26]). This study both confirms some of those

predictive relationships and extends frameworks
for understanding them into more multi-theory

dimensions of motivation and beyond individual

characteristics to include instructional climate

(environmental supports). In addition, this study

assessed the relative contributions of cognitive,

affective-perceptual and contextual-social factors

linked to motivation, based on the fully integrative

conceptualization of motivation and learning [3]. In
this particular sample of junior and senior engineer-

ing students, personal goal orientations and beliefs

about the profession predicted content perceptions,

class climate perceptions and course-level motiva-

tions (self-efficacy and success expectations). They

also demonstrated both direct effects on course

engagement and career-related motivations, and

apparent indirect effects on the same outcomes,
possibly mediated by course-level perceptions and

motivations.

4.1 Future directions and extensions

Given the complexity and contextualized nature of

human motivation, these influential relationships

could vary across groups, so extensions across
engineering subspecialties to illuminate conver-

gence and divergence will further confirm and

elaborate these findings. Opportunities for future

extensions of this work include investigating simila-

rities among a more diverse group of engineering

students generally, and possible differences among

subspecialties in engineering, as well as internation-

ally. Such extensions are possible, in part, because
the instruments used here provide standardized

scales to assess multiple motivational constructs

and related perceptions. In addition, given previous

research demonstrating the links between motiva-

tion and intentions to drop out (e.g., [38]) and

between intentions and actual dropout (e.g., [54]),

an extension addressing the issue of dropout would

be to include a measure of dropout intentions

among engineering students.

4.2 Implications for engineering education

This motivational modeling research articulates
and operationalizes some of the dynamics of engi-

neering education relevant to current and urgent

issues of the field, such as: the role of students’

preconceptions about a subject, and the dynamic

characteristics of effective and supportive teachers

(e.g., [55]); priorities for understanding and evalu-

ating teaching and learning that motivate students

to remain and complete engineering programs (e.g.,
[56]); and the historic lack of adequate professional

skills such as problem-solving, communication and

teamwork among engineering graduates (e.g., [57]).

Students’ overall motivation impacts all of these

individual and program outcomes, and has a resi-

dual influence on teaching, through teachers’ reci-

procal responses in teaching effort and expectations,

based on students’ motivational feedback (e.g.,
[58]). Better understanding the fully interactive

dynamic of students’ motivation offers potential

for professors and programs to address long-stand-

ing issues of retention and completion [2, 21]. In

addition, research that supports understanding of

the productive motivational profile of students who

succeed in engineering programs also offers poten-

tial to support recruitment and professional devel-
opment that reaches into the secondary schools

pipeline for recruiting future engineers [17].

5. Conclusions

For advanced engineering students, particular types

of goals, beliefs and expectations predict their

productive course and career-related motivations

muchmore significantly than others. These findings

demonstrate that, from students’ perspectives,

learned skills andmalleablemotivational character-

istics (all things that teaching can influence) offer
more motivational power to promote student suc-

cess than do innate abilities or stable traits. Model-

ing these relationships reduces the noise from

multiple, sometimes conflicting findings, enabling

researchers and engineering educators to identify

the strongest and most consistent influences on

engineering students’ course engagement and posi-

tioning for career success. A more refined under-
standing of these influences in the motivational

dynamic supports focusing educational efforts,

and using limited resources, to bring the greatest

value-added to engineering programs and class-

rooms.
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