
Automating the Knowledge Assessment Workflow for

Large Student Groups: A Development Experience*

ANDRIJA BOŠNJAKOVIĆ, JELICA PROTIĆ, DRAGAN BOJIĆ and IGOR TARTALJA
Department of Computer Engineering and Informatics, University of Belgrade—School of Electrical Engineering, Bulevar Kralja

Aleksandra 73, 11000 Beograd, Serbia. E-mail: andrija@etf.bg.ac.rs, jeca@etf.bg.ac.rs, bojic@etf.bg.ac.rs, tartalja@etf.bg.ac.rs

The paper presents our long-term experience at the University of Belgrade—School of Electrical Engineering in the

development and use of the software system called Test, designed to automate the knowledge assessment workflow for

large student groups in situations that usually require the use of pencil-and-paper testing. The test assembly is done

interactively and/or automatically froma database of problems (questions, coding assignments, etc.) and previous tests. In

order to enable objective and uniform knowledge tests, a rich set of parameterized problem selection criteria is made

available to teachers. Preparation, scanning, and analysis of bubble sheets are highly automated anddesigned toworkwith

plain paper and regular scanners. The Test system integrates with relevant learning management systems and the school’s

information system. Quantitative measurements have indicated improvements in both test quality of individual tests and

uniformity of test quality across multiple tests, compared to the tests assembled manually according to intuitively applied

criteria. The system is used for the introductory programming courses at the School. It has been developed through a

number of diploma theses.Overall experience showed that the designed systemprovides an appropriate automation tool, a

useful educational platform, and a valuable base for further research.

Keywords: automatic optical inspection; automated test assembly; educational technology; heuristic algorithms; knowledge assessment
tool; test authoring tool

1. Introduction

Testing of large student groups often presents an

infrastructural challenge for the school administer-
ing the tests. For some schools, testing all the

students simultaneously is only possible using a

conventional pencil-and-paper method. If such a

school has multiple exam terms per school year,

offers all exams in every term, and has hundreds of

students enrolling every year, the time and effort

required to support the workflow is immense. Due

to the state regulations on higher education and
large number of enrolled students, this is the exact

situation faced by the ETF (a commonly used

acronym for the University of Belgrade—School

of Electrical Engineering, Serbia). Although there

are numerous off-the-shelf solutions that provide

good support for one or more phases of the assess-

mentworkflow,wewere not able to find an ideal one

for use in the specific ETF environment. These
conditions motivated the development of a specia-

lized software system called Test [1–3].

The Test system is primarily intended to support

teachers in organizing the database of problems,

knowledge tests, and criteria for problem selection,

as well as in preparing, scoring, and processing the

results of tests, while relying only on common PCs,

regular scanners, and plain paper. Instead of the
usual terms ‘‘item’’ and ‘‘question’’, we are using

‘‘problem’’ to emphasize the nature of both item

types that we use: questions that require analysis

and tasks that require synthesis of the solution.

Similarly, instead of the usual term ‘‘item bank’’,

we are using ‘‘database’’ due to heterogeneous
nature of its contents (problems, tests, criteria,

etc.). Each system component is designed to support

a certain phase of the assessmentworkflow: creation

of a knowledge test, preparation of corresponding

bubble sheets, analysis and scoring of completed

bubble sheets, and processing of gathered results.

The most relevant features of the system include

manual or automatic test assembly, shuffling of
questions and their answer options, creation of

corresponding bubble sheets, optical analysis and

recognition of completed bubble sheets, calculation

of final grades based on students’ combined results

from tests and other activities, and related statistical

analysis. Having all these features in a single pack-

age positions the Test system as an appropriate and

effective end-to-end solution for pencil-and-paper
knowledge assessment. Compared to its previous

major version, described in [1], the new system has

been improved in terms of performance, feature set,

interoperability with other systems, and ease of use

[2, 3]. The Test system has been fully developed by

the faculty members and students of the ETF,

yielding a total of 14 final theses, two international

conference papers [1, 3], and ten domestic confer-
ence papers on lessons learned and solutions to

specific problems.

* Accepted 15 March 2015.1058

International Journal of Engineering Education Vol. 31, No. 4, pp. 1058–1070, 2015 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2015 TEMPUS Publications.

Along with the most interesting results of the

previous work on the Test system development,

this paper includes new contributions. These

include comparison of the system with the related

state-of-the-art, the key parts of the UMLmodel of

the system’s new version, a presentation of newer
features illustrated with relevant GUI screenshots,

performance measurements, and discussion of

results obtained through production use of the

system.

While using the Test system for the introductory

programming courses at the ETF (requiring a total

of 36 tests each year), a substantial workflow

speedup was observed. It was also determined that
the automatically assembled tests have higher and

approximately three times less varying quality than

the tests assembled manually; the quality is quanti-

fied by the problem selection criteria, whose para-

meters are defined by the course teachers. The users

of the systemhave reported positive feedback on the

system’s behavior.

The following section provides the problem state-
ment, followed by a brief overview of related work.

Thereafter, details of the proposed solution are

presented. The achieved results are discussed, and

the paper concludes with a list of possible topics for

future work.

2. Problem statement

Nowadays, computer-based testing is the usual

form of knowledge assessment. However, when

the number of students exceeds the capacity of

available computer facilities, there are two typical

solutions. The first is to divide the population into

smaller groups and test these groups sequentially.

The second is to use pencil-and-paper based testing,
ensuring that all students are given the same test at

the same time.

The ETF workflow is based on the latter

approach. With 560 students enrolled, six examina-

tion terms, and three midterms per year, 36 tests

must be prepared each year, and the resulting

thousands of bubble sheets must be processed.

Manual processing of this workload is overwhel-
mingly tedious and error prone. This was the initial

motivation to develop the Test system. Other

motives include the need for improved quality of

individual tests and improved stability of test qual-

ity across multiple tests, as well as intention to

involve students in development of actual software.

Because learning of programming skills needs

both practical and theoretical approach, the assess-
ment process for the introductory programming

courses at the ETF uses a kind of mixed assessment

methodology described in [4]. Practical program-

ming skills are checked by hands-on programming

assignments, coupled with practical examination in

the computer lab; mid-term and final exams are

administered through knowledge tests. Because

actual programming work requires both creation

of new code and analysis of existing code, all these

knowledge tests typically contain two types of
problems. These are problems with coding assign-

ments, where students create their own solutions,

and multiple choice questions (MCQs), where stu-

dents typically need to analyze code. Although

MCQs are commonly used to assess the analytic

component of knowledge through relatively simple

questions, the MCQs used in the tests of the two

introductory programming courses are always ela-
borate: a student has to fully analyze a code snippet

in the problem statement, analyze all MCQ options

(which typically contain a code snippet), or both.

Sometimes, the student must fully synthesize the

solution to recognize the correct answer. Because

such elaborate MCQs require more time to solve

than what usual, simple MCQs would, these tests

usually have a relatively small number of MCQs. A
typical exam test has two coding problems and six

MCQs. To discourage guessing, wrong answers are

assigned a negative point value.

The goal of the Test system is to support a

complete knowledge assessment workflow for

large student groups at minimal operational and

development cost. The need to keep the operational

cost low resulted in a decision to avoid expensive
equipment and supplies (e.g., paid pre-printed

bubble sheets). An important limiting condition

was negligible development funds since the system’s

inception. At the other end, since the system is to be

used in-house, and only by a relatively small user

base (i.e., course teachers); there was no need to

implement features other than those specifically

needed to support the workflow.
Given the above considerations, the features of

the systemconsidered important andnecessarywere

the following: manual and automated test assembly

using a pool of existing problems and selection

criteria; exporting of created tests into printable

and on-line formats; creation of multiple versions

of the same test by permutation of MCQs and their

options; scanning and scoring of bubble sheets;
calculation of final grades; and collecting statistics

on problem difficulty. Finally, all workflow phases

needed to be integrated, so that the output of each

phase becomes the input for the subsequent phase.

3. Related work

Related existing solutions that primarily support

online assessment can be divided into two major

groups: integrated LMSs (Learning Management

System) and specialized knowledge assessment soft-

Automating the Knowledge Assessment Workflow for Large Student Groups: A Development Experience 1059

ware. Integrated LMSs, such as Moodle [5] or

Blackboard Learn 9.1 [6], support knowledge assess-

ment workflows as a part of a wider learning

management workflow. Specialized software, such

as FastTEST [7], Respondus 4.0 [8], QuestionMark

Perception [9], or the web-based application pre-
sented in [10] are focused only on assessment,

although most specialized solutions provide a fea-

ture to export created tests into an LMS. From our

perspective, the problem with most existing solu-

tions is that they are primarily intended for online

use. In environments where an online use case is not

an option, such software can be used only partially:

it can create and print out tests and, after the testing
and scoring are done, store manually entered

results. An exception is QuestionMark Perception,

which can be coupled with OMR scanners for entry

of test results.

Solutions that primarily support pencil-and-

paper testing are either rounded ecosystems with

custom software (for test creation and result proces-

sing) and OMR devices accompanied with paid,
pre-printed forms, such as the Scantron suite of

products [11], or solutions that allow the use of

any regular scanner and paper but cover only a part

of the assessment workflow, such as Remark Office

OMR 2014 [12]. Solutions in the former group

introduce added cost for every testing and are not

readily available in all markets. Moreover, when

filling out a pre-printed form, each student must
mark the test version, which is error prone. Solu-

tions in the latter group typically lack sufficient

integration with the test creation phase. Conse-

quently, neither solution class is optimal for the

ETF workflow.

Since the test creation phase is very important to

us, the work related to the automation of test

creation will be covered in more detail. The goal of
this phase is to create tests that have similar quality

characteristics but different problems. Differences

can be introduced by problem selection or by

problem generation.

Most solutions described above support test

assembly using simple searches, most often based

solely on the problem category. To increase the

variability of the assembled tests, these solutions
can randomize problems being selected, their

order, and, for MCQs, the number of options.

There are several solutions that offer more than

simple random selection based on the problem

category. The in-house system CADAL [13] con-

trols selection randomness by a precise specifica-

tion of the selection range (e.g., ‘‘select 19 problems

from problems 2 to 77’’ or ‘‘include problem 16’’).
The in-house system eWorkbook [14] organizes

problems in a problem repository tree, similar to

a file-system structure (allowing nested categories),

and allows users to associate metadata with pro-

blems; all of this is taken into account during

simple random problem selection. The in-house

system Autotest [15] allows precise specification of

test templates using Prolog, where each problem in

the template can be specified either as an exact
problem or as a problem from a certain category.

More sophisticated examples of selection

approaches include the use of genetic algorithm

with an originally proposed mutation operator

[16], as well as genetic algorithms using mate

selection proportional to the fitness of the solu-

tions, uniform crossover, survival of the fittest

solutions, and a dynamic penalty scheme [17].
Furthermore, psychometric literature [18, 19]

presents several other advanced techniques for

problem selection, based on mixed integer pro-

gramming [20], network flow programming [21],

simulated annealing [22] or constructive heuristics

[23, 24]. ASC offers several products (FastTEST

family, TestAssembler) [7], which support test

assembly based on the problem difficulty and
statistical properties (based on classical test

theory or item response theory). FastTEST pro-

ducts calculate a test’s psychometric characteristics

on every test change (problem addition or

removal). Although advanced test assembly algo-

rithms based on psychometric theories are

undoubtedly valuable for standardized ‘‘high

stakes’’ and certification testing of large popula-
tions, they need problem property metadata to be

determined through a trial testing of new problems.

These trials are generally very complicated and

costly to implement for most of the university

courses around the world, and are therefore unfea-

sible for the ETF.

A well-known method to generate new problems

is to use a parameterized template for generation of
multiple instances of what is essentially the same

problem. Example applications of this approach are

QuizPACK [25] (C coding assignments) and LON-

CAPA LMS [26] (physics problems). Another

method is to process existing materials, and extract

problems using natural language processing (NLP)

techniques. Regarding the choice of input data,

NLP-based solutions rely on manually gathered
data [27] or the use of a web-crawler to gather the

input data from a well-formatted source such as

Wikipedia [28]. Regarding the review of generated

problems, one approach is to have the teacher

discard inadequate problems after automatic gen-

eration has been completed [29] (43% of the gener-

ated problems were rejected in that experiment).

Another approach is to make the process semi-
automatic by having the teacher select the most

appropriate distractors (incorrect MCQ options)

from the ones suggested by the system [30]. Either

Andrija Bošnjaković et al.1060

way, a certain level of human interaction is still

required at some point of the workflow. Numerous

interesting approaches to automatic problem gen-

eration are presented in [31].

All presented solutions meet the baseline func-

tionality requirements for their intended purpose.
However, several specific functionalities that are

needed to optimally support the ETF workflow

are not available or not applicable in any of these

solutions. For the test assembly phase, we are

unaware of a tool with elaborate, yet easily under-

standable, criteria that would allow teachers to

specify certain test properties like those needed for

the ETF courses’ exams. Most solutions that
support automated test assembly either use

simple random selection based on a few problem

properties or base the problem selection algorithm

on tests’ psychometric characteristics. All solu-

tions presented so far have their own text editors;

using a standalone editor with such a solution

requires manual copy-and-paste or a conversion

tool such as WimbaCreate [32]. In the test grading
phase, existing solutions are not applicable in

environments similar to the ETF’s due to opera-

tional costs, local unavailability of supplies (e.g.

Scantron) or lack of sufficient integration with the

test creation phase (e.g. Remark Office OMR). A

brief overview of knowledge test automatization

related regulations and software tools is given in

[33].
To conclude, we are unaware of a solution that

provides all of the following features: test quality

criteria and related user interface that an average

teacher can easily understand and manage; auto-

mated test assembly using a sophisticated problem

selection algorithm; and sufficient integration

between test creation and test scoringwhenmultiple

test versions, general-purpose text editors, plain

paper, and commodity scanners are used.

4. Proposed solution

This section provides an overview of the system
structure and description of typical interactions,

followed by a brief description of the workflow

automation.

4.1 System structure and typical interactions

A typical interactionwith the systembegins with the

TestBase component. To create a test, the user

(teacher) can filter and select existing problems

from a database, or create new ones and add them
to the database. At any point, the user can complete

the test using the automatic assembly feature. Once

the test is prepared, the user can export it and use the

TestMix component to generate multiple versions

of that test, which will then be combined with

corresponding bubble sheets into a single, ready to

print,MSWord document. After students complete

the test, completed bubble sheets are scanned and
scored by the TestARS component. Then, the Test-

Score component can be used to generate problem

statistics, as well as student grades in a custom

format accepted by the ETF’s information system.

Other use cases include exporting tests and pro-

blems from the TestBase database into a SCORM/

IMS CP compliant archive or a custom format for

later import into a Moodle installation.
Figure 1 shows the four components of the Test

system directly visible to users (TestBase, TestMix,

TestARS, and TestScore), one component of the

system kernel (TestCore), the artifacts generated in

Automating the Knowledge Assessment Workflow for Large Student Groups: A Development Experience 1061

Fig. 1. UML component diagram showing the organization of the Test software system and integration with other software systems.

the process, and other related systems (Moodle and

the ETF’s information system). Each of the key

functionalities has a corresponding package in

Fig. 1. Components are organized in a way such

that output of one component is the input of

another. Decoupling of the system’s components
by using artifacts makes them mutually indepen-

dent, but still well coupled. This allows users to use a

single component and to prepare input artifacts

outside the system. Moreover, this decoupling

makes the system easier to develop and maintain.

The central component of the system, called Test-

Core, implements the most important domain

abstractions and is used by the other components.

4.2 Workflow automation

The look and feel of TestBase resembles contem-

porary programming environments (e.g., MS

Visual Studio, Eclipse). Figure 2 shows an example

use case: the text of the current problem, opened in

MS Word, is in the upper right part of the screen,

while relevantmetadata is provided in the surround-

ingdockingwindows (panels) that occupy the rest of
the TestBase window. These panels show available

problems, available tests, and the properties of the

selected GUI object (course, problem, test, or

category). Problems can be filtered by category,

difficulty range, creation date range, authors, etc.

Tests can be filtered by course only. For the cur-

rently selected test, a user can easily manage its

contents or automatically complete the test. If any

of the problems suggested byTestBase is considered

inappropriate by the user, it can be marked as

rejected; TestBase will no longer suggest it during

further refinement of the same test. Icons of

problems inside a test are colored based on accep-

tance decisions (green—accepted, red—rejected,
yellow—decision pending). Similarly, color coding

is also applied to test icons according to their

conformance to the associated problem selection

criterion (green—conforming and complete,

yellow—conforming but needs more problems to

be complete, red—not conforming, dark green—

test without criterion, white—empty test). More-

over, a test’s property page will show that test’s
compliance to all associated selection criteria and

show the non-compliant properties in red.

Figure 3 details how TestBase internally repre-

sents test states and how user actions trigger state

transitions. For example, adding a problem to an

empty test (white icon) can havemultiple outcomes.

If the test has a criterion assigned, the quality

function will be calculated after this addition. In
the case of zero quality, the test will go into the

‘‘Unacceptable’’ state (red icon). Otherwise, the

test will go into the ‘‘In progress’’ state (yellow

icon) or, in the special case that the criterion requires

onlyoneproblem, intothe ‘‘Acceptable’’ state (green

icon). If the testhasnocriterionassigned, the testwill

go into the ‘‘Acceptable’’ state (dark green icon).

Figure 4 shows relations between the key entities
of TestBase logic. Decoupling problems from spe-

Andrija Bošnjaković et al.1062

Fig. 2. Screenshot of TestBase with all panels and problem text opened in an embeddedMSWord window.

cific courses allows for any problem to be used in

more than one course. An example is a main course

and its corresponding practicum. Another example

are courses with overlapping contents, typically
seen during educational reforms (when the new

curriculum partially overlaps the old one) or when

the same material is taught at different levels across

study programs. To ensure that problems within a

test are appropriate for that test’s course, TestBase

enforces three constraints. First, during editing of a

selection criterion for a given course, TestBase will

only show categories associated with that course.
Second, when the user is associating a test with a

criterion,TestBasewill offer only criteria associated

with that test’s course. Third, during automatic

assembly of a test for a given course, TestBase will

consider only those problems that have all their

categories associated with that course. Categories

are hierarchically organized through parent-child

composition.
An important differentiating feature of TestBase

is its approach to automated test assembly. The

problem selection algorithm used in TestBase is

based on a rich set of formalized problem selection

criteria. These criteria are designed to resemble

those that we intuitively use. They can relate to an

individual problem in a test, to a group of problems,

or to the test as a whole. The criteria consider
acceptable problem categories, problem difficulty,

and problem usage history. Figure 5 shows the

dialog used to manage these criteria. The course

selection combo-box and named criteria associated

Automating the Knowledge Assessment Workflow for Large Student Groups: A Development Experience 1063

Fig. 3. State diagrams showing possible states of a test and relevant transitions basedonuser’s actions.
(Names of transitions between sub-states of the Preparation state omitted for brevity.)

to the current course are shown on the left section of

the dialog. Parameters of the current test criterion

are shown in the middle section, including the list of

criteria specific to a particular problem type (KVP).

The right section shows parameters of the current

KVP in a compact property grid. Default values of
all parameters are set so that they do not eliminate

any problems during the search. Detailed descrip-

tion of criteria is available in [1, 2].

The problem selection algorithm is based on a

modified hill-climbing search algorithm: on selec-

tion of the next search state (a search state is defined

as a group of problems selected to be included in a

test; a transition to the next state is defined by
adding the next problem to the group), the algo-

rithm randomly selects one of the N best candidate

states instead of the best one. This approach allows

for different results in subsequent runs.

Some eliminatory criteria are applied before the

search is started toprevent selection of unacceptable

problems in the search process, hence reducing the

search space. States that contain k problems from n

acceptable problems are generated as k-combina-

tions without repetition. A problem can be added to

a state only if that problem’s unique identifier is

greater than identifiers of all the problems already

present in the state. Each selection criterion used

during the search has a heuristic function and a

weight factor associated with it. To evaluate a

search state, a quality function is applied to its
group of problems. The algorithm will remove any

zero quality state from the search space immediately

after state’s creation. An early version of the pro-

blem selection criteria and their classification were

originally presented in [1], while the elaborated

version is presented in [2]. Details of the current

implementation of the automated test assembly

functionality are given in [2], as well.
Figure 6 shows an example run of the algorithm

for the case when it needs to assemble a three

problem test from nine eligible problems. In step

1, it will create groups (states) with one acceptable

problem per group and calculate each group’s

quality. Given the above mentioned constraint to

generation of combinations of problems, one-pro-

blem states {8} and {9} are not generated because

they cannot be used to complete assembly of a three-

problem test. In step 2, the algorithmwill sort newly

created states by quality. Next, it will determine the

number of acceptable search states, AS. An accep-

table search state is one with quality within the
allowed quality margin, QM, when compared to

the state with the best quality. Another user-defined

search parameter is search range, SR, defined as the

maximal number of states to be considered when

selecting the next search state. If the number of

candidate states with maximal quality is larger

than SR, then SR will be appropriately enlarged

to cover all equal states for that particular step. The
next search state gets selected from S candidate

states, where S is defined as minimum of AS and

SR. Setting QM = 0% or SR = 1 makes the

algorithm behave like the standard hill-climbing

algorithm; it will pick the best possible candidate

state on each state transition. In Fig. 6, there are five

acceptable states within the quality margin QM =

20%, but only the first four are considered in step 2
due to the value of SR = 4.

In step 3, one of those four states is randomly

selectedand transitioned intoall possiblenext states.

For the same reason that states {8} and {9}were not

generated in step1, the state {3, 9} is not generated in

step 3. In step 4, one state is randomly selected from

the three acceptable states (the fourth state is outside

of the quality margin) and transitioned further. In
step 5, since the states are completed with the

required number of problems (three), only the best

is saved as the test proposal, while others are

discarded. In step 6, the search continues backward

to remaining states with two problems; one of the

two remaining acceptable states is randomly

selected. In step 7, a group of three problems better

than the current best is found; hence the test propo-
sal is updatedwith it. The process continues until the

entire search space has been traversed, the duration

of the search reaches theuser-defined timeout, or the

user stops the search.

Another interesting characteristic of TestBase is

that it uses external software for problem editing. In

order to enable users to edit their problems in a

Andrija Bošnjaković et al.1064

Fig. 4. UML class diagram showing relations between most important concepts in TestBase.

familiar environment, TestBase uses MS Word for

editing and printing. Modular design of TestBase

allows for relatively easy use of other file formats

and editing software.
The capability to export toMoodle comprises two

distinct software components. The first is the Test-

Base’s functionality that exports the test and pro-

blem data in a simple, interchange, XML-based

format. The second is a custom Moodle module

that enables importing the data exported by Test-

Base into a given Moodle installation database.

After the import is completed, there is no significant
difference between data created in TestBase or in

Moodle. This enables the user to fully utilize Moo-

dle’s assessment functionality on TestBase data.

The custom module maintains a mapping between

TestBase andMoodle IDs for all exported problems
and tests. This enables easy updating (within the

Moodle installation database) of already exported

problems from TestBase.

To make cheating on a pencil-and-paper test

harder, the TestMix component enables prepara-

tion of different versions of the same test. It takes the

test that needs to be ‘‘shuffled’’ and generates a

document with multiple versions of that test. More-
over, for each version of a test,TestMix can prepare

Automating the Knowledge Assessment Workflow for Large Student Groups: A Development Experience 1065

Fig. 5. Screenshot of the dialog for criteria management in TestBase.

Fig. 6. Example run of the algorithm when it needs to select three out of nine problems, with quality
margin QM = 20% and state range SR = 4; zero quality states are colored light gray.

a corresponding bubble sheet with appropriate

number of rows for answers and a visually encoded

version identifier. Everything that needs to be

printed (test, bubble sheet, instructions, answer

keys) is arranged in a single ready-to-print docu-

ment.
After the pencil-and-paper test administration

phase is done, the TestARS component can be

used for optical recognition and scoring of the

answers to the MCQ problems. Input to TestARS

can come from a TWAIN-compatible scanner or

from a file (currently supported formats are BMP

andTIFF). Bubble sheet scans are grouped together

using a project file, which typically aggregates all
scans from one testing. The output of TestARS

contains student ID, test version, student answers,

and corresponding scores of each student.

Figure 7 shows the main screen of TestARS. The

left part shows collection of sheets belonging to the

current project, represented in a tree structure. Each

sheet is represented as a leaf; non-leaf nodes are used

for grouping of logically-related sheets (for exam-
ple, grouping of sheets from one classroom when

testing is done in several classrooms). The middle

part shows the scanned sheet; the bordered area,

which is analyzed, contains the student’s ID at the

top, the answer area in the middle, and the binary

representation of a test version code at the bottom.

The user can turn on visual indicators showing

detected answers in an appropriate color and the
detected test version bits. The right part shows the

results of analysis: student’s ID number, name, test

version, and acquired scores (total and particular

for each MCQ).

The analysis algorithm is resilient to planar dis-

tortions of the sheet scan, typical for handheld

scanners. If the user observes an analysis error

(which is always possible but very infrequent in
practice), he/she can manually correct it or repeat

the analysis with adjusted settings.

The settings of sheet dimensions, bubble coordi-

nates, and all other optical mark recognition para-

meters are done in a separate window. The current

sheet is used as a visual reference, with all relevant

analysis settings shown in a user-controlled overlay;

while changing the settings using this overlay, the
user has immediate visual feedback on whether the

settings being updated are appropriate for the

current sheet. Correct answers can be loaded from

files produced by TestMix or entered manually.

The TestScore component calculates individual

student results, and based on aggregate results it

also calculates parameters of the problems included

in a given test. Using this component, a student’s
test score can be combined with the student’s results

on other activities that contribute to the final grade,

as defined by the course’s grading rules, defined in a

plain text file. Once calculations are done,TestScore

can generate a report of the students’ results and

final grades, formatted as per ETF’s information

system’s requirements. Because the component is

primarily intended to test the system’s kernel Test-

Core, it is still at a proof-of-concept level.

5. Discussion of results

All results in this section are from the system’s use at

the ETF, where it supports the knowledge assess-

ment workflow for two Programming courses and,

to a certain extent, their corresponding practicum
courses. System performance was measured on a

configuration with an Intel Core i5 at 3.20 GHz and

4GB of DDR3-10700 (667MHz) memory.

Table 1 illustrates reliability of the answer recog-

nition algorithm used in TestARS, aggregated from

the empirical data during the last ten years of

production use. Each TestARS user scanned thou-

sands of bubble sheets and reported similar findings
on the observed error rates. Error rates for the

handheld scanner use case would be significantly

higher if TestARS did not have an algorithm to

correct distortion inherent to handheld scanners.

When a scanner equipped with an automatic docu-

ment feeder (ADF) is used, there are no complaints

from students about the accuracy of recognition

results. Experience shows that 150 dpi is a sufficient
resolution for the recognition needs and that error

rates stay the same at higher resolutions.

Table 2 shows the processing speed of the recog-

nition algorithm itself. With an example office

scanner that has throughput of 30 pages per

minute, the total theoretical throughput with

150dpi resolution would be around 1700 bubble

sheets per hour. This calculated speed is similar to
the speed of low-end commercial OMR readers,

such as Scantron iNSIGHT 20.

Table 3 shows the results of a worst case analysis

of the test assembly tool’s performance, whenwhole

search space is traversed. The table shows elapsed

time for different values of target number of pro-

blems in the test (NP). Searcheswere performedona

series of 36 candidate problems. In order to ensure
that the entire search space gets traversed, these

problems had their properties artificially set to

satisfy all assembly criteria. We measured the

elapsed search time and the number of acceptable

proposals assembled during the search (NAP). On

the other end, the number of possible proposals

(NPP) was calculated as the value of the binomial

coefficient of the number of candidate problems
(NPcand) and NP. The fact that the NAP and the

NPP in this experiment were always the samemeans

that the entire search state space was traversed in

every run. For most real-life examples, where many

Andrija Bošnjaković et al.1066

search states are eliminated early in the search and

tests have up to 20 problems, a test is assembled in a

matter of seconds.An assembly of a typical test (two

problems, six MCQs) on the average takes one
second. This is negligible when compared to time

needed to perform the ‘‘mix-up’’ and print prepara-

tion phases, which take around 10 seconds because

they are implemented as MS Word macro proce-

dures.

In order to quantify the difference betweenmanu-

ally and automatically assembled tests, a compara-

tive experimental analysis of test quality was
conducted. First, the criteria that resembled those

used by the course’s teachers were entered into the

content database. Next, those criteria were asso-

ciated with a set of manually prepared final tests of

one of the Programming courses; this set included

all final exam tests over a period of four school

years. Finally, all the tests from the set were tem-

porarily removed from the content database, and
automatic assembly was performed using the same

problems. The difficulty levels of problems in the

database were determined based on a statistical

analysis of successful and unsuccessful student

responses. Table 4 summarizes the results of this

experiment, which showed that use of the auto-

mated assembly feature is feasible, and that auto-

matically assembled tests have slightly higher
quality and approximately three times lower stan-

dard deviation of quality than those assembled

manually.

For the measurement presented in Table 4, we

used the tests assembled manually by the courses’

staff. Test quality is calculated by a quality function,

as described in [1]. The most important parameters

that affect a test’s quality are individual and aggre-

gate problemdifficulty, number of previous uses of a
particular problem, and intended number of pro-

blems for each category.

The Export-to-Moodle feature was tested for

proof of concept on elective practicum courses

tied to the respective Programming courses. The

practicum courses require students to solve pro-

gramming assignments in a computer lab. In each

school year, there are 120–150 students enrolled in
these courses; this number is roughly a quarter of

students enrolled in Programming 1 and Program-

ming 2 courses. In each lab exercise, students were

asked to go over a test composed of ten relatively

simple problems of several types (MCQ, short-

Automating the Knowledge Assessment Workflow for Large Student Groups: A Development Experience 1067

Fig. 7. Screenshot showing TestARS after completed bubble sheet analysis. (Lower part cropped. Identities obscured for privacy.)

Table 1. Answer recognition error rates gathered through pro-
duction use of TestARS

Report method Handheld
scanner

ADF
scanner

Users (before results are published) <1% <0.3%
Students (based on published results) <0.1% 0%

Table 2. Average TestARS processing times dependent on the
scan resolution

Scan resolution
[DPI]

Average processing
time per sheet [s]

Standard
deviation [s]

150 0.11 0.02
200 0.19 0.04
300 0.37 0.06

answer, coding assignment). Problemswere selected

randomly by Moodle’s own testing functionality

from a larger pool of problems, all of which had

been imported from TestBase. Grading was done

manually for coding assignments, and automati-

cally for other problem types. Students were unan-
imously positive about this addition to practica’s

curricula. They reported that frequent formative

assessments help them better understand where

their programming knowledge can be improved.

On the other end, the teaching staff reported that

analysis ofMCQstatistics and the students’ answers

to open-ended problems helped them to understand

the most common topics where students needed
more explanations or practical work.

Although the primary goals of the Test system’s

development were to make exams more objective

and to facilitate the teacher’s job by saving time and

reducing error rates, while working towards these

goals another important result was achieved: multi-

ple final year students got exposed to the develop-

ment of real production software for their final
thesis. Almost every student had to master at least

one new technology before starting with his or her

actual thesis work; also, a typical student would

become very productive approximately at the same

timewhen his or her thesis work was completed.We

believe that educational benefits greatly compensate

for some of the disadvantages, as all those students

have reported that the experience gained greatly
helped them in their future projects. Also, several

of those students have participated in writing con-

ference papers related to their thesis work, together

with authors of this paper who were their advisors.

On the other hand, the problem that greatly delayed

the system’s development was temporal discontinu-

ity between parts of the job done by students from

different generations. Those delays introduced

changes to the requirements, development plat-

form, and subsequent integration of the system’s

parts. To mitigate risks caused by temporal discon-

tinuity and frequent developer changes, the usual

good software engineering practices were

employed: all issues were tracked using an issue
tracker system, coupled with a revision control

system; functional specifications of system compo-

nents were always made integral parts of relevant

final theses; and ideas for futureworkwere prepared

as propositions for future theses and offered to final

year students.

Finally, it should be noted that in the current

development phase, the system is intended to be an
in-house prototype for only a small and limited user

base, rather than a polished product. Therefore,

some of the functionalities needed for wider usage

are either only partially implemented (additional

problem types, statistical analysis of test results,

installation package, integration with contempor-

ary distance learning tools, etc.) or not implemented

at all (globalization, concurrent user access, deploy-
ment strategy, advanced information security, etc.).

The developed question selection algorithm is cur-

rently parallelized only per item type, so the imple-

mentation doesn’t optimally exploit available

parallelism of modern CPUs and GPUs. Although

comparable to dedicated OMR readers, the OMR

algorithm has room for improvement in terms of

processing time and error rate.

6. Conclusions

The Test system is essentially a research and educa-

tional prototype of an assessment system. The

system is primarily developed to be used at the

ETF as a tool that increases speed and reliability
of knowledge test preparation, scoring, and result

processing workflow. Additionally, it presents a

training ground for undergraduate and graduate

students’ final theses, as well as for research in the

area of authoring tools. Due to its well-rounded

feature set, built upon and proven by long-term

experience in an environment with computer

resources insufficient for large groups of candidates,
it can be considered a feasible solution for similar

environments.

This paper encompasses results produced during

the long period of the Test system’s development

and experience of its in-house production usage.

The paper’s focus is at previously unpublished

contributions, like the key parts of the system’s

design model, the GUI for formulating of the test
assembly criteria, and the functioning of the mod-

ified hill-climbing algorithm.

Possible future work can be roughly divided into

two categories: research and implementation.

Andrija Bošnjaković et al.1068

Table 3.The dependence of elapsed search time onNP, measured
for NPcand = 36.

NP NAP NPP Time (s)

7 8,347,680 8,347,680 12
8 30,260,340 30,260,340 47
9 94,143,280 94,143,280 157
10 254,186,856 254,186,856 461
11 600,805,296 600,805,296 1,142
12 1,251,677,700 1,251,677,700 2,527
13 2,310,789,600 2,310,789,600 4,946
14 3,796,297,200 3,796,297,200 8,704

Table 4.Durations of preparation phases for a typical Program-
ming exam

Manually
assembled tests

Automatically
assembled tests

Mean test quality 0.934 0.952
Standard deviation 0.069 0.023

Research-wise, new problem selection algorithms

based on neural networks and genetic algorithms,

data mining, or linear programming, could be

explored and added to the system. Implementa-

tion-wise, the existing feature set can be extended

with new problem types, parameterized problems,
multiple user and globalization support, more

detailed result analysis with problem difficulty feed-

back, self-assessment features such as adaptive

problem selection tailored to each student’s exhib-

ited knowledge following the concept of persona-

lized learning [34], and the use of high-performance

computing to speed up the problem selection algo-

rithm. Furthermore, the system’s development plat-
form could be unified and ported to some of the

contemporary Web development platforms.

Acknowledgements—We would like to thank former students
Danka Lolić, Miodrag Krunić, Predrag Cerović, Petar Opačić,
Darko Popović, Vladan Gunjić, Goran Anucojić, Marko Krsto-
vić, Dušan Stojanović, Predrag Jovanović, Dejan Rizvan,
Branko Kokanović, Nikola Milošević, and Aleksandar Ðurić
for their contribution to development of the Test system, as well
as our colleagues Ðorde Ðurdević, Miloš Cvetanović, Zaharije
Radivojević, Marko Mišić, and Igor Andelković for providing
valuable feedback that made the final result considerably better.

We would also like to thankDr. SantanuDutta andMatthew
A. Kenny for valuable comments and suggestions.

Work of Igor Tartalja and Dragan Bojić was partially
supported by the projects TR32039 and TR32047 of theMinistry
of Science and Technological Development of the Republic of
Serbia.

References

1. J. Ž. Protić, D. B. Bojić and I. I. Tartalja, test: Tools for
evaluation of students’ tests— a development experience, in
Proc. 31st ASEE/IEEE Frontiers in Education Conference,
Reno, NV, USA, 2001, pp. F3A-6–F3A-12.

2. A. M. Bošnjaković, Development of software system for
authoring, scoring, and result processing of knowledge tests,
Magister thesis (in Serbian), Univ. Belgrade—School of El.
Eng., Serbia, 2010.

3. A. M. Bošnjaković, J. Ž. Protić and I. I. Tartalja, Develop-
ment of a software system for automated test assembly and
scoring, Proc. Int’l Conf. of Education, Research and Innova-
tion (ICERI ’10), Madrid, Spain, 2010, pp. 6012–6016.

4. D. Diaz, T. J. Leo, E. Mora and J. A. Somolinos, Mixed
Assessment Methodology in Engineering Higher Education
based on Quality Control Concepts, International Journal of
Engineering Education, 30(2), 2014 pp. 424–437.

5. Moodle Community, Moodle, www.moodle.org. Accessed
09.11.2014.

6. Blackboard, Washington, DC, Blackboard Learn 9.1, http://
www.blackboard.com/platforms/learn/overview.aspx.
Accessed 09.11.2014.

7. ASC, St. Paul, MN, Test Development Software, http://
assess.com/xcart/home.php?cat=28. Accessed 09.11.2014.

8. Respondus, Inc., Redmond, WA, Respondus 4.0, http://
www.respondus.com/products/respondus/. Accessed
09.11.2014.

9. QuestionMark, Norwalk, CT, QuestionMark Perception,
https://www.questionmark.com/us/perception/Pages/default.
aspx. Accessed 09.11.2014.

10. G. Martinović and B. Zorić, Web Application for Knowl-
edge Assessment, International Journal of Engineering Edu-
cation, 30(4), 2014, pp.779–787.

11. Scantron Corporation, Eagan, MN, ParSystem Integrated

Testing Suite, http://www.scantron.com/software/class-
room-testing/parsystem/overview/. Accessed 09.11.2014.

12. Gravic, Inc., Malvern, PA, Remark Office OMR, http://
www.gravic.com/remark/officeomr/. Accessed 09.11.2014.

13. A. Carbone, P. Schendzielorz and J. D. Zakis, Electronic
assessment and self-paced learning on the Web using a
multiple choice quiz generator International Journal of Elec-
trical Engineering Education, 37(2), 2000, pp. 119–125.

14. G. Costagliola, F. Ferrucci, V. Fuccella and R. Oliveto,
eWorkbook: a Computer Aided Assessment System, Inter-
national Journal of Distance Education Technologies, 5(3),
2007, pp. 24–41.

15. F. Hernández-Del-Olmo and E. Gaudioso, Autotest: An
educational software application to support teachers in
creating tests, Computer Applications in Engineering Educa-
tion, 21(4), 2013, pp. 636–640.

16. M. Yildirim, A genetic algorithm for generating test from a
question bank,Computer Applications in Engineering Educa-
tion, 18(2), 2010, pp. 298–305.

17. A. J. Verschoor, Genetic Algorithms for Automated Test
Assembly,Ph.D.dissertation,Dept.ResearchMethodology,
Measurement and Data Analysis, Univ. Twente, Nether-
lands, 2007.

18. W. J. van der Linden, Linear models for optimal test design,
ch. 5–9, 2005, Springer, New York, NY.

19. H. A. Huitzing, B. P. Veldkamp and A. J. Verschoor,
Infeasibility in Automated Test Assembly Models: A Com-
parison Study of Different Methods, Journal of Educational
Measurement, 42(3), 2005, pp. 223–243.

20. W. J. van der Linden, B. P. Veldkamp and L. M. Reese, An
integer programming approach to item pool design, Applied
Psychological Measurement, 24(2), 2000, pp. 139–150.

21. R. D. Armstrong, D. H. Jones and Z. Wang, Network
optimization in constrained standardized test construction,
in K. D. Lawrence and G. R. Reeves (ed.), Applications of
Management Science: Network Optimization Applications, 8,
pp. 189–212. Greenwich, CT: JAI Press, 1995.

22. B. P. Veldkamp, Constrained multidimensional test assem-
bly, Applied Psychological Measurement, 26(2), 2002, pp.
133–146.

23. R. M. Luecht, Computer-assisted test assembly using opti-
mization heuristics, Applied Psychological Measurement,
22(3), 1990, pp. 224–236.

24. L. Swanson and M. L. Stocking, A model and heuristic for
solving very large item selection problems, Applied Psycho-
logical Measurement, 17(2), 1993, pp. 151–166.

25. P.BrusilovskyandS. Sosnovsky, Individualized exercises for
self-assessment of programming knowledge: An evaluation
of QuizPACK, J. Educational Resources in Computing, 5(2),
2005, pp. 1–22.

26. D. A. Kashy, G. Albertelli, G. Ashkenazi, E. Kashy, H.-K.
Ng, and M. Thoennessen, Individualized Interactive Exer-
cises: A Promising Role for Network Technology, in Proc.
31st ASEE/IEEE Frontiers in Education Conference, Reno,
NV, USA, 2001, pp. F1C-8–F1C-13.

27. N. Afzal, Unsupervised Relation Extraction for E-Learning
Applications, Ph.D. dissertation, Research Inst. for Inf. and
Language Processing, Univ. Wolverhampton, UK, 2012.

28. S. Agrawal, Automatic Quiz Generator, M.Sc. thesis, Dept.
Comp. Science, Univ. Sheffield, UK, 2011.

29. R. Mitkov and L. A. Ha, Computer-aided generation of
multiple-choice tests, in Proc. HLT-NAACL 03 workshop on
Building educational applications using natural language pro-
cessing, Morristown, NJ, USA, 2003, pp. 17–22.

30. A. Hoshino and H. Nakagawa, A Cloze Test Authoring
System and its Automation, in Advances in web based
learning—ICWL 2007 (Proc. 6th Int’l Conf. Edinburgh,
UK, August 15–17, 2007, Revised Papers), H. Leung, F. W.
B. Li, R. W. H. Lau, and Q. Li, Ed., New York: Springer,
2008, pp. 252–263.

31. M. J. Gierl and T. M. Haladyna, Ed., Automatic Item
Generation: Theory and Practice, Routledge, New York,
NY, 2013.

32. Wimba, Inc., New York, NY, WimbaCreate, http://
www.wimba.com/products/wimba_create. Accessed
09.11.2014.

Automating the Knowledge Assessment Workflow for Large Student Groups: A Development Experience 1069

33. A. Bošnjaković, I. Tartalja and J. Protić, Support forKnowl-
edgeTests: Brief Summary ofRegulations and Software,The
IPSI BgD Transactions on Internet Research, 3(1), 2007, pp.
25–29.

34. A. Staikopoulos, I. O’Keeffe, R. Rafter, E. Walsh, B.
Yousuf, O. Conlan and V. Wade, AMASE: A framework
for supporting personalised activity-based learning on the
web,Computer Science and InformationSystems, 11(1), 2014,
pp. 343–367.

AndrijaM. Bošnjaković received the B.Sc. andM.Sc. degrees in electrical engineering and computer science from the ETF.

He is currently a software consultant. His affiliation at the time when the work described in this paper was performed was

the sameas of the other three authors.His current professional interests include object-oriented andparallel programming,

as well as cloud computing technologies and stereoscopic technologies.

Jelica Ž. Protić received the B.Sc., M.Sc., and Ph.D. degrees in electrical engineering from the ETF. She is currently an

Associate Professor of computer engineering and informatics with the ETF. Her research interests include engineering

education and educational tools, distributed systems and all aspects of computer-based quantitative performance analysis

andmodeling.WithMilo Tomašević and VeljkoMilutinović, she coauthoredDistributed SharedMemory: Concepts and

Systems (IEEECSPress, 1997). ShewasViceDean of Education from2004 until 2009, and she currently serves as aDean’s

Counselor for quality assurance and accreditation.

DraganM.Bojić received theB.Sc.,M.Sc., andPh.D. degrees in electrical engineering and computer science from theETF.

He is currently anAssistantProfessorwith theETF.His research interests include software testing, effort estimation, and e-

learning technologies.

Igor I. Tartalja received the B.Sc., M.Sc., and Ph.D. degrees in electrical engineering from the ETF. From 1984 to 1989 he

waswith theLaboratory forComputerEngineering, Institute forNuclear Sciences, Vinča. In 1989he joined theETF.He is

coauthor of one IEEE CS book and over 60 scientific papers. He contributed to more than 20 research and development

projects. He led a dozen of them, the results of which are commercially applied. He received two national awards for

contributions in the software engineering area. He is currently an Associate Professor with the ETF, teaching subjects on

Object-oriented programming, Software design, and Computer graphics. His current research interests include object-

oriented modeling and programming, computer graphics, geoinformatics, and edutainment.

Andrija Bošnjaković et al.1070

