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In this paperwe present a practical application of POA (ParliamentaryOptimizationAlgorithm) for creating personalized

learning paths in online learning. The objective of building a personalized learning path is to produce a suitable sequence of

learning units for a student to work with. We present and tune the parliamentary metaheuristic for a practical instance of

the sequencing problem in a web engineering master programme and compare it with standard versions of other well

established metaheuristics (PSO and genetic algorithms). Results suggest that permut-POA deals satisfactorily with

sequencing problems and it is easy to fine tune, and also that it outperforms the other optimizers.
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1. Introduction

Parliamentary Optimization Algorithm (POA) [1,

2] is a stochastic metaheuristic inspired in the

behavior observed in political parties when trying

to gain control over parliaments in head elections.

The process is implemented as follows: firstly sev-
eral individuals are randomly initialized, and then

arbitrarily divided into groups. The most fitted

individuals of each group are designated as candi-

dates. Then the groups participate in an iterative

process that involves intra-group and inter-group

fitness-based competitions. During intra-group

competition, the candidates of each group bias

regular members who then move to new positions
closer to candidates thus exploring themost promis-

ing areas of the search space. After biasing, new

candidates are selected again among the most fitted

individuals. During inter-group competition,

groups stochastically form alliances to merge and

less powerful (fitted) groups can be removed (dis-

appear). The process finishes when a predefined

ending criterion is met, and then the best candidate
of all groups (i.e. the best solution) is returned. POA

is then a population-based metaheuristic that

evolves a solution over an iterative process.

POA has demonstrated to be competitive for

numerical optimization, even outperforming other

well-known and well-studied stochastic approaches

such as Genetic Algorithms (GA) [1] and Particle

Swarm Optimization (PSO) [2]. Performance
improvement is measured through a set of standar-

dized test-bench functions in terms of the quality of

the final solution and in terms of efficiency (time)

required to get that solution (e.g. calls to the fitness

function). Numerical optimization is an interesting

and challenging field with many potential applica-

tions, but combinatorial optimization is also

another demanding area with important applica-
tions that needs to be studied [3].

An interesting application of combinatorial opti-

mization is courseware sequencing, which is a dis-

cipline that tries to personalize and adapt learning

contents to the needs of individual students. It aims

to create a correct sequence of learning units

(courses, subjects, lessons, etc.) according to the

prior knowledge of the student, i.e., adapted to her
competencies. We use concept of competence [4] to

define both requisites and learning outcomes for

each individual learning unit. Such an approach

enables domain-independent sequencing where the

problem of finding a feasible sequence for the

learner can be represented as a classical permutation

Constraint Satisfaction Problem (CSP) [5].

This paper introduces a new version of POA
(permut-POA) designed to deal with permutations

and constraint satisfaction problems for solving the

problem of courseware sequencing. Section 2 intro-

duces courseware sequencing within the larger fra-

mework of courseware engineering. Section 3

describes the parliamentary metaphor underlying

POA algorithm and our adaptation for permuta-

tion constraint satisfaction. Sections 4 (experimen-
tation) and 5 (results) present the experiments

carried out to fine-tune the optimizer and to test

its performance in a particular test case. Section 6

presents a comparative analysis of POA’s perfor-

mance with two other evolutionary approaches

(particle swarms and genetic algorithms) for this

particular instance of the sequencing problem. And

finally, Section 7 presents conclusions and future
work.
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2. Courseware sequencing

Courseware engineering is a broad discipline

encompassing a set of practices, methods and

tools, whose primary goal is to improve the effec-

tiveness and efficiency of courseware production [6].

More specifically, it can help in the life-cycle stages

of designing, building andmaintaining coursemate-
rials. Some of the tasks performed in these stages

can be performed in a semi-automatic way, while

others can be carried out automatically. Course-

ware sequencing (also referred as curriculum

sequencing) is a technique widely used in course-

ware engineering that aims to provide the student

with the most suitable individually planned

sequence of knowledge units to learn and the
sequence of learning tasks (examples, questions,

problems, etc.) to work with [7]. Courseware

sequencing can be used at different stages to

design, build, maintain and test learning paths. It

can be used to personalize and adapt contents to the

needs of each particular learner [8].

When it comes to curriculum sequencing stan-

dard typologies further distinguish between
domain-dependent and domain-independent

approaches. On the one side, domain-dependent

approaches rely on a domain model to represent

the knowledge of a specific domain. This model is

used to tailor contents to learners’ needs. Modeling

approaches and sequencing strategies have been

vastly studied by the fields of intelligent tutoring

systems and adaptive hypermedia [9]. Domain-
dependent courseware sequencing can fine-grain

personalization but the domain model has to be

built and updated for every area in which sequen-

cing is needed and this is their main disadvantage.

On the other side, domain independent approaches

aim to work in every possible domain. To do these

they mostly rely on standards that can unambigu-

ously define dependencies between learning units or
that can be used to infer such dependencies.

Domain-independent sequencers have come

mostly due to the efforts of e-learning standardiza-

tion and interoperability communities [5, 10].

Despite their wide applicability, the effectiveness

of independent-domain sequencing depends on the

quality of the description attached to learning

resources (metadata) and their uniformity, espe-

cially in terms of size (granularity).

Competencies can be used for domain-indepen-

dent sequencing. There aremany definitions of term

competency coming from different areas including

pedagogy, human resources management and com-
puter science. In our work competencies are defined

as ‘multidimensional, comprising knowledge, skills

and psychological factors that are brought together

in complex behavioral responses to environmental

cues’ [4]. This definition emphasizes that competen-

cies are a multidimensional set of factors (not only

knowledge) and that they are employed (brought

together) in real or simulated contexts (environ-
ments). A reusable (standardized & interoperable)

definition of competency can be used as a prerequi-

site or a learning outcome [11] of a given learning

unit (course, subject, lesson, etc.). A prerequisite is

defined as a competency that the learner needs to

have in order to undertake the learning unit. A

learning unit can have one or more prerequisites

(or none at all).A learning outcome could bedefined
as the set of competencies obtained by the students

when they complete a learning unit. Table 1 presents

an example of a set of learning units and their

corresponding prerequisites and learning outcomes.

Courseware sequencing will then try to build a

personalized sequence of learning units taking into

account the competencies defined. For the example

shown in Table 1 different sequences that meet all
requirements can be built, as shown in Table 2.

The sequencing problem may seem easy but with

a significant number of learning units it actually

becomes hard to solve. The question of finding a

correct sequence can be represented as a classical

Constraint Satisfaction Problem (CSP). Prerequi-

sites and learning outcomes define the set of con-
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Table 1. Example of a web development course represented with prerequisites and learning outcomes

Learning unit Prerequisites Learning outcomes

1.Introduction to Web Developing – Learn the basics of web development
2. HTML Basic web development HTML knowledge
3. CSS HTML knowledge Build and use CSS style sheets
4. JavaScript HTML knowledge Develop JavaScript programs
5. HTML 5 HTML knowledge, develop JavaScript programs Building HTML5 web pages
6. Java EE HTML knowledge Develop Java EE programs

Table 2. Some valid sequences for the web developing program

Sequence #1 Sequence #2 Sequence #3

1. Introduction. . . 1. Introduction. . . 1. Introduction. . .
2. HTML 2. HTML 2. HTML
3. CSS 4. JavaScript 6. Java EE
4. JavaScript 5. HTML 5 3. CSS
5. HTML 5 3. CSS 4. JavaScript
6. Java EE 6. Java EE 5. HTML 5



straints to be satisfied. The space of solutions

comprises all possible sequences (n! will be its size,

total number of states for n learning units), and a

(feasible) solution is a sequence that satisfies all

established constraints. Permutations of learning

units within the sequence are the operations that
define transitions among states. A new sequence is

created if one or more swaps between pairs of

learning units are performed. Each swap generates

a new sequence that has to be checked to make sure

it does not violate any constraint. Therefore we face

a permutation constraint satisfaction problem

which is a concrete type of CSP in which operations

are defined in terms of permutations between pairs
of objects. Different approaches have been pro-

posed to solve the sequencing problem modeled as

a permut-CSP: Genetic Algorithms [11], Particle

Swarm Optimization [12] and other classical

approaches like heuristic and local search [13]. In

this paper a new approach based on an adaptation

of POA for solving the courseware sequencing

problem is proposed. The following section presents
the modification undertaken in POA for tackling

this problem.

3. The parliamentary metaphor for
permutation constraint satisfaction

Parliamentary metaphor is inspired in the behavior

observed in political parties when trying to gain

control over parliaments in head elections [1]. It is a

stochastic metaheuristic algorithm that was initially

designed for numerical optimization and thusworks

in a continuous space [2]. POAs original implemen-
tation is presented in Fig. 1.

In order to apply POA to solve permut-CSPs

some of their internal workings have to be redefined

[14] so that it can operate in a discrete space inwhich

individuals are also permutation sets. In the follow-

ing sections the POA adaptation to solve permut-

CSP is described.

3.1 Redefining biasing

Initialization and inter-group competition do not

require special modifications to work in this new

landscape. Initialization deals with partitioning the

population in groups and selecting the most fitted

individuals. Inter-group competition deals with

merging and deleting groups stochastically. How-

ever, as for intra-group competition the process of
biasing regular members towards candidates needs

to be redefined to work in a permut-CSP. Original

POA uses a linear fitness-proportional weighting

towards all candidates in the group to bias regular

members. Other metaheuristics like PSO also use

similarmethods that have beenwidely discussed but

this approach is not valid for permutations. We

suggest instead using fitness proportional selection
to stochastically permute each position in the tuple

towards one candidate. Fitness proportional selec-

tion was originally introduced for genetic algo-

rithms [15] and can be employed in the different

selection processes of any evolutionary algorithm,

i.e., parent selection and survivor selection. Prema-

ture convergence in unbalanced population distri-

butions [16] has been indicated as one of the main
drawbacks for this method; so alternative methods

like ranking selection and stochastic universal sam-

pling (SUS) [17] have been introduced. But quick

convergence may not be a problem in this new

definition of POA because selection will be stochas-

tically performed for each dimension of the solu-

tion.

Let T be a candidate solution tuple, the prob-
ability for each position, tj 2 T, in the regular

member T to move towards a candidate c 2 ’ can

be calculated according to equation 1. All candi-

dates in addition to the current individual form the

pool of elements that are considered for selection.

Probabilities are computed once and then random

numbers are generated for each dimension to deter-

mine the bias. If the movement of any position is
finally required, the position will be set to the value

Luis de-Marcos et al.1094

Fig. 1. Pseudo-code of the Parliamentary Optimization Algorithm (from [2]).



of the same position in the candidate selected by

swapping values. A similar approach has been

described and successfully employed for PSO [18].

t
swap!c
j ¼ f ðcÞ

P�
i¼0 f ð�iÞ þ f ðTÞ

ð1Þ

f is the fitness function used to assess the goodness

of solutions. A common choice when dealing with

CSP is a standard penalty function that computes

the number of constraints violated by a candidate

solution. A permut-CSP with a standard penalty

function is a minimization problem, so it is neces-
sary to use an inverse weighting function in order to

assign larger probabilities to individuals with lower

(better) fitness. The inverse fitness function is pre-

sented in equation 2. Then equation 1 will return a

fitness proportional probability if every call to f is

substituted for a call to f –1.

f �1ðTÞ ¼
P�

i¼0 f ð�iÞ þ f ðTÞ
f ðTÞ ð2Þ

As for the implementation of members’ biasing,

probabilities for each candidate were stored in an

intermediate vector (Vp), and another vector with

aggregated probabilities (Vap) was also created to

determine value ranges for evaluating randomnum-

bers. Fig. 2 shows an example which represents a
part of the biasing process in a hypothetical job

scheduling problem. Two candidates (�1 and �2) and
the current individual T are considered. They are

denoted as vectors, whose positions contain num-

bers representing the name of the task. Sample

fitness values are considered to calculate inverse

fitness values and both probability vectors. Biasing

is exemplified in the final table of the figure. Three
random numbers are generated to decide the swap

for each position. The candidate selected towards

which bias is actually performed, and the resulting

state of the individual T are also displayed.

Please note that in this discrete version regular

members always update their position. Our aimwas

to improve individuals’ mobility in the new land-

scape. It should be noted that many discrete spaces

may contain plateaus, i.e., large areas in which all

solutions contain values with identical or similar
fitness values. If regular members are compelled to

move, wider search areas will be explored at no

especial higher expense (new positions are always

evaluated).

3.2 Considering mutation

Evolutionary algorithms introducedmutation since

their beginning [19, 20] as a way to model similar

processes occurring in nature. The basic idea is to

randomly alter an individual gene feature to make

the individual uniquely different from each of its
antecessors, thus increasing the diversity of the

population. Mutation is very important to the

extent that some evolutionary algorithms rely heav-

ily or even exclusively on mutation procedures to

generate new candidate solutions, e.g., in evolution

strategies [21].

To increase population diversity, a simple muta-

tion mechanism was introduced in the permut-
POA. Mutation is implemented just after regular

members complete biasing towards candidates.

Mutation rate for each individual is implemented

as an input parameter (p) that is used as an indivi-

dual-level mutation (not gene-level mutation).

3.3 Duplication elimination policy

In the initial stages of development a genetic drift

(i.e. quick convergence to the same or very similar

individual for all the population) was observed, so a
duplicate elimination policy was introduced to

avoid it. When the biasing and mutation processes

have been performed, each individual is compared

to the previous elements in the group. If there is any

other individual equal to the new one, a swap

mutation is performed until it differs from all of

them. This implementation can imply huge compu-

tational costs when POA faces massive populated
groups and it will also hinder any future distributed

POA approach because full information about the

group is required to implement it. Therefore, a new

boolean parameter (de) was introduced to enable or

disable it.

Fig. 3 presents the pseudo-code of the final

version of POA modified to address permutation

problems. Differences with the original implemen-
tation are boldfaced. Permut-POA has been used

for solving the problemof courseware sequencing as

presented in this paper. The next section explains

the test case designed for carrying out the experi-

ment with this new metaheuristic.
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Fig. 2.An example ofmember biasing for permutation problems.



4. Experimentation and testing

4.1 Test case

The permut-POAwas implemented using the object

oriented paradigm. We wanted to test its perfor-

mance in a real scenario, so a problem concerning

course sequencing for a Web Engineering Master

program in our institution was chosen for the test.
The Web Engineering Master program (Fig. 4)

comprises 24 courses (subjects) grouped into the

following categories:

� Basic courses (7) that must be taken before any

other kind of course. There may be restrictions

between two basic courses, e.g., ‘‘HTML’’ course

must precede ‘‘Basic JavaScript’’ course.

� Itinerary courses (5) that must be taken in a fixed
ordered sequence.

� Compulsory courses (5). There may be restric-

tions between two compulsory courses, e.g.,

‘‘Software Engineering’’ course must precede

‘‘Development Methodologies’’ course.

� Elective courses (7). Additional constraints with

respect to any other course may be set.

All courses have 4 or 6 ECTS credits. In thisMaster
degree the students have to complete 120 ECTS in

total. A feasible sequence must have 23 courses

(learning units) satisfying many constraints. Please

note that the students must choose just one learning

path (Java or .NET) and take all the courses on that

path. Students must choose six out of the seven

elective courses presented in Fig. 4. The five courses

of the non-selected path are also eligible as elective
subjects. There are 56 constraints among different

courses. Just to offer an idea, there are four con-

straints between basic courses, four constraints

between compulsory courses, four constraints

between itinerary courses and just one constraint

in the elective courses. Most of the constraints

appear in the relations that take place between

courses belonging to different groups: 14 con-

straints from compulsory courses to basic courses,

7 constraints from itinerary courses to basic courses,

21 constraints fromelective courses to basic courses,
and one constraint from one elective course to one

compulsory course. The graph for showing all

courses and constraints is very complex. Fig. 4 just

represents groups of courses. It should be noted that

relations between specific courses are not shown in

the figure in order to avoid confusion because it

would made the figure difficult to read. Calculating

the exact number of feasible solutions is also diffi-
cult, so an estimation has been used: we have

estimated that the relation among feasible solutions

and total solutions is in the order of 8.9� 1012. This

number reflects the number of states (non-feasible

solutions) for each feasible solution. This means

that the chance of a random sequencer selecting a

feasible sequence is 1/(8.9 � 1012).

4.2 Parameter tuning

POAhasmany parameters and there are no studies,

as far as authors are concerned, about them. Origi-

nal work on POA offers a set of values for para-
meters without justifying their selection. This is, in

our opinion, a serious drawback for POA since it is

essential for a good algorithm performance. Practi-

tioners that have to select a technique for a parti-

cular combinatorial problem will almost certainly

choose one in which a substantial background work

about parameter control (including best practices)

exists. To try to mitigate this problem, and always
focusing on a practitioner’s stance, we have con-

ducted a preliminary study to try to set best prac-

tices for parameter selection in permut-POA.

Parameter control techniques describe how para-
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Fig. 3. Pseudo-code of POA for combinatorial optimization (permut-POA).



meters change during the execution of an evolu-

tionary algorithm. They can be classified into three

categories [22]: Deterministic parameter control,

adaptive parameter control and self-adaptive para-
meter control. The deterministic approach is the

easiest way. It is based on a deterministic rule that

sets parameters in a fixed and predefined way. If

parameters are set before running the algorithm

then the process is also known as parameter

tuning. Adaptive control techniques consider feed-

back from the search; and the self-adaptive

approach also considers feedback but in this case
parameters are evolved along with the solution.

Parameter tuning may not be the best approach in

terms of algorithmperformance but inmany times it

is the preferred choice for two main reasons. The

first reason is that it is the easiest and the fastest

solution to the problem of setting parameters values

(in terms of development cost). Inmany occasions it

is impossible to test all possible cases for all para-

meters, but using approximation techniques is easy

to find a set of parameter values that works effi-
ciently. And the second reason is closely related to

that fact: evolutionary algorithms are usually quite

flexible and it is easy to find a configuration of

parameters that works; and with a little bit of

extra work it is even possible to find a good config-

uration that performs well for a wide range of

problems. It is then not difficult, just costly in

terms of time, to find the best configuration but it
is not so costly to find an efficient configuration. So

parameter tuning is always a reasonable choice, in

terms of effort, to find a good configuration of

parameters [23]. Because of this, parameter tuning

was chosen to set the parameters for the permut-

POA metaheuristic.
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Fig. 4.Web Engineering Master Program.

Table 3. Values selected for each parameter (pivot values in bold)

Parameter Symbol Values

Number of groups N 2, 3, 5, 10
Group size L 5, 10, 20
Candidates per group � 1, 2, 3, 5
Member weighting constant m 0.5, 1, 1.5, 2
Candidate weighting constant n 0.01, 0.1, 0.5, 1
Merge probably pm 0, 0.01, 0.1
Deletion probably pd 0, 0.01, 0.1
Groups to be merged � 2, 3
Groups to be deleted 
 1, 2
Mutation probability p 0, 0.01, 0.1, 0.5, 1
Duplicate elimination policy de 0, 1



The process to tune the parameters is a hill

climbing in the parameter space. For each para-

meter a set of representative values were selected for

testing (Table 3). We tried to cover the widest range

of (reasonable and meaningful) possibilities. Then,

every test value of each parameter was tested keep-
ing all other parameters constant in a kind of

pivoting rule. The central value of each parameter

was initially selected for the pivot set, and when the

number of values was even then the selection was

arbitrary between the two central values. Selected

pivoting values are boldfaced inTable 3. Then a new

pivot set is selected with the best value for each
parameter and the whole process is repeated.
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Table 4. Descriptive statistics of the number of calls to the fitness function for each experiment (100 runs per experiment)

Value Mean Std Error Std Dev Minimum Median Maximum

Parameter: Number of groups (N)

2 874.1 36.7 366.6 276.0 812.0 2500.0
3 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
5 1459.0 49.6 496.1 530.0 1400.0 3050.0
10 2664.6 85.1 850.7 900.0 2649.0 5300.0

Parameter: Group size (L)
5 909.2 36.9 368.6 253.0 841.0 2097.0
10 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
20 1263.1 47.4 474.0 432.0 1201.0 3042.0

Parameter: Candidates per group (�)

1 1012.3 33.8 337.5 489.0 934.5 1963.0
2 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
3 1120.9 53.6 536.1 324.0 1085.0 3362.0
5 1111.4 48.9 488.7 330.0 977.5 2400.0

Parameter: Member weighting (m)

0.5 1185.7 62.0 619.6 318.0 1045.0 3726.0
1 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
1.5 1085.6 40.4 403.8 294.0 1030.0 2350.0
2 1133.8 49.5 495.2 366.0 1014.0 2382.0

Parameter: Candidate weighting (n)

0.01 1092.6 49.4 494.4 368.0 1026.0 2834.0
0.1 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
0.5 1038.4 46.4 463.7 356.0 939.0 2742.0
1 1043.7 39.1 391.0 366.0 954.0 2734.0

Parameter: Merge and deletion probability (pmd)

0 1199.5 44.9 448.8 462.0 1182.0 3078.0
0.01 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
0.1 795.1 36.1 361.4 270.0 673.0 2054.0

Parameter: Groups to be merged (�)

2 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
3 1151.8 49.1 458.2 386.0 998.0 2390.0

Parameter: Groups to be deleted (
)

1 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
2 1092.4 46.6 466.0 348.0 1038.0 2854.0

Parameter: Mutation probability (p)

0 1068.8 43.0 430.4 288.0 1005.0 2648.0
0.01 1117.5 47.7 476.6 414.0 1014.0 3222.0
0.1 (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
0.5 1022.8 37.5 375.4 318.0 962.0 2166.0
1 891.9 36.4 363.6 294.0 812.0 2158.0

Parameter: Duplicate elimination policy (de)

0 (disabled) (pivot) 1031.3 35.5 355.5 318.0 990.0 2460.0
1 (enabled) 1234.2 49.8 498.2 300.0 1120.0 2640.0



5. Results

Thirty-three experiments were carried out with the
test case of theWebEngineeringMaster program to

tune the parameters for the permut-POA. The

number of calls to the fitness functionwas computed

and used to compare the different configurations.

Each experiment was executed 100 times. Descrip-

tive statistics (Table 4) suggest that different values

in several parameters can improve the performance

of the metaheuristic for this particular test case.
Then aGeneral LinearModel (GLM)was used to

determine what parameters had a relevant influence

in the algorithm performance. Results (Table 5) of

six (out of 11) parameters (N, L, pm, pd, p and de)

returned a significant p-value suggesting that their

values influence performance. All other parameters

(�, m, n, � and 
) did not return any significance. It
should benoted that relevant parameters refer to the
population size (N, L) and its evolution (pm, pd)

along with the modifications introduced, i.e., muta-

tion probability (p) and population elimination

policy (de).

For each parameter thatwas found tobe relevant,
a one way analysis of variance (ANOVA) was

carried out to determine the optimal values among

all candidate values. It shall be noted that data for

all configurations do not follow a normal distribu-

tion but rather seem to fit a lognormal distribution.

Therefore a logarithmic transformationwas applied

and Kolmogorov-Smirnov tests were used to con-

firm goodness of fit to a normal distribution before
running parametric tests. Fig. 5 shows the results

obtained in the ANOVA for the parameter N

(number of groups). Observed performance was

better when there are fewer groups and a value of

2 (two parliamentary groups) returns a significantly

better performance. Results obtained for the para-

meter L (size of the parliamentary group) are

presented in Fig. 6. A smaller group size resulted
better in terms of performance. Equal values for

parameters pm (probability of merging) and pd
(probability of deletion) were considered in the

experiments carried out. Fig. 7 shows the interval

plot for these two parameters. A value of 0.10
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Table 5. Results of the General Linear Model Analysis

Parameter Symbol F p-value

Number of groups N 186.54 0.000
Group size L 20.29 0.000
Candidates per group � 0.42 0.742
Member weighting constant m 0.88 0.454
Candidate weighting constant n 0.25 0.858
Merge and Deletion probably pm, pd 32.43 0.000
Groups to be merged � 3.03 0.083
Groups to be deleted 
 0.21 0.648
Mutation probability p 4.51 0.001
Duplicate elimination policy de 8.99 0.003

Fig. 5. Confidence intervals of fitness for each value of the number of groups (N) parameter (CI = 95% of the mean).



(probability of 10% of merging or deleting parlia-
mentary groups) yielded the best performance.

Results for the p parameter (mutation probability)

suggest that a value of 1 (alwaysmutating) improves

algorithm’s performance (Fig. 8). The optimal value

found for this parameter suggests that the algorithm

in some cases converges to local minima (as it has

also been reported in other metaheuristics) and

finding the solution is difficult without (or with a
low) mutation probability. Finally, Fig. 9 shows the

results obtained for the de parameter, which enables

the duplicate elimination policy. A value of 0 (the

policy is disabled) improved performance. Duplica-

tion elimination policies are usually enabled to
avoid quick convergence to local minima because

they ensure diversity in the population. But their

application can also result in less efficiency in terms

of the number of calls to the fitness function in

certain landscapes. In this case we consider that for

our particular test case population diversity is not so

important because that amount of optimal solu-

tions in the solution space is large enough to
facilitate convergence even in homogeneous popu-

lations andmutation seems to suffice to perform the

final steps (swaps) in the candidate solutions.

After completing all ANOVA tests, it was possi-
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Fig. 6. Confidence intervals of fitness for each value of the group size (L) parameter (CI = 95% of the mean).

Fig. 7. Confidence intervals of fitness for each value of the merge (pm) and deletion probability (pd) parameters (CI = 95% of the mean).



ble to determine the optimal value for relevant
parameters. For each parameter that was found to

be not relevant its initial (pivot) value was kept.

Therefore, the final optimal values (for the test case)

were set as follows:N=2,L=5, �=2,m=1, n=0.1,

pm = pd = 0.1, � = 2, 
 = 1, p = 1 and de = 0.

The next section presents a discussion of the

results, as well as a comparison between permut-

POA and other similar algorithms for solving the
same instance of the courseware sequencing pro-

blem.

6. Discussion

6.1 Comparing permut-POA with other methods

and with existing work

After finding that permut-POA dealt successfully

with the test case, the next step was to perform a

comparative analysis with other standard evolu-
tionary methods. Genetic algorithms (GA) are a

vastly studied subfield in evolutionary computation

and they were our first choice. Different approaches

to GA can be taken to deal with permutation
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Fig. 8. Confidence intervals of fitness for each value of the mutation probability (p) parameter (CI = 95% of the mean).

Fig. 9. Confidence intervals of fitness for each value of the duplicate elimination (de) parameter (CI = 95% of the mean).



problems. Standard typologies usually distinguish

between order problems (e.g. job scheduling pro-

blem) [24] and adjacency problems (e.g. travel sales

person problem) [15]. We developed a permut-GA

[11] for order problems that was tested and tuned

using the same approach described for the permut-
POA.

The second choice was particle swarm optimiza-

tion (PSO) algorithm, which is a more recent

optimizer and has proven its flexibility and effi-

ciency to solve many problems in a wide range of

domains [25]. Original PSO [26, 27] is intended to

work on continuous spaces. A version that deals

with permutation problems (permut-PSO) was
introduced in [18]. It outperformed genetic algo-

rithms for the N-Queens problem, so we decided to

try this version with all its settings. One important

advantage of PSO is that it uses a relatively small

number of parameters compared with other meta-

heuristics. However, much literature about para-

meters in PSO has been written. Among it, [18]

presents a configuration setting that works properly
for solving permutation problems, so we decided to

follow these recommendations.

In order to perform a comparative analysis each

metaheuristic algorithm was executed 100 times.

Logarithmic transformation and normality tests

were then run. Finally, a one way analysis of

variance (ANOVA) was carried out to compare

the three. Results (Fig. 10) suggested that Permut-
POA outperforms permut-GA and it is competitive

with permut-PSO. In order to gain additional

insights we performed two additional ANOVA

tests comparing POAwith the other metaheuristics.

p-values returnedwere less than 0.001when permut-

POA was compared with permut-GA, and 0.003

when permut-POA was compared with permut-

PSO. Therefore, results confirmed that permut-

POA also outperformed permut-PSO (99.7% CI).

6.2 Relevance for engineering education

Our sequencer was tested in one test case in engi-

neering education, a web engineering master pro-

gram in which it was used to find a valid path of
courses. Permut-POA is designed to operate in

domain-independent scenarios so it is potentially

useful for any field of education. However we think

that it is especially relevant for engineering educa-

tion because here we can find instances of new and

ever evolving disciplines in which there are no

predefined paths. It can be particularly useful in

computer science and computer engineering educa-
tion, where besides continuous changes, we can also

find multiple open repositories with thousands of

learning resources properly annotated with meta-

data [10].

The sequencer presented in this work is designed

to improve the effectiveness and efficiency of course-

ware production. It could be used at different stages

of the life-cycle of courseware for designing, build-
ing and maintaining course materials. Potential

users of courseware sequencing are students,

course and curriculum designers and management.

Students can use sequencing to build their own

learning paths or get recommendations about

them. Course designers can also use it to automate

the process of courseware building and offer greater

chances of personalization to learners. Sequencers
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can be used to quickly build learning paths taking

already existing resources (repositories of learning

units). In terms of curriculum design, sequencers

can be useful for gap analysis pointing to resources

that are missing in any given curriculum. New

learning objects will also be made readily available
to the learning community by incorporating them

immediately to the learning paths. Management

and policy makers can know about the possibility

of offering new paths in terms of the resources

available in institutional repositories and they

could also broaden their catalogs and studies by

offering personalized learning paths as an integral

part of their programs. In relation to this, an
interesting future line of work is data mining

because storing the paths and their usage for later

mining can point resources in repositories that

require closer attention. For example, resources

that are critical because are part of many paths or,

resources that aremissing and can open possibilities

to develop new paths with a limited development

effort.
Permut-POA can be used to design, build, main-

tainand test learningpathspersonalizing andadapt-

ing contents to the needs of each particular learner.

Personalization is particularly useful in information

technology, informatics and computer engineering

where there is amyriadof ever evolving technologies

and environments. Institutions usually made the

decision of what to learn for students but this
model may no longer work. Personalization offers

the opportunity to put back the student at the center

of the learning process offering endless possibilities

for adapting contents to her personal needs.

At the methodological level this paper contri-

butes by presenting and applying a systematic

method to test and tune algorithms for courseware

sequencing. We presented a scalable method to set
and fine-tune the parameters of optimizers. Sto-

chastic optimizers usually have a set of parameters

that practitioners have to set from scratch. The

meaning and potential impact of parameters in the

efficiency of algorithms is difficult to understand

and usually lies hidden in literature. By setting up a

configuration thatworks for standard problems and

also a method to setup and tune the parameters in
more challenging scenarios we enable practitioners

in engineering education to use optimizers easily to

adapt and personalize learning paths.

6.3 Limitations of the study and future work

This study is limited to one test case in engineering

education. Additional test cases may be used to
determine the applicability of the sequencer in

other domains and scenarios. The POA optimizer

implements a domain-independent approach based

on metadata, so potentially is applicable to any

domain of knowledge. As for other scenarios,

potential limitations are related with scalability

and quality of themetadata descriptions of learning

units. Our test case included only 24 learning units

(courses). The sequencing problem is potentially an

NP (non-polynomial) problem. NP problems are
hard to solve because the size of the space of

solutions grows exponentially with the size of the

input (number of units to sequence). Although

population based methods like the ones presented

in thiswork are known for having a good scalability,

POA sequencer has to be tested in scenarios that

require far more learning objects to be sequenced.

Furthermore our test case was designed to simulate
a real case and it may not capture the essence or

particularities required in other situations. Particu-

larly, we know that the solution space was not very

demanding in terms of the number of available

solutions, meaning that our test case has many

possible valid sequences. The sequencer presented

here also has to be tested in more challenging

scenarios to claim any kind of generalization.
Another potential limitation has to do with the

metadata descriptions of learning units. The POA

sequencer requires that all learning objects are

correctly tagged and that metadata tags are consis-

tent. For instance, aminor difference in theway that

a learning output or a prerequisite is defined may

result in the impossibility to find a valid sequence or

in incorrect paths of learning units. As we have
suggested, this can be mitigated using standards

for defining the metadata but also by developing

standards and common taxonomies of competen-

cies for specific domains.

As for the methods used by the sequencers

proposed in this work, we have to point that all

the algorithms proposed are stochastic. This means

that they can produce different valid sequences
given the same initial set of learning units resulting

in a potential confusion for the final user (student or

course designer). In our opinion this can be miti-

gatedwith the right user interface under the assump-

tion that learning sequencers should be used to

provide suggestions and recommendations to lear-

ners, course builders and curriculum designers. The

granularity (size) of learning units can also be a
potential source of confusion. Although the pro-

posed sequencer can work with learning objects of

any size (e.g. section, module, unit, course), using

sets of learning units that have a very dissimilar size

(e.g. combining small sections will full courses) can

result in inconsistent learning sequences for the final

user. We suggest using inputs of learning objects

with similar levels of granularity to produce effec-
tive results.

It should also be noticed that POA algorithm has

too many parameters, so we have just included an
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initial analysis concerning parameter tuning that

tries to determine which parameters are relevant as

well as the most convenient values for the given test

case. Experiments carried out suggested that para-

meters are easy to tune, thus enabling flexible

settings of parameters. It has also been observed
that some of these parameters are not relevant in

terms of performance, e.g., in this particular

instance of courseware sequencing we observed

that four parameters do not influence performance.

In our opinion, further work is required on this field

to establish possible dependencies between para-

meters that further facilitate POA implementation

and tuning.
Results also suggested a significant improvement

in efficiency when POA is compared to PSO. This

may not be so surprising when both metaphors are

further inspected because PSO combines local and

social exploration, while POA reduces exploration

to the social component. POA’s capacity to dyna-

mically adjust population size is, in authors’ opi-

nion, an important feature that may explain the
difference found. We think that further research

may also be conducted in order to determine possi-

ble equivalences between both optimizers, along

with the design of hybridmethods devised to exploit

strengths of both optimizers. Comparison with

other exact and stochastic methods is also an inter-

esting research that can be undertaken to further

explore this parliamentary metaphor. Finally the
inclusion of game-like [28-30] and mobile [31–33]

approaches can provide a new component to boost

participation and motivation.

7. Conclusions

POA’s ability to simulate politicians and parties
behavior has already proven its efficiency as an

optimization method in numerical problems. In

this paper, we have presented an adaptation of

this social metaphor for solving the problem of

courseware sequencing. The courseware sequencing

problems has many applications in engineering

education for building, testing and maintaining

courses, and therefore provides an important prac-
tical test-bench for the application of metaheuris-

tics.We have presented a real-world scenario in web

engineering of the sequencing problem and used an

adapted version of the permut-POA metaheuristic

to solve it. Results suggested the potential of POA

with respect to other well established optimizers.

POA outperformed standard versions of genetic

algorithms (GA) and particle swarms (PSO).
Improvement was especially significant when POA

is compared to a standard genetic algorithm.

Our work can impact on engineering education

along the following lines: course builders and curri-

culum designers could use sequencers to build,

maintain and test personalized adapted learning

paths. Management can use sequencing to gain

further insights of their current resources and how

they can be used to leverage new forms of adapted

learning. Learners can use sequencers to create
personalized paths that can give them recommenda-

tions about the set of learning resources to use to

acquire the set of competences that they aim for.

Finally we have addressed several limitations in

terms of only giving a snapshot limited to one test

case in engineering education which raises issues

about scalability and generalization. The potential

confusion that stochastic methods may cause to
users is also a concern. As with other independent-

domain sequencing, the effectiveness of our

approach depends on the quality of description

attached to learning resources (metadata) and

their uniformity, especially in terms of size (granu-

larity).
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