
From Scrum to Kanban: Introducing Lean Principles to a

Software Engineering Capstone Course*

VILJANMAHNIČ
Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.

E-mail: viljan.mahnic@fri.uni-lj.si

In this paper, a capstone course in software engineering is described that exposes students to lean principles advocated by

Kanban.While retaining the main characteristics of its predecessor course, which concentrated on teaching agile software

development using Scrum, the new course also introduces the most important Kanban concepts, i.e., visualization of the

workflowand limitation of thework in progress.Kanban concepts are introduced in twoways: in combinationwith Scrum

(as Scrumban) or as a ‘‘pure’’ Kanban (omitting some of the Scrum activities considered waste). Students are required to

work in teams responsible for the implementation of a set of user stories defined by a project domain expert playing the role

of the ProductOwner.During the course, theymustmaintain aKanban board andmeasure lead time. The paper discusses

the use of differentKanbanboards andwork in progress limits, and analyzes the students’ progress in reducing lead time.A

summary of the lessons learned and recommendations is given reflecting the issues to be considered when teaching similar

courses. A survey among students has shown that they liked both approaches andwere overwhelmingly positive about the

course.

Keywords: lean software development; Kanban; Scrumban; capstone course; software engineering education

1. Introduction

While agile methods [1] have gained wide accep-

tance among mainstream software developers, the

use of lean principles [2] is a rather new but very

promising approach paving its way into the soft-

ware industry. In order to fulfill industry needs,

teaching agile and lean software development has
become an important issuewhen defining a software

engineering curriculum. The Software Engineering

2004 Curriculum Model [3] did not pay enough

attention to this issue, and until a few years ago

courses on agile methods were rather rare [4]. The

core software engineering courses mostly covered

the traditional plan-driven approach (with rare

exceptions; e.g., [5]); however, there is substantial
evidence in the literature reporting the benefits of

using the agile approach in capstone courses; for

example [4, 6–8]. In the future, it is expected that the

revision of the Software Engineering Curriculum

Model will embrace the agile approach as a valid

part of the curriculum from the start [9].

The most widespread agile method is Scrum [10];

according to the latest State of Agile Survey [11]
Scrum and its variants are used by 73% of respon-

dents. Therefore, substantial effort has been spent

recently to find appropriate ways for incorporating

Scrum within the scope of software engineering

courses [12–14], study relationships between how

students use Scrum and their learning style [15], and

develop alternative approaches of teaching Scrum

through educational games [16] and virtual reality
support [17].

At the University of Ljubljana a Scrum-based

software engineering capstone course was intro-

duced in the academic year 2008/2009. After teach-

ing the course for the first time, an empirical

evaluation [18] revealed that students enjoyed learn-

ing Scrum and successfully grasped its main

strengths, but lacked the abilities to estimate and

plan, and did not fully understand the Scrum
concept of a task or user story being ‘‘done’’. There-

fore, the course was upgraded in the academic year

2009/2010 [8], with the project work being designed

as an observational study providing data for empiri-

cal evaluation of some typical Scrum practices: user

stories estimation [19], Sprint and release planning

[20], and the usefulness of user stories for require-

ments specification [21]. Since that time, the afore-
mentioned course design has been successfully used

at the undergraduate level.

In the academic year 2013/2014, a decision was

taken to upgrade the course with lean approaches to

software development [2], in particular Kanban

[22], and offer it as an elective course within the

scope of the new Bologna master’s program. The

decision wasmotivated by some recent publications
[23, 24] reporting significant improvements

achieved by companies that adopted Kanban, as

well as by the results of the last two State of Agile

Development surveys [25, 11], indicating the rapid

growth of Kanban and Scrumban users in industry.

In [23], the case of a Scandinavian company is

described, which after the introduction of Kanban

almost halved the lead time, reduced the number of
weighted bugs by 10 percent, and improved pro-

* Accepted 18 January 2015.1106

International Journal of Engineering Education Vol. 31, No. 4, pp. 1106–1116, 2015 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2015 TEMPUS Publications.

ductivity. Similarly, [24] reports experience from a

Microsoft maintenance project indicating that the

typical lead times, from the arrival of a request to its

completion, were reduced from 125–155 days to

only 14. According to [25], the number of Kanban

and Scrumban users nearly doubled in 2012 and
further increased in 2013 [11].

While Kanban has been used in manufacturing

for many years [26], it is a relatively new concept in

the area of software engineering. It can be used in

combination with Scrum as the so called Scrumban

[27], although the advocates of ‘‘pure’’ Kanban

claim that some Scrum practices (e.g., fixed-length

Sprints, user stories estimation, Sprint and release
planning meetings, strict prioritization of user stor-

ies in the Product Backlog) should be abandoned

since they represent waste not adding customer

value directly. Kniberg and Skarin [28] stress that

Kanban is less prescriptive than Scrum; therefore,

Kanban users are expected to experiment with the

process in order to customize it to their environ-

ment. A systematic literature review [29] identified
only 19 studies on Kanban usage; however, none of

these studies dealt directly with educational issues.

Ikonen et al. [30] used students as subjects in order

to explore the sources of waste in Kanban software

development projects and only recently the use of

Kanban board in project-based courses was

reported in a study of student perceptions and

attitudes towards the software factory as a learning
environment [31].

Theaimof thispaper is tofill thisgapbydescribing

the content of the upgraded software engineering

capstone course at the University of Ljubljana and

the experience gained after teaching it for the first

time. The remainder of the paper is organized as

follows: Section 2describes theoverall course design

and project setting in the academic year 2013/2014.
In Section 3 the Kanban board structures and work

in progress (WIP) limits used are explained in more

detail. Section 4 describes lead time measurement

results, while Section 5 presents the results of a post-

course survey. Section 6 discusses the most impor-

tant lessons learned and the recommendations that

mayhelp teacherswhoplan to teachasimilar course.

Section 7 provides a conclusion.

2. Course description

On the basis of the positive experience with the

previous Scrum-based course [8], it was decided to

retain its main characteristics that proved useful,

i.e., realistic simulation of professional experience
through team-work on a quasi-real project, the use

of user stories for requirements specification, an

explicit role of the Product Owner, strict enforce-

ment of the notion of ‘‘done’’, and empirical evalua-

tion of students’ performance. On the other hand, it

was decided to pay special attention to issues, which

seem to be most important when introducing

Kanban to software development, i.e., the structure

of theKanbanboard, assignment ofWIP limits, and

measuring lead time. Additionally, it was decided to
experiment with different ways of introducing

Kanban: a stepwise introduction through Scrum-

ban or ‘‘pure’’ Kanban approach abandoning some

of the Scrum practices.

2.1 Overall design

The aim of the course is to teach agile and lean
software development through practical work by

augmenting Scrum with the lean concepts of

Kanban. It is assumed that the students have

already mastered traditional methods of software

development, fundamentals of data bases and infor-

mation systems in previous courses, as well as that

they have some basic knowledge of software project

management and agile methods, in particular
Scrum. The majority of students who attended the

course in the academic year 2013/14 have also

completed the aforemntioned Scrum-based course

at the undurgraduate level.

The course lasts one semester (15 weeks) and is

divided into two parts. The first three weeks consist

of formal lectures on Scrum, Kanban and how to

apply user stories for requirements specification.
These three weeks are also used to prepare the

development environment and acquaint students

with the initial Product Backlog containing a set

of user stories [32] they are going to develop. The

Product Backlog is developed by a project domain

expert playing the role of the Product Owner. If the

project is carried out within the Department, the

Product Owner is one of the instructors; if the
project is developed for an industry partner, this

role is played by a representative of a company.

Each user story should consist of a short descrip-

tion, which is used for planning and as a reminder

for conversations, and acceptance tests, which serve

for determining when a story is ‘‘done’’.

The rest of the course consists of practical project

work. Students are divided into teams of four
responsible for the development of the required

functionality. In order to further explore the differ-

ences between Scrumban and ‘‘pure’’ Kanban,

student teams are divided into two groups: the

Scrumban group and the Kanban group.

2.1.1 Scrumban group

Teams belonging to the Scrumban group (in the
remainder Scrumban teams) retain the Scrum con-

cept of fixed-length iterations; therefore, the rest of

their course is divided into three Sprints, each

lasting four weeks. Each Sprint starts with a

From Scrum to Kanban: Introducing Lean Principles to a Software Engineering Capstone Course 1107

Sprint planningmeeting atwhich the contents of the

next iteration is agreed with the Product Owner and

the initial version of the Sprint Backlog is defined.

Considering the rules of agile planning [33], the

stories in the Product Backlog are prioritized and

each team is required to (i) define its expected
velocity and (ii) estimate user stories in story

points using predefined specific values of 0.5, 1, 2,

3, 5, 8, 13, and 20. The content of the Sprint Backlog

must not exceed the estimated velocity.At the endof

each Sprint, the Sprint review and Sprint retro-

spective meetings are organized. At the review, the

Scrumban teams present their results to the Product

Owner, while at the retrospective meeting, students
and instructors meet to assess the development

process in the previous Sprint, giving suggestions

for improvements in the next.

The aforementioned Scrum framework is aug-

mented by the use of the Kanban board and WIP

limits. The board visualizes the workflow, while the

WIP limits prevent the teammembers fromworking

on several work items at the same time, thus mini-
mizing lead time. The Kanban board includes the

Sprint Backlog column, which is initiated at each

Sprint planning meeting.

2.1.2 Kanban group

Teams belonging to the Kanban group (in the

remainder Kanban teams) follow lean concepts

more strictly by abandoning fixed-length iterations

and Sprint planning. They are no longer required to

maintain the Sprint Backlog and track their velo-

city. Instead, the Product Owner maintains a small

number of high priority stories, which a team

member can pull into development whenever he/
she completes the user story he/she worked on

before. In order to ensure continuous workflow,

the Product Owner is also expected to evaluate user

stories promptly, as soon as each user story is

signaled as finished.

Consequently, the reviewmeetings are not held at

regular intervals, but are event driven. A review

meeting is triggered whenever there is a set of

minimum marketable features (MMF), defined by

the Product Owner, ready for release.

There is no difference between both groups

regarding Daily Scrum and Sprint retrospective

meetings. Teams belonging to the Kanban group
hold their retrospective meetings regularly at the

same intervals as Scrumban teams (i.e., at the end of

each Scrumban Sprint) and all teams are required to

meet regularly at the Daily Scrum meetings. How-

ever, since students cannot be expected to work on

the project every day, Daily Scrum meetings are

mandatory only twice per week.

The differences in the operation of Scrumban and
Kanban teams are summarized in Table 1.

2.2 Project setting in 2013/2014

In the academic year 2013/2014, the course was

taken by 66 students who were divided into 16
teams. Two teams consisted of 5 students. During

the course 4 students dropped out, so that the course

was successfully completed by 62 students. The

teams were randomly split into halves: eight teams

were required to develop their projects using Scrum-

ban, while the other eight had to use ‘‘pure’’

Kanban. In order to additionally strengthen the

learning of Kanban concepts and their use in
practice, the project consisted of developing a

Web-based tool for managing Kanban projects.

The teacher played the role of Product Owner who

maintained the Product Backlog, while three teach-

ing assistants helped him in answering questions on

details of user stories, monitoring the development

process, and evaluating work being done. A free

version of Kanbanize project management tool
(https://kanbanize.com/) was used to maintain the

Kanban board.

The initial Product Backlog consisted of 18 user

stories and was further augmented during the pro-

ject execution in order to simulate changes in user

requirements and priorities. Altogether, there were

24user stories to be implemented (10 ‘‘must have’’, 6

Viljan Mahnič1108

Table 1. The differences between Scrumban and Kanban teams

Concepts used Scrumban Kanban

Iterations Fixed-length Sprints. Continuous workflow (no iterations).

Sprint planning meetings Held regularly, at the beginning of each Sprint.
Sprint Backlog must be defined and
maintained.

No Sprint planning meetings. Product Owner
maintainsa small subset of highpriority stories.

Sprint review meetings Held regularly, at the end of each Sprint. Event driven when there is a set ofMMF ready
for release.

Sprint retrospective meetings Held regularly, at the end of each Sprint. Held regularly, at the same time as Scrumban
groups.

Daily Scrum meetings Held regularly; however, due to the students’
other obligations only twice per week. Kanban
board is used to monitor workflow.

Held regularly; however, due to the students’
other obligations only twice per week. Kanban
board is used to monitor workflow.

‘‘should have’’, and 8 ‘‘could have’’) describing the

required functionality for four different user roles:

the Kanban Master, the Product Owner, the Team

Member, and the SystemAdministrator. The role of

KanbanMasterwas analogous to the role of Scrum-

Master in Scrum. Assuming that the Kanban
Master is responsible for methodology, the tool

was envisioned to offer him/her the possibility to

define and adapt the structure of theKanban board,

prescribe the WIP limits, and monitor progress

through cumulative flow diagrams and lead time

calculations.With regard to the Product Owner, the

tool was required to enable him/her to define work

items in the formof user stories and to decidewhen a
user story is done. The Team Members were sup-

posed to have the possibility to estimate work items

and move them through development from one

workflow state to another. The System Adminis-

trator was assumed to assign each user his/her

role(s) and maintain the data required for the

proper functioning of the system, i.e., data about

developers, development teams, and projects they
are working on.

The tool had to be as flexible as possible, giving

the possibility to define a Kanban board with an

arbitrary number of columns (representing different

workflow states) and rows (representing different

projects a development team can work on simulta-

neously). Each user had to be allowed to have

several roles on the same project and play different
roles in different projects. Special attention had to

be devoted to the specification of rules for moving

work items from one column to another. For each

column, the tool had to permit the specification of

who (i.e., whichuser role) canpull awork item from,

as well as where the item can be moved. In order to

compute the lead time, eachmovehad tobe assigned

a time-stamp, thus making it possible to determine
how long a work item remained in each workflow

state.

Scrumban teams allocated the stories to Sprints

strictly considering their priority and the estimated

velocity of each team. For the purpose of event

driven review meetings performed by Kanban

teams, four sets of related stories were defined as

MMF, each of them representing an increment of
functionality that had to be reviewed and eventually

deployed. The first set represented an internal

release consisting of administrative operations

required for proper functioning of the system (user

administration, team definition, project attributes).

The second set comprised core functionality

required by Kanban (Kanban board maintenance,

WIP limits, work items presentation, card moving
from one workflow state to another). The third set

concentrated on various analyses and reports

required for development process monitoring

(lead time calculation, cumulative flow diagram,

WIP limit violations, deadline warnings). The

fourth set included enhanced functionality, offering

additional reports, customization of Kanban board

and user stories display, as well as incorporation of

ground rules of who (which role) can use the
Kanban board and how.

Students’ grades were determined on the basis of

the amount of Product Backlog accomplished and

the average lead time achieved, the quality of soft-

ware and documentation developed, and the

instructors’ judgment on how well the team

worked together, performed the prescribed meet-

ings, and maintained the Kanban board.

3. Kanban board structure and WIP limits

During the project each team was required to
maintain its Kanban board, which served as a

visual control mechanism indicating how the work

flowed through the various stages of the develop-

ment process. The initial board structure was pre-

scribed by instructors, but could later be adapted to

better reflect the operation of each team.

3.1 Kanban board for Scrumban teams

It was suggested to the Scrumban teams that they

use the board in Fig. 1. The ‘‘Product Backlog’’
column was intended to contain all user stories still

waiting to be developed. Stories were prioritized by

the Product Owner and estimated by each student

team separately using planning poker or team

estimation game. Whenever a new user story was

created, a new card was added to this column.

The ‘‘Sprint Backlog’’ column contained user

stories belonging to the current Sprint. The content
of this column was initiated at the Sprint planning

meeting when the Product Owner and the develop-

ment team agreed which stories to develop in the

next Sprint. During Sprint, the stories moved to

subsequent columns in accordance with Kanban

pull mechanism. If the Sprint was executed prop-

erly, this column became empty at the end of the

Sprint and was filled again at the next Sprint
planning meeting. The WIP limit of this column

was expressed in terms of story points representing

estimated velocity of each development team.

The rest of the board followed the idea from the

literature [1, 34] that each iteration of an agile

methodology is a self-contained, mini-project,

with activities that span requirements analysis,

design, implementation, test, and customer accep-
tance. Consequently, activities performed by stu-

dent teams were united within the ‘‘Development’’

column consisting of the ‘‘Analysis & Design’’,

‘‘Coding’’, ‘‘Testing’’, ‘‘Integration’’, and ‘‘Docu-

mentation’’ subcolumns. The ‘‘Analysis & Design’’

From Scrum to Kanban: Introducing Lean Principles to a Software Engineering Capstone Course 1109

subcolumn was introduced to reflect the agile con-

cept of just-in-time design and stress the need for

clarifying each user story details through conversa-

tions with the Product Owner. The ‘‘Coding’’ sub-

column corresponded to coding and unit testing,
while the ‘‘Testing’’ subcolumn represented func-

tional testing. The ‘‘Integration’’ subcolumn was

introduced to stress the requirement that all stories

should be integrated into a working solution in

order to be accepted by the Product Owner as

‘‘done’’. Experience from previous years had

shown that, at the Sprint review meetings, far too

frequently students wanted to present user stories in
isolation not paying enough attention to consistent

working of the application as a whole. The ‘‘Doc-

umentation’’ subcolumn reflected the Scrum

requirement that the user operation of the new

functionality developed in each Sprint must be

documented, either in Help files or in user docu-

mentation [10].

The WIP limit of 8 was defined for the ‘‘Devel-
opment’’ subcolumn as awhole, thus indicating that

the total number of user stories in all its subcolumns

should not have exceeded 8. A more detailed expla-

nation of how WIP limits were defined follows in

subsection 3.4.

The ‘‘Acceptance Ready’’, ‘‘Acceptance’’, and

‘‘Done’’ columns were introduced to stress the

Scrum rule that it is the Product Owner who decides
whether a story is ‘‘done’’ or not. The ‘‘Acceptance

Ready’’ column served as a buffer between the

development team and the Product Owner. When-

ever a student team completed a user story, they

moved the corresponding card to the ‘‘Acceptance

Ready’’ column, thus giving the Product Owner a

sign to start acceptance testing. Then the Product

Owner pulled the card into the ‘‘Acceptance’’

column and, if the user story passed all acceptance

tests, moved it to the final column ‘‘Done’’. Other-

wise, the card was moved back to the ‘‘Sprint Back-
log’’ and its color was changed to indicate that the

story was rejected and needed some rework.

Considering the fact that (theoretically) a devel-

opment team can submit all stories for evaluation at

the end of the Sprint, the WIP limits for ‘‘Accep-

tance Ready’’ and ‘‘Acceptance’’ columns were not

explicitly defined. Consequently, the amount of

work in these columns was only limited implicitly
by the size of the Sprint Backlog. Nevertheless, the

Product Owner made every effort to evaluate each

user story promptly, as soon as the corresponding

card appeared in the ‘‘Acceptance Ready’’ column.

3.2 Kanban board for Kanban teams

The board structure ofKanban teams differed in the

second column; instead of the ‘‘Sprint Backlog’’ the

‘‘Next’’ column was introduced as shown in Fig. 2.

The ‘‘Next’’ column was intended to contain a

limited number of high priority stories, which the

Product Owner wanted to be implemented first. The

WIP limit of 4 was chosen because there were 4
students in each development team. Whenever one

of them was ready to start working on a new item,

he/she could take a user story from the ‘‘Next’’

column and move it to ‘‘Analysis & Design’’. This

was a sign to the Product Owner to choose the next

story with the highest priority from the ‘‘Product

Backlog’’ and fill up the free space in ‘‘Next’’.

Within the WIP limit of the ‘‘Next’’ column, the
Product Owner was allowed to change priorities by

Viljan Mahnič1110

Fig. 1. Kanban board for Scrumban teams.

Fig. 2. Kanban board for Kanban teams.

moving high priority stories from ‘‘Product Back-

log’’ to ‘‘Next’’ and vice versa. If the ‘‘Next’’ column

contained 4 stories, one of them had to be moved

back to the ‘‘Product Backlog’’ before being

replaced with a more urgent user story.

WIP limits were also introduced in the ‘‘Accep-
tance Ready’’ and ‘‘Acceptance’’ columns in order

to check for possible bottlenecks in acceptance

testing and ensure that acceptance testing was

performed as soon as possible after the completion

of each story. TheWIP limit of 4 in the ‘‘Acceptance

Ready’’ subcolumn allowed, on average, one story

per teammember towait for evaluation at any given

moment. On the other hand, the WIP limit of 2 in
the ‘‘Acceptance’’ column allowed the Product

Owner to test at most 2 user stories simultaneously.

3.3 Adaptation of the board structure

During the project student teams were encouraged

to adapt, if necessary, the board structure to their

actual development process. Fig. 3 shows an exam-

ple of how the ‘‘Development’’ columnwas adapted

to better fit the needs of those teams that strictly

separated responsibilities for developing the back

end and front end of each user story. Apart from

splitting the Coding subcolumn into ‘‘Back end’’
and ‘‘Front end’’, the ‘‘Ongoing’’ and ‘‘Completed’’

subcolumns were introduced to distinguish between

user stories being still in a working state

(‘‘Ongoing’’) and user stories waiting to be pulled

into the next step in the process (‘‘Completed’’).

By moving a card to the ‘‘Back end/Completed’’

subcolumn, the back end developers indicated that

they had finished their part of the job and the front
end development could start. Similarly, a card in the

‘‘Front end/Completed’’ subcolumn indicated that

the story was ready to proceed to functional testing.

WIP limits of ‘‘Back end’’ and ‘‘Front end’’ sub-

columns ensured that the workload was balanced

between both parts of the team.

3.4 Adaptation of WIP limits

Defining appropriate WIP limits is another impor-

tant issue when introducing Kanban. A too high

WIP limit may cause idle tasks without being

worked on and consequently bad lead time. On

the other hand, a too low WIP limit may prevent

developers from starting newwork, thus having as a

consequence idle people and bad productivity.

Again, there are no explicit rules what the WIP

limits should be.

In order to expose students to this issue, the main
idea was to start with a rather loose WIP limit and

gradually tighten it until a bottleneck occurred.

Accordingly, the initial WIP limit of the ‘‘Develop-

ment’’ column was set to 8 (as shown in Figs. 1 and

2), which (on average) allowed each developer

working on two user stories at the same time. The

intention of this limit was to allow each developer to

work regularly on one user story and, if necessary,
also pull into development a story that had been

rejected by the Product Owner. It was expected that

this way of working would accelerate correction of

rejected stories and consequently reduce lead time.

The first retrospective meeting revealed that the

WIP limit was so generous that it had never been

reached. On the contrary, it was misused by some

students who pulled into development more than
one new story at the same time. Therefore, the WIP

limit of the ‘‘Development’’ column was reduced to

7 (which also appeared not to be too restrictive) and

then to 5. At the same time, theWIP limits of 3 were

introduced in the ‘‘Back end’’ and ‘‘Front end’’

subcolumns for teams using the board in Fig. 3. It

was agreed that the WIP limits could only be

violated if a special reason existed, which had to
be recorded in the electronic project management

tool.

The more severe WIP limits were useful for

provoking congestions indicating possible bottle-

necks in the development process. For example, a

team that used the Kanban board in Fig. 3 reached

theWIP limit of the ‘‘Back end’’ subcolumn several

times because of cards waiting in the ‘‘Back end/
Completed’’ subcolumn to be pulled into develop-

ment of front end. In their case the front end part of

the team appeared to be a bottleneck that was not

able to handle quickly enough the work completed

by the back end part of the team.

With theKanban boards inFigs. 2 and 3, theWIP

limit 5 in the ‘‘Development’’ column appeared to

be too low towards the end of the course when some

From Scrum to Kanban: Introducing Lean Principles to a Software Engineering Capstone Course 1111

Fig. 3. Adaptation of the ‘‘Development’’ column to reflect work division between front end and back end.

late teams, apart from working on regular user

stories, also had to resolve bugs in stories that had

been rejected by the Product Owner. Towards the

end of the course, when some teams intensified their

work in order to complete asmany as possible of the

missing user stories, some violations of the WIP
limit in the ‘‘Acceptance Ready’’ column were also

noticed indicating that theProductOwner could not

promptly check all user stories submitted for eva-

luation.

4. Measurement of lead time

At the second retrospective meeting, each team was

required to report the average lead time for the

stories they had already completed and provide

proposals for its improvement. Lead time was

expressed in terms of days that elapsed between

the time a user story card was pulled into develop-

ment (i.e., into the ‘‘Analysis&Design’’ subcolumn)

and its arrival in the ‘‘Done’’ column.
Most proposals for improvement suggested stric-

ter adherence to Kanban rules, in particular not

pulling a user story into development until the work

actually starts and not working on several items at

the same time. Other proposals included increasing

communication with the Product Owner, improv-

ing communication and work co-ordination among

team members, and introducing pair programming
and/or peer reviews of code. It was expected that

better communication with the Product Owner

would improve lead time by reducing the number

of user stories that were rejected due to misunder-

standing of user requirements. Improved commu-

nication and work co-ordination among team

members was expected to reduce time needed for

integration, while the introduction of pair program-
ming and/or peer reviews of code was expected to

increase the quality of developed programs. Addi-

tionally, the instructors encouraged the students to

submit completed user stories for approval as soon

as they were finished and not wait until the next lab

practice hours, which were officially scheduled only

once per week. For this purpose, additional contact

hours were designated allowing students tomeet the
instructors daily, either for presenting results of

theirworkor asking questions regarding user stories

details.

At the third retrospective meeting, the average

lead time was calculated again and compared to

previous values. The great majority of teams

reduced their average lead time, some of them for

more than 30%. There were only two teams (T12
and T15, both from the Scrumban group) that did

not succeed in reducing the average lead time,

mostly due to some late user stories they started in

Sprint 2 and completed in Sprint 3. Detailed results

are shown in Table 2, representing (for each team
separately) the number of completed user stories

and the average lead time reported at the retro-

spective meetings 2 and 3, respectively.

5. Students’ evaluation of the course

In order to obtain students’ feedback, an anon-

ymous survey was conducted at the end of the
course that consisted of two parts. The first part

was devoted to a general evaluation of the course,

while the second part dealt with students’ satisfac-

tion with the method they used. The survey was

answered by 57 students out of 62 who completed

the course.

5.1 General evaluation

The general evaluation of the course (see Table 3)

clearly confirmed that students liked the course

because of its orientation to learning through prac-

tical problem solving. The answers to question 1

show a unanimous support for the decision to teach

the combination of agile and lean concepts through

practical work on a quasi-real project. With regard
to question 2, all students found the course either

useful (40.4%) or useful and interesting (59.6%).

The answers to question 3 also show that students

were satisfied with the course. Almost half of them

(42.1%) felt that the course was better than other

courses and only two of them (3.5%) rated the

course worse. Most of students (96.5%) also found

the course beneficial to their employability and
professional career (question 4).

The first part of the survey also contained two

open-ended questions allowing students to specify

what course aspects they liked most and least.

Viljan Mahnič1112

Table 2. Number of completed user stories and the average lead
time reported by each team at the retrospective meetings 2 and 3,
respectively

Retrospective meeting 2 Retrospective meeting 3

Team
Stories
completed

Average
lead time
(days)

Stories
completed

Average
lead time
(days)

T01 24 8.85 24 8.85
T02 13 23.95 24 15.96
T03 17 12.73 24 10.60
T04 5 37.42 12 25.58
T05 8 24.71 18 23.76
T06 4 25.83 18 15.72
T07 15 12.13 24 9.17
T08 14 15.11 22 11.43
T09 4 31.28 15 21.81
T10 9 14.86 19 10.92
T11 24 7.21 24 7.21
T12 6 16.42 18 16.55
T13 16 12.06 24 10.31
T14 10 16.89 15 15.32
T15 6 16.50 20 18.05
T16 6 17.18 24 15.95

Almost all of them stressed practical work on a

quasi-real project as the most positive experience.

Among other things, they also mentioned team-

working, learning of state-of-the-art topics having

industrial relevance, simulation of industrial envir-

onment and co-operation with a real customer. One

of the students wrote: ‘‘We actually saw how things

are done in practice.’’

On the other hand, the students foundmandatory

nature of the various kinds of meetings (mostly

Daily Scrum, but also Sprint planning and retro-

spective) the most annoying part of the course.

Some of them also complained about the amount

of work required to complete all user stories in the

project. However, it seems they were not right, since

the best teams finished their projects before the end
of the semester.

5.2 Satisfaction with the method used

The second part of the survey was intended to

identify possible differences in students’ opinions

on Scrumban and Kanban. Students were asked

first to rate themethod they used on a scale from1 to

5 (question 1), and then specify, which method they

would have used for their project if they had been

given the choice (question 2). Again, an open-ended
question was added allowing them to additionally

explain their answers to question 2. The results are

presented in Table 4 for members of Scrumban and

Kanban teams separately.

Both groups of students (Scrumban andKanban)

were satisfied with their method and, interestingly,

themajority of themwould choose the samemethod

again. The satisfaction was greater among students
who used Kanban. Their rate of Kanban was 4.12,

and 84% of them would choose Kanban again.

Students who used Scrumban rated their method

slightly lower (3.84); 75% of themwould use Scrum-

ban again, while 25% would prefer to switch to

Kanban.

Among reasons for choosing Scrumban again,

members of Scrumban teams put in the first place
time-boxed iterations, because they clearly define

deadlines for completion of work committed and

provide more control over project execution. Many

of them felt that time-boxed iterations encouraged

them to work consistently rather than procrasti-

nate. Another reason for preferring Scrumban over

Kanban was their opinion that Scrumban is better

because it combines the best of Scrum andKanban.
Several free-response comments illustrate the above

findings:

� ‘‘Scrumban prescribes more constraints, which

enable better control over the project. Regular

execution of prescribed meetings improves commu-

nication among team members, which I found

beneficial for successful completion of our project.

Due to fixed-length Sprints I always knewwhenmy

work should be finished.’’

� ‘‘Scrumban maintains regular cadence of Sprints

with clearly defined deadlines, which encouraged

me to work regularly without procrastination.’’

� ‘‘Regular Sprints help keeping sustainable pace of

work.’’

� ‘‘Scrumban combines best practices of both meth-

ods.’’

On the other hand, themembers of Scrumban teams

who expressed their preference for Kanban found

Kanban better because of being less prescriptive,

thus giving more freedom for adaptation and orga-

nizingwork according to their needs. These students
felt time-boxed iterations rigid and preferred event

driven reviews of work completed. Their opinions

were supported by comments like these:

� ‘‘I prefer Kanban because it pays less attention to

estimating and planning. No Sprint planning meet-

ings are needed and the developers can concentrate

on work that adds value to the customer.’’

� ‘‘I find Kanban more flexible and less bureau-

cratic.’’

� ‘‘By using Kanban it is easier to coordinate project

work with commitments of other courses.’’

From Scrum to Kanban: Introducing Lean Principles to a Software Engineering Capstone Course 1113

Table 3. Survey results—Part I: General evaluation of the course

1 Do you support the decision to teach agile and lean software
development through practical work on a quasi-real project?

(a) yes 57 100.0%
(b) no 0 0.0%

2 How useful is the course?

(a) the course is useful and interesting 34 59.6%
(b) the course is useful 23 40.4%
(c) the course is not useful 0 0.0%
(d) the course is not useful and uninteresting 0 0.0%

3 How do you rate the course in comparison to other courses?

(a) better 24 42.1%
(b) approximately the same 31 54.4%
(c) worse 2 3.5%

4 Does the course contribute to your employability and
professional career?

(a) yes 55 96.5%
(b) no 2 3.5%

Table 4. Survey results—Part II: Satisfaction with the method
used

Question Scrumban
(N = 32)

Kanban
(N = 25)

1 Rate the method you used on
your project

3.84 4.12

2 Which method would you use if
you had a possibility to choose?
(a) Scrumban
(b) Kanban

24 (75%)
8 (25%)

4 (16%)
21 (84%)

Similar reasons were cited by those members of

Kanban teams who would choose Kanban again.

They also preferred Kanban because it is more

flexible, less bureaucratic and requires fewer form-

alities (no Sprint planning meetings). Some of them

mentioned event driven review meetings as a means
for improving quality since the work completed is

presented when it is really done and not because the

end of a time-boxed iteration requires a presenta-

tion.Additionally, they foundKanbanmore appro-

priate because it allowed them to better combine

their work on the project with other courses’ com-

mitments.

The members of Kanban teams who preferred
Scrumban felt Scrumban better because of time-

boxed iterations with fixed deadlines, which force

developers to work consistently without procrasti-

nation.

6. Discussion

Introducing Kanban through team-project work

has been a positive experience for both the teacher

and the students. This section discusses the most

important lessons learned that can contribute to

improved course design and smoother running of

the course in the future, as well as provide useful

guidelines for teachers who are interested in teach-

ing similar courses.
Teaching Kanban and lean concepts is an emergent

issue in the area of software engineering education:

Kanban is a relatively new concept in software

engineering; however, positive experience of early

adopters and the rapid growth of the number of its

users indicate that introducing lean concepts can

significantly improve software development. There-

fore, teaching Kanban is becoming an important
issue if we want to provide students with knowledge

and skills needed in real life industrial projects.

According to the author’s experience, teaching

Kanban is best done through a project-based

course requiring students to apply lean concepts in

practice, as well as to acquire a number of skills that

cannot be gained solely through lectures and books.

Kanban can be successfully combined with agile

methods like Scrum: In Kanban, the only con-

straints are Visualize Your Workflow and Limit

Your WIP [28]. Therefore, the question arises how

many additional rules should be imported from

Scrum for successful Kanban implementation. In

order to explore this issue in more detail, two

approaches (i.e., ‘‘pure’’ Kanban and Scrumban)

were used in the course. Scrumban required time-
boxed iterations and regular execution of all Scrum

meetings, while ‘‘pure’’ Kanban used no iterations

and the review meetings were event driven. Both

approaches proved to be successful and viable.

Most students were satisfied with the approach

they were required to use and the majority of them

would use the same approach again if they were

given the possibility to choose. Nevertheless, satis-

faction with Kanban was slightly greater than

satisfaction with Scrumban.
Defining appropriate structure of the Kanban

board and WIP limits are principal issues when

introducing Kanban: The structure of the Kanban

board should closely reflect the actual development

process used. By defining the initial board structure,

instructors can impose on student teams the desired

stages of the development process, especially those

steps which students often do not pay enough
attention to. On the other hand, students should

be encouraged to search for the structure that best

fits their development process. In the course

described, a combination of both approaches was

used. Some columns (e.g., ‘‘Testing’’, ‘‘Integra-

tion’’, and ‘‘Documentation’’) were prescribed

because previous experience showed that students

did not pay enough attention to these issues, while
close monitoring of how particular teams work led

to adaptations that improved visibility of the work-

flow and possible bottlenecks as in the example

presented in Fig. 3. Adapting the board structure

to their development process encourages students to

think about the process and possible improvements.

A possible solution, which should be explored in the

future, is to ask each team to propose its own board
structure, which should then be discussed and

approved by instructors.

Experimenting with WIP limits gives students

appropriate feeling of how WIP limits work and

helps identifying possible bottlenecks: It is advisable

to start with reasonably loose WIP limits, which

should be gradually tightened to the point of caus-

ing congestions, thus helping to identify possible
bottlenecks and discuss solutions for their removal.

Ground rules should define what to do when aWIP

limit is reached (e.g., allow violation of the limit if a

special reason exists, or strictly prohibit it). Experi-

ence from the course has shown that the initial WIP

limit of 2n (where n is the team size) for the

‘‘Development’’ column was too loose; therefore,

it would be better to start with amore rigorous value
(e.g., 3n/2), since moving of rejected user stories to

the ‘‘Next’’ and ‘‘Sprint Backlog’’ columns, respec-

tively, did not affect WIP in the ‘‘Development’’

column. Additionally, the effects of limiting WIP in

subcolumns of the ‘‘Development’’ column should

be further explored in the future.

Measuring lead time strengthens the understanding

of Kanban concepts and encourages improvements in

the development process: Lead time is the main

indicator of success in a Kanban implementation.

It is recommended to require students to monitor

Viljan Mahnič1114

their average lead time and provide proposals how

to improve it. Experience from the course has shown

that obedience of Kanban rules (e.g., not to have

more thanone itemper person indevelopment at the

same time) increased after the students had been

required to measure lead time and provide recom-
mendations for its improvement.

Prior knowledge of agile development methods, in

particular Scrum, improves understanding of Kanban

and Scrumban principles: In order to fully under-

stand Kanban and Scrumbun principles, it is advi-

sable to introduce Kanban after the students have

already mastered agile software development meth-

ods, in particular Scrum. In our case the great
majority of students got acquainted with agile

methods and Scrum during their previous studies

at the undergraduate level, whichmade it possible to

start with ideas of Scrumban and Kanban from the

very beginning of the course. This prerequisite

should be considered as a limitation of applicability

of this study and should be taken into account by

teachers who plan to teach a similar course in the
future.

7. Conclusion

The aim of this paper is to fill the gap in the existing

literature on using Kanban in software engineering

education. A detailed description of a software
engineering capstone course is provided that

exposes students to Kanban through practical

team-project work. Apart from offering a new up-

to-date content, the course gives students possibi-

lities to explore different ways of combining Scrum

and Kanban practices as well to experiment with

different Kanban board structures and WIP limits.

By monitoring the average lead time, they are
encouraged to search for improvements in their

software development process. A survey among

students has shown that they were overwhelmingly

satisfied with the course and found it beneficial to

their employability and professional career.

In the future, it is planned to explore the sources

of waste in students’ projects and study the differ-

ences between Scrumban and Kanban in a more
systematic manner. Regarding the first issue, it is

envisioned that each student team will be required

to maintain a value stream map of their develop-

ment process clearly indicating how much time a

work item spends in waiting states and non-value

adding activities. The value streammap will have to

be presented at each retrospective meeting and will

serve as a basis for discussion on how to improve the
development process and reduce lead time. Regard-

ing the second issue, it is envisioned that students’

projects will be carried out in a controlled environ-

ment that will allow formation of hypotheses about

the strengths and weaknesses of both approaches.

We expect that these results will also be useful for

those companies that plan to introduce Kanban

practices into their software development process.

Acknowledgments—The author thanks teaching assistants L.
Fürst, M. Poženel, and A. Časar for their help in conducting
the course, as well as all students who attended the course in the
academic year 2013/2014 for their participation and useful
comments, which made this work possible.

References

1. L.Williams, Agile software development methodologies and
practices, Advances in Computers, 80, 2010, pp. 1–44.

2. M. Poppendick and M. A. Cusumano, Lean software
development: A Tutorial, IEEE Software, 29(5), 2012, pp.
26–32.

3. Joint Task Force on Computing Curricula, Software engi-
neering 2004: Curriculum guidelines for undergraduate
degree programs in software engineering, IEEE Computer
Society and ACM CCSE, 2004, http://sites.computer.org/
ccse, accessed 6 September 2014.

4. D. F. Rico and H. H. Sayani, Use of agile methods in
software engineering education, Proceedings of the Agile
2009 Conference, Chicago, USA, August 24–28, 2009, pp.
174–179.

5. L. Layman, L. Williams, K. Slaten, S. Berenson and M.
Vouk, Addressing diverse needs through a balance of agile
and plan-driven software development methodologies in the
core software engineering course, International Journal of
Engineering Education, 24(4), 2008, pp. 659–670.

6. D. A. Umphress, T. D. Hendrix and J. H. Cross, Software
process in the classroom: The capstone project experience,
IEEE Software, 19(5), 2002, pp. 78–85.

7. C. Coupal andK. Boechler, Introducing agile into a software
development capstone project, Proceedings of the Agile 2005
Conference, Denver, CO, 2005, pp. 289–297.

8. V. Mahnič, A Capstone Course on Agile Software Develop-
ment Using Scrum, IEEE Transactions on Education, 55(1),
2012, pp. 99–106.

9. A. Fox and D. Patterson, Is the new software engineering
curriculum agile?, IEEE Software, 30(5), 2013, pp. 85–88.

10. K. Schwaber,Agile ProjectManagement with Scrum, Micro-
soft Press, Redmond, WA, 2004.

11. VersionOne, 8thAnnual State of Agile Survey, Atlanta,GA,
2014, http://www.versionone.com/pdf/2013-state-of-agile-
survey.pdf, accessed 6 September 2014.

12. L. Werner, D. Arcamone and B. Ross, Using Scrum in a
quarter-length undergraduate software engineering course,
Journal of Computing Sciences in Colleges, 27(4), 2012, pp.
140–150.

13. A. Scharf and A. Koch, Scrum in a software engineering
course: an in-depth praxis report, Proceedings of the 26th
Conference on Software Engineering Education and Training
(CSEE&T 2013), San Francisco, USA, 2013, pp. 159–168.

14. S. D. Zorzo, L. de Ponte and D. Lucredio, Using Scrum to
teach software engineering: a case study, Proceedings of the
Frontiers in Education Conference, Oklahoma City, USA,
2013, pp. 455–461.

15. E. Scott, G. Rodriguez, A. Soria and M. Campo, Are
learning styles useful indicators to discover how students
use Scrum for the first time?, Computers in Human Behavior,
36, July 2014, pp. 56–64.

16. C. G. von Wangenheim, R. Savi and A. F. Borgatto,
SCRUMIA–An educational game for teaching SCRUM in
computing courses, Journal of Systems and Software, 86(10),
2013, pp. 2675–2687.

17. G. Rodriguez, A. Soria and M. Campo, Virtual Scrum: a
teaching aid to introduce undergraduate software engineer-
ing students to scrum, Computer Applications in Engineering
Education, 23(1), 2015, pp. 147–156.

18. V. Mahnič, Teaching Scrum through team-project work:

From Scrum to Kanban: Introducing Lean Principles to a Software Engineering Capstone Course 1115

students’ perceptions and teacher’s observations, Interna-
tional Journal of Engineering Education, 26(1), 2010, pp. 96–
110.

19. V. Mahnič and T. Hovelja, On using planning poker for
estimating user stories, Journal of Systems and Software,
85(9), 2012, pp. 2086–2095.

20. V. Mahnič, A case study on agile estimating and planning
using Scrum, Elektronika ir Elektrotechnika (Electronics and
Electrical Engineering), 111(5), 2011, pp. 123–128.

21. V. Mahnič and T. Hovelja, Teaching user stories within the
scope of a software engineering capstone course: analysis of
students’ opinions, International Journal of Engineering
Education, 30(4), 2014, pp. 901–915.

22. D. Anderson, Kanban—Successful Evolutionary Change for
Your Technology Business, Blue Hole Press, Sequim, WA,
2010.

23. D. I. K. Sjøberg, A. Johnsen and J. Solberg, Quantifying the
effect of using Kanban versus Scrum: A case study, IEEE
Software, 29(5), 2012, pp. 47–53.

24. D. J. Anderson, J. Concas, M. I. Lunesu, M. Marchesi and
H. Zhang, A comparative study of Scrum and Kanban
Approaches on a real case study using simulation, in C.
Wohlin (ed.):XP2012,LectureNotes in Business Information
Processing 111, pp. 123–137.

25. VersionOne, 7thAnnual State ofAgileDevelopment Survey,
Atlanta, GA, 2013, http://www.versionone.com/pdf/7th-
Annual-State-of-Agile-Development-Survey.pdf, accessed
6 September 2014.

26. T. Ohno, Toyota Production System—Beyond Large-Scale
Production, Productivity Press, Portland, OR, 1988.

27. C. Ladas, Scrumban—Essays on Kanban Systems for Lean
Software Development, Modus Cooperandi, Seattle, WA,
2008.

28. H. Kniberg andM. Skarin, Kanban and Scrum—Making the
Most of Both, C4Media Inc., 2010.

29. M. O. Ahmad, J. Markkula and M. Ovio, Kanban in soft-
ware development: a systematic literature review, Proceed-
ings of the 39th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), Sep. 2013,
pp. 9–16.

30. M. Ikonen, P. Kettunen, N. Oza and P. Abrahamsson,
Exploring the sources of waste in Kanban software develop-
ment projects, Proceedings of the 36th EUROMICRO Con-
ference on Software Engineering and Advanced Applications
(SEAA), Sep. 2010, pp. 376–381.

31. M. O. Ahmad, K. Liukkunen and J. Markkula, Student
perceptions and attitudes towards the software factory as a
learning environment, Proceedings of the Global Engineering
and Education Conference (EDUCON), Istanbul, Turkey,
Apr. 2014, pp. 422–428.

32. M. Cohn, User Stories Applied for Agile Software Develop-
ment, Addison-Wesley, Boston, MA, 2004.

33. M. Cohn, Agile Estimating and Planning, Prentice Hall,
Upper Saddle River, NJ, 2005.

34. C. Larman, Agile and Iterative Development: A Manager’s
Guide, Addison-Wesley, Boston, MA, 2004.

ViljanMahnič is anAssociate Professor and theHead of the Software Engineering Laboratory at the Faculty of Computer

and InformationScience of theUniversity ofLjubljana, Slovenia.His teachingand research interests include agile software

development methods, software process improvement, empirical software engineering, and software measurement. He

received his Ph. D. in Computer Science from the University of Ljubljana in 1990.

Viljan Mahnič1116

