
Using Games to Help Novices Embrace Programming:

From Elementary to Higher Education*

SAŠA MLADENOVIĆ and DIVNA KRPAN
Faculty of Science, University of Split, Teslina 12, 21000 Split, Croatia. E-mail: divna.krpan@pmfst.hr, sasa.mladenovic@pmfst.hr

MONIKAMLADENOVIĆ
Elementary School ‘‘Blatine-Skrape’’, Ul. na Križice 2, 21000 Split, Croatia. E-mail: monika.mladenovic@gmail.com

Learning programming is difficult and it presents a great challenge for both students and teachers. The goal is to increase

success rate for novice programmers. Students lose their confidence and motivation when they encounter difficulties such

as programming environment, language syntax knowledge, problem understanding and debugging. Programming

languages are artificial and require high level of abstraction, which is not easy for young students. It is also common

knowledge that many adults have more difficulties with learning programming than children. In order to make the

difference, we introduced gamemaking course for university undergraduate novice programmers and examined the effect

ofmaking games on attitude andmotivation for elementary and high school children as well. The objective of using games

in this context is to make students learn something serious and difficult like programming while doing something fun like

making and playing games. Teachers with a strong understanding of the subject matter they teach are more likely to

produce successful students.

Keywords: novice programmers; Scratch; visual programming languages; gamification

1. Introduction

Research on learning and teaching, including edu-
cation itself, advanced along with the other changes

in society throughout the history. Development of

technology influenced industry job requirements,

which consequently affected education as well [1].

One of the common job requirements today is

computer literacy or fluency [2] which includes

more than basic skills on how to use computational

technology, it implies creative thinking supported
with technology.Computational thinking should be

considered as one of the fundamental skills for

students in 21st century (just like reading, writing,

arithmetic, etc.) [3], and programming should be the

skill that student must acquire [4]. However, there is

a trend of decreasing interest in learning computer

science [5], although there is the opposite trend in

job requirements [6].
Learning and teaching programming is often

considered difficult. Novice programmers quickly

lose motivation and give up. University introduc-

tory programming courses have high dropout rates

[7]. In order to address issues with learning and

teaching programming it is important to consider

three parts of learning and teaching process: (i) who

are the students, (ii) what we teach and (iii) how we
teach [8]. Students learnprogramming fromelemen-

tary school to university. Novice programmers of

different age have different skills, knowledge and

abilities, so learning and teaching programming

should be adapted accordingly. After defining

knowledge and skills suitable for students’ age

(what to teach), teachers should decide how to

teach. For example: which paradigm to choose
(object oriented or procedural), teaching strategy

or combination of strategies (problem solving,

projects, game based learning . . .). ‘‘What’’ and

‘‘how’’ at the university level are often affected by

industry job requirements, but for younger students

it should be adapted to their characteristics and

environment.

The use of technology, problem solving skills and
complex communication are some of the most

important requirements for future jobs [9]. Because

of that, programmers today are expected to be

creative. Educational requirements are also affected

since students growup surroundedwith technology:

computers, smart phones, video cameras, tablets

and other devices of digital age. Such students are

referred to as ‘‘digital natives’’ [10]. They prefer
learning throughplay rather thandoing ‘‘something

serious’’. Learning and teaching programming

often remains unchanged although students and

their learning environments are significantly differ-

ent. Students today have fast access to vast amount

of information; they have multitasking and visual

abilities and also want quick and frequent content

interactions. Those are characteristics of game-
based learning [11-13]. Such students think differ-

ently and often solve problems by ‘‘trial and error’’

method, while experimenting and researching [14].

There is not enough research on the influence of

game-based learning or gamification on learning

* Accepted 11 August 2015. 521

International Journal of Engineering Education Vol. 32, No. 1(B), pp. 521–531, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.

outcomes [15]. Some research results show that

game based programming with storytelling

increased motivation for programming for girls in

high school [16]. Game-based learning might be the

interesting ‘‘buzzword’’ in recent researches but it is

important to carefully consider how to incorporate
it into educational process to avoid pitfalls [17]. We

should consider playing and designing games.

1.1 Computer games

Games in general are highly adaptable for different

technologies, and there are a large number of game

types such as: puzzles, logic games, strategies,
social, etc. [18]. From now on in the article, when

we refer to games we will consider computer games

since for the last four decades, computer games are

replacing traditional games [19]. There is no unique

definition of game, but there are different interpre-

tations of the concept [20]. Juul [21] defines two

dimensions of the game: game (rules of the game)

and player (game-player relation). Second dimen-
sion defines player requirements such as: rules,

outcomes, evaluation of outcomes, consequences

in the real world etc. [21]. Playing games increases

the hypothesis setting, testing and evaluation cycle

[22]. Very simple games become too easy and

boring, but too complex games tend to discourage

player.

Positive effects of the games include possible
development of useful skills and interest in game-

based learning and designing games for educational

purposes [19]. Games vary on primary function of

the game, whether it was developed with the pur-

pose of entertainment, learning or serious game.

Educational games should have third dimension:

knowledgewhich represents relation between player

and educational purpose of the game. Costikyan
defined the game simply as: ‘‘without a goal, it is a

toy’’, so according to that, game is actually ‘‘a toy’’

with the set of rules [23]. In order to keep the players

interested, game should also be fun. There is a

formal taxonomy which includes set of rules: sensa-

tion, fantasy (make-believe), narrative (good story

or drama), challenge (overcoming of obstacles),

fellowship (social aspect), discovery, expression
(self-discovery) and submission (game as past-

time) [24].

1.2 Programming

Learning and teaching programming presents great

challenge for students and teachers [25]. It is con-

sidered difficult for learning and understanding,

especially for novice programmers [26–28]. Many
children in elementary schools have negative opi-

nions of computer science [29]. Programming is

computer supported problem solving, debugging,

development of logic and computational thinking

which incorporates development of problem sol-

ving strategies (not necessarily in programming

area). Learning programming involves more than

just acquiring new skills and knowledge: students

practice what they learned and apply it on new

problems [30]. Although there are many researches
about programming, there is no unique or the best

method. As we already stated in the introduction,

one must consider: who, what and how to teach.

Some researches indicate there are different fac-

tors that influence success in learning programming

such as: students’ attitude, motivation and interest

[31]. Without consideration of different students’

interests, teaching programming might discourage
most of the students from pursuing further learning

in the computer science [32].

There is far less enthusiasm for programming

today than in 1970s and 1980s. Smart phones now

are more powerful than computers back in 1970s,

students grow up surrounded with different tech-

nologies and their expectations are different, also

programming is not so strongly dependent on
mathematics and mathematical abilities [33]. Pro-

gramming is often perceived as activity for smaller

part of the population. There are some factors that

influenced programming enthusiasm in negative

manner [34]: complex programming tools (espe-

cially difficult for children), activities and assign-

ments that did not match children’s interests and

debugging process was complex. Classic program-
ming environments such as BASIC are not visually

attractive for children and require syntactically and

semantically correct program. Since program

cannot run if it is not syntactically correct, very

often students focus more on learning syntax than

semantics [35].

Abstraction is the foundation of mathematics,

science and engineering. According to Piaget’s
theory of cognitive development, there are four

stages of human cognitive development: sensorimo-

tor (0–2 years), preoperational (2–7 y.), concrete (7–

11 y.) and formal operational stage (>12 y.), [36].

Research studies show that only 34 % of the

adolescents reach last stage, and results are not

much better for adults either [37]. The results

imply that schools should adapt curriculum to
students’ cognitive abilities, and encourage devel-

opment of abstract abilities. Children can learn

better about things that are tangible and accessible.

Combined with the experience, they gain ability to

understand abstract concepts, reason and general-

ize. Concrete experiences are the most effective in

the relevant context (real world situations) [14, 38].

Sometimes students simply recite terms which they
do not actually understand and teachers overesti-

mate students’ ability to understand abstraction.

Programming languages are artificial and require

Saša Mladenović et al.522

high level of abstraction as well as the programming

activity itself [39].

1.2.1 Introductory programming languages

Novice programmers need to learn concepts and
techniques, not a specific programming language.

However, one language should be chosen in order to

have the concrete experience. Some languages are

better suited than others in different aspects, and for

example, some authors recommend language with

simple syntax, quick feedback and support for

structured programming (referred to visually distin-

guishing block statements) [40]. Learning basic con-
cepts is the foundation for building more advanced

skills [41]. Very often, language choice does not

depend on pedagogical choices but instead on the

industry. For example, although programming lan-

guage LOGO might be good for novices at the

university level, most universities decide against it.

Papert developed LOGO guided by the principle

of thinking from concrete to abstract [42]. Students
write programming instructions and immediately

receive the result visually. Papert argued that pro-

gramming language should have low floor (easy

start), high ceiling (opportunity to create more com-

plexprojects)andwidewalls (engagementofstudents

with different interests) [34, 43]. The success of

LOGO inspired development of the whole family

ofLOGO-like languages thatproduced largevariety
of novice environments oriented on the turtle gra-

phics and geometry, for example: Scratch, Alice,

Greenfoot, GameMaker, Kodu, NXTG (Lego-

Mindstorms). Such languages are called: mini-lan-

guages [44]. They are small, simple and intuitive,

which is especially convenient for novice program-

mers. In most of mini-languages students control

maincharacterorsprite.Thecharacter canbevirtual
(such as turtle in LOGO) or real (Lego robot).

Visualizations have been used for long time in

computer science education as the important

approach for understanding abstract constructs

[41]. Visualization might help students to learn

some concepts better. Mostly, they are concerned

about algorithm animation and not basic program

structure and execution. Visual programming lan-
guages enable students to experience programming

from concrete to abstract. Difficult abstract con-

cepts are represented through concrete events and

concept visualization. Such programming lan-

guages provide aforementioned necessary inter-

action for digital natives, enable context

programming, and they are visually attractive.

Some of the visual programming languages have
visual representation of programming instructions:

Scratch [45] or its dialects (Snap! or BYOB [46]).

Programming instructions are in the form of puz-

zles, removing syntax issues. Novices find learning

syntax confusing and overwhelming which might

discourage them [47]. General-purpose languages

include constructs which are sometimes difficult

(because of abstraction) and although similar to

natural English language, they might have different

meaning.
Visual programming languages history goes back

to 1960s [48]. Since visual programming languages

field matured, some form of classification emerged,

and we will mention only two most interesting

categories: (i) purely visual programming lan-

guages, (ii) hybrid programming languages. Other

categories are not mutually exclusive. In pure visual

programming languages, the programmer works
with icons or other graphical representations in

order to create a program which is also executed

in the same visual environment. There is no transla-

tion in any form of textual language. Other impor-

tant category is approach of combining visual and

textual elements. It is noted that after some time

programmers overgrowvisual interface andbecome

more comfortable in writing complex programs in
textual form. Novice environments tend to remove

or simplify syntax and introduce visible immediate

results or motivating contexts (such as making

robots or games). By doing all that, it is possible

to attract wider audience into programming and to

allow students to focus on logic and structures [47].

Designers tend tomake such environments closer to

general-purpose languages, in order to make the
transition easier.

1.3 Game-based programming and learning

Programming languages mentioned above are

potential environments for making and playing

games. In order to connect learning programming

andplaying games, there is a natural idea of learning
programming while creating games. Students find

learning more interesting, and by shifting the focus

from learning syntax to semantic structure, students

are not even aware they learn problem solving,

debugging, and making scenarios; instead they

think they are simply making games. Encouraging

students to learn one thing while doing something

else Pauch called head fake [49]. Researches in this
area are often conducted in the summer camps or

clubs because there is nowide accepted school study

programmes including game-based learning [50].

There are many researches which showed how

computer games programming increases motiva-

tion, and that students learn programming concepts

through different environments, for example: using

Alice [51–53], Scratch [50, 54, 55] and Kodu [56].
Using these environments increases students’ com-

puter fluency [53] and by using Scratch as first

programming language students are learning basic

programming concepts [57].

Using Games to Help Novices Embrace Programming: From Elementary to Higher Education 523

Longitudinal research was conducted in Finland

with students of age 12–16 years [58]. During three

years researchers monitored students who attended

one-week summer programming courses. Most of

the students pursued programming further and

their interest in computer science increased. Girl
students were equally interested as boys.

Research with undergraduate art students was

conducted during course of 3D game programming

[59]. The final result of the course was dozens of

games—team projects (teams consisted of 3–6 stu-

dents). They used tools such as Macromedia Direc-

tor, Flash, Java,Virtools andQuest3D.Gameswere

often better than those developed by computer
science students.

The study where teachers applied game-first

approach demonstrated that students acquired

basic programming concepts better, there was

decreased dropout rate in computer science and

increased overall satisfaction with learning [60].

1.3.1 Mediated transfer

Research studies show the increase of students’

problem solving skills while playing, as well as the

transfer of problem solving skills to different pro-

blems in the game, but it was difficult to transfer

them out of the game [61]. Curtis & Lawson found

moderate transfer of problem solving skills [62], but

it seems that transfer level was low [63].

There is a lack of mediated transfer or approach
where skills and knowledge acquired during gaming

should be transferred in the real world (like learning

programming concepts, which was actually the

objective of the research) [64]. There are two tech-

niques of mediated transfer: bridging (teacher helps

students to create the bridge from the context in

which programming concept was learned into other

contexts) and hugging (teacher creates learning
situation in which the transfer is expected). Teacher

should help with the transfer from the gaming into

learning outcomes. There is an example of study

conducted with the high school students and game

Crystal Island where students learned microbiology

concepts. They made notes of hypotheses and dis-

coveries acquired during game play [65].

Meta-analysis conducted on 17 studies empha-
sizes the necessity for teacher’s support during

concept transfer through different contexts [66].

Game-based learning will not replace the teachers.

Li & Watson present three approaches to game-

based learning of programming [67]:

� Authoring-based approach

� Play-based approach

� Visualization-based approach

In thefirst approach student’s learning activity is the

game development (based on constructivist theory).

Students get game assignment and maybe partial

implementation. The developed game is also stu-

dent’s reward. Partial implementation is usually

provided for students when programming environ-

ments are too complicated and it takes too long for

students to develop basic game structure before they
experience actual progress. Block based languages

such as Scratch, allow students to focus on the

problem solving instead on syntax errors. In the

play-based approach student develop programming

strategies to complete specific task or win. The

coding is the smaller part of the solution. Visualiza-

tion in this context only demonstrates code execu-

tion in visual context and students are not able to
create games or play.

Sometimes teachers expect too much from games

(that students will actually get all knowledge and

skills as expected). Regardless of the optimism and

high expectations from game-based learning some

authors noted there is a scarce of quality evidence to

support them [19]. Connolly conducted extensive

literature review on vast number of research papers.
Majority of the papers contained speculations on

the game potential, description of theories and

game development but there were no empirical

evidence considering impact on learning outcomes,

so those papers were discarded from further inves-

tigation. Subject area of the games in rest of the

papers was mostly concerned about entertainment.

There was some evidence that games designed with
entertainment purpose could be used in education.

Learning outcomes could be classified into two

categories: softer (emotions, motivation and atti-

tude) and harder (knowledge and skills acquisition).

In the next section we will explain the experience of

game-based learning with the elementary school

students, which was mostly oriented on softer

category of the outcomes. As stated before, game-
based learning is typically situated outside the class-

room. Some of the reasons are predefined curricu-

lums and lack of textbooks. High schools in Croatia

have diverse curriculums, and when programming

is concerned, it ranges from nothing to ‘‘hardcore

programming’’ in C. there is the intention of intro-

ducing game-based programming to high school

students as well, encouraged by the research
described in the next section. We argue that care-

fully implemented game-based learning of pro-

gramming is appropriate for novices of different

ages (from elementary school to university) regard-

less of the environment. The research described in

this paper was conducted with elementary and

university undergraduate students. Since we did

not have an opportunity to conduct the research
with high school students using visual program-

ming environment, we examined the literature to

provide a closer insight.

Saša Mladenović et al.524

1.4 Learning computer science concepts in high

school

Meerbaum-Salant et al. developed a set of Scratch-

based learning materials for middle school students

(similar age of lower high school grade students in

Croatia) and conducted research during school

hours. Since the course was not required by the

curriculum, authors considered that some students
and teachers were probably not committed enough

[57]. Middle school students should be provided

with the learningmaterials but the routine textbook

is not adequate for Scratch since it is in the contrast

with the constructivist philosophy. The textbook in

this case is more like a guideline. Very often pro-

gramming courses and textbooks follow language

specific features. The authors follow principles:

� Teaching specific concepts instead language fea-
ture,

� Programming construct are introduced as

needed,

� Project-based presentation

� Visual appearance is optional

Research sample consisted of 9th grade students

(14–15 year), and authors used mixed analysis

(qualitative and quantitative), and also mixed taxo-

nomies (SOLO and Bloom). Students were intro-
duced to the concepts of loops and concurrent

programs very early. Type I concurrency occurs

when two sprites execute scripts in parallel, while

Type II concurrency occurs when one sprite exe-

cutes more than one script in parallel. The results

showed that most students were able to understand

computer science concepts although they had diffi-

culties with the concepts of initialization, variables
and concurrency.

Besides learning of computer concepts, Scratch

also influenced habits of programming [68]. Such

aspect was not expected during previous experiment

but students demonstrated two habits: bottom-up

programming habit and extremely fine-grained pro-

gramming which takes top-down approach to the

extreme (decomposing into very small logical units).
That seemed to be the side effect and the problem

with the habits is that they tend to be persistent.

Students used instructions in the way that seemed

natural to them, and the introduction of the sce-

nario-based programming should be considered

and prepared more carefully [69]. Teacher should

be aware of the students’ tendencies as well as

different design principles.

2. Research results

Appropriate programming language for young stu-

dents should be as simple as possible and preferably

visual since visual programming environment

encourages learning by exploration [68]. While

teaching programming to the elementary school

students in the past, we experienced difficulties

with text based programming languages such as

BASIC (6th grade students). On the other hand,
younger students had no problem solving more

complex assignments in LOGO. However, LOGO

programming language and assignments that stu-

dents are supposed to solve are also very much

connected with mathematics. For that reason, stu-

dents in this small study were presented with short

Scratch introduction, as part of the normal school

hours. The interest was more in affective results
because we were not able to differ much from

standard curriculum.

2.1 Elementary school students with Scratch

experience

The term informatics is often used in the Croatian

educational system instead of Computer science,
andwewill use it further in this article. TheCroatian

National Educational Standard (CNES) intro-

duced standard for learning and teaching infor-

matics as elective course from 5th to 8th grade in

elementary schoolswith the standard curriculum. In

the school year of 2005/2006, CNES elements were

experimentally introduced in 5% of elementary

schools in the Republic of Croatia, and next
school year (2006/2007), all elementary schools

had started implementing the CNES. Programming

is part of the curriculum (average of 13 school hours

per school year). School hour in Croatian educa-

tional system (elementary school, high school and

university) equals 45 minutes.

Students in Croatian elementary schools mostly

learn LOGO as the first programming language,
normally in lower grades from 5th to 6th and have

an opportunity to switch to BASIC or continue

learning LOGO (recently there is also emerging

trend of introducing Python). As we already stated

before, this approach of learning programming is

usually not the part of the curriculum, and therefore

we were obligated to adapt assignments and tests to

cover concepts students were expected to learn by
the CNES. Study was conducted on the sample of

24 elementary school students in the 7th grade (12–

13 years old). Students were given the assignments

to solve in Scratch instead of LOGO. There were 5

test assignments, and the results are presented on

the Fig. 1.

Two of the students were on different study

program and were excluded from these test results.
Assignments covered instructions for moving for-

ward, rotation, loops and nested loops. Assignment

1was simple recognition of instructions (remember-

ing category of the Bloom’s revised taxonomy [70],

Using Games to Help Novices Embrace Programming: From Elementary to Higher Education 525

and since all Scratch instructions were in Croatian,

all students solved it. Students had more difficulties

with the assignment 4 (nested loops) and 5 (write

small program). 29% of the students had no pre-

vious programming experience, and 80% of stu-

dents stated they liked Scratch more. Some of the

students commented they liked block instructions

more since they did not need to remember instruc-
tions. They graded their preference for each pro-

gramming language with grades from 1–5 and

average for Scratch was 3.8, and LOGO 2.8.

It is important to note that informatics in Croa-

tian elementary and high schools is elective course

and if students are not interested enough or consider

it too difficult, they drop out and there are many

students that do not enroll at all. High school
students that enroll, mostly attend classes twice a

week for one school hour. Some schools teach

informatics only during one school year (first or

second year), and students learnmostly office appli-

cations (word editors, spreadsheet tables etc.) with

very little programming if any at all. As the result,

some students that attended informatics classes

might have at least a three-year gap before uni-
versity. Schools with ‘‘mathematics’’ in their title

teach four years of informatics with more program-

ming lessons and students from those schools are in

fact more successful in programming courses at the

universities.

Next part of this paper refers to the research we

conducted with the university undergraduate first

year students during their first semester.Motivation
for the research emerged from years of experience in

teaching undergraduate students during introduc-

tory programming courses at theFaculty of Science,

University of Split (FOS).

2.2 Scratch goes to higher education

First year students at the FOS have same problems
as most novice programmers, and most of them

enroll introductory programming courses as abso-

lute beginners. They are different based on their

study majors: mathematics (M), physics (P), tech-

nical science (T), informatics (I), engineering phy-

sics (eP), and also combinations (MI, PI, IT). All

students learn Python as their first programming

language. Python is well accepted with our students

ever since its introduction at theFOS [71].However,

approach of the game based learning was consid-

ered in order to increase motivation for novice

undergraduate programmers for one group of stu-
dents (I—studymajor in Informatics), but therewas

again a problem of programming language choice

and students’ lack of knowledge and skills. We

decided to use Scratch as visual and syntax-free

language, and later its dialect Byob (developed at

BerkleyUniversity). Byobwas a directmodification

of the Scratch source code and after it was com-

pletely rewritten, it is now known as Snap! project.
Research on the effect of game based learning using

Scratch and Byob with undergraduate students at

the FOS is actually ongoing research which started

at 2009 and during five years we monitored stu-

dents’ progress. Using programming environment

mostly considered for young students (elementary

and high school students) with the adults (under-

graduate students) might be considered unusual,
but we also inherited problems from previous

stages of students’ education and the question

was, why not? We expected to engage students by

making programming experience more fun and

accessible, and to make them more confident. The

problem is somewhat more challenging since stu-

dentswithmajor in informatics study to be teachers.

There are actually two introductory programming
courses at the FOS: Programming I (P1) in the first

semester and Programming II (P2) in the second

semester. In 2009 we introduced new course:

Advanced P2 lab for group I with major in the

computer science. Students learned Python as addi-

tional language, but although they found it inter-

esting, we noted that learning new syntax did not

help. Next year, curriculum was reorganized and
new course was introduced: IT Project 1 (IP1) in the

first semester along with the P1. During the course

IP 1 students learn programming while making

Saša Mladenović et al.526

Fig. 1. (a) Test results for 7th grade, (b) Student programming in Scratch.

games in visual programming environment. Each

lab assignment consists ofmaking small game.After

first year programming in Scratch (2009/10), stu-

dents found environment somewhat limiting andwe

switched to Byob because of its additional feature:

Build Your Own Block.

2.2.1 Data collection

Weconducted an ex post facto study, and type of the

selected sample was accidental [72]. Accidental

sampling is based upon convenience. During three

years (2010–2013) there were a total of 727 students

enrolled in the course P1 and 784 students enrolled

in the course P2. We focused on the students that
enrolled courses for the first time since they had no

previous knowledge of the course content. After

data refinement process, total of 510 students

remained. All students that enroll P1 also enroll

P2. Introductory programming courses, as already

mentioned, were enrolled by groups: IT, I, M, MI,

eP and PI. Comparison of the results for groups at

the FOS confirms that students with major in
mathematics have higher percentage of success or

pass rate (Fig. 2).

We focused our interest on groups IT and I since

studentswithmathematics as theirmajor hadhigher

success rates and groups with the major in physics

consisted of small number of students. Group I, it

was selected as an experimental group (introduction

of course IP1 as research variable) and IT as a
control group, selected retrospectively [72]. Col-

lected data included: high school grades average

(HSA), P1 grade (final grade), P2 grade (final,

midterm and final practical exam) and attendance.

Further data refinement reduced sample popula-

tion to 452 students since 57 students had missing

data (HSA). Finally, sample population used for the

experimental group I and control group IT con-
sisted of the 202 students through 3 years (6 seme-

sters).

Students in course P1 learn structured program-

ming, and we considered that students should be

more prepared for course P2 and introduction to the

object-oriented approach since Byob is object-

oriented and event-driven environment. While con-

ducting informal interviews with the random stu-

dents and observing their performance during first
year with Scratch, it was established that some of

them found the environment quite limiting and

expressed frustration. Those students were perspec-

tive with highest final grades on all three observed

courses. Next year, Byob was introduced and we

received no more such complaints, since students

were actually able to make their own blocks, but

after designing larger project the script area became
crammed with blocks. Students expressed the need

for text-based interface.

2.2.2 Data analysis

We set the null-hypotheses for the groups IT and I:

H1: There is no statistically significant difference in

the high school final grade average between the

control and experimental group.

H2: There is no statistically significant difference in

the P1 final grade between the control and experi-

mental group.

H3: There is no statistically significant difference in

the P2 final grade between the control and experi-

mental group.

First, we tested normal distribution on all variables
with Shapiro-Wilk W test. Test was conducted for

all three years combined and separately.

Since all the results for HS average variable were

normally distributed (p > 0.05), it was appropriate

to perform the T-test for groups IT and I. Grade

distribution for P1 and P2 fits power law distribu-

tion in accordance with previous research [73].

Experimental group achieved statistically signifi-
cant better results (p = 0.021), hence we reject

null-hypothesis H1 and conclude there is statisti-

cally significant difference between IT and I in the

Using Games to Help Novices Embrace Programming: From Elementary to Higher Education 527

Fig. 2. Students that passed courses P1 and P2.

HS average. Data for the P1 and P2 grades were not
normally distributed, and consequently not appro-

priate for T-test, we performed nonparametric

Mann-Whitney U test. Both, H2 and H3 were

rejected (p < 0.05).

Further, we separated groups for each school

year and tested H1, H2 and H3 for IT and I in

each year. HS average was normally distributed. T-

test result for first year (p = 0.434), second year (p =
0.07) and third year (p = 0.12) showed there was no

statistically significant difference between groups I

and IT for each year.

Data for P1 and P2 grades was not normally

distributed and we conducted Mann-Whitney W

test with the results:

� First year: there is statistically significant differ-

ence between IT1 and I1 on both P1 (p = 0.045)

and P2 (p = 0.0002) grades, although small one

for P1.

� Second year: there is no statistically significant

difference between IT2 and I2 for P1 (p = 0.292)

and there is a difference for P2 (p = 0.012).
� Third year: there is no statistically significant

difference between IT3 and I3 for P1 (p = 0.073)

and there is a difference for P2 (p = 0.002).

Variables HS average and P1 grades were consid-
ered as initial testing. First midterm exam in P2

course consisted of C# console applications, and

final exam was based on graphical user interface

(GUI) development. Since GUI is event driven as

Scratch and Byob, results were more thoroughly

examined for year 2012/13. After data refinement
(considering attendance records as well), the same

hypothesis testing was conducted on small sample

(IT = 32, I = 34 students). T-test showed there was

no statistically significant difference in initial con-

ditions (HSA) between groups, and by Mann-

WhitneyU test, there was no statistically significant

difference in midterm console exam. The difference

was established in the final test results based onGUI
applications (p = 0.049).

In the next section, we will interpret the results in

more detail and conclude on the importance of

hypotheses testing.

3. Discussion

Most of the researches about game-based learning

or gamification in education have something in

common: increase in interest and motivation for

different age of students. Since we were able to
design the whole course in Scratch, the study with

the undergraduate students was more extensive.

The study investigated the influence of the introduc-

tion of game-based learning on the final grade of the

programming course in C#. During previous ana-

lysis it was established that experimental group

performed better in the course P2 than control

group when we observed each year separately, but
those differences were weak and students with

mathematics as theirmajorwere still better Students

in the course P1 learn procedural programming,

while Scratch and its dialect are event driven and

Saša Mladenović et al.528

Fig. 3. Grade distribution for control and experimental group.

object-oriented. Since course P2 is an introduction

to object-oriented programming, we consider IP1

and P2 more related to each other, which explains

reasons for slightly better students’ performance.

Interviews with the students during first year led us

to switch from Scratch 1.4 to Byob where students
were able to develop their own blocks. Further it

was established that better students were creating

more complex games and overgrew the visual envir-

onment with higher ambitions and interest. Weaker

students were not left behind and they gained more

confidence and still considered the course fun.

Undergraduate students study to become tea-

chers of informatics, and if they learn poorly, they
will be poor teachers to children that might even-

tually become undergraduate students at the

faculty. Someone must break out of the loop.

Positive experiences encourage us to think further.

With the introduction of Byob the demands on

students were slightly higher. However, we noticed

that although students for example, used events

with Scratch and Byob, they did not transfer the
experience on GUI applications programming and

although each sprite is actually an object with

attributes and actions capable of cloning (making

an instance), they did not connect those concepts

with classes and objects in C#. Consequently, we

focus future research plans on mediated transfer

teaching techniques from visual programming

environments andgame-based learning of program-
ming in Scratch 2.0 to the C# programming lan-

guage (Fig. 4).

We are developing the framework where students

will start learning programming while making

games in Scratch and transfer programs and learned

concepts inC#programming environment. Student

would be provided with the previously designed

game environment (some of the methods for Sprites
and its behavior used in Scratch 2.0), and they

would be able make similar games in C#.

4. Conclusion

Research on the related work demonstrates that

problem with the teaching basic programming

skills to undergraduate students is universal.

Approach with the introduction of the visual pro-

gramming environment in order to help novices is

often observedwhile dealing with children as novice

programmers, but the use Scratch or its dialects in

university courses is not uncommon. While experi-
menting with different versions of visual program-

ming languages during three semesters, we conclude

there is a positive influence on the object-oriented

introductory programming course P2. Game-based

learning for novice undergraduate students must be

expandable since students quickly outgrow initial

set of instructions (blocks), and the best of them

seem unable to further express themselves. Better
students tend tomakemore complex scripts that get

crammed in the script area and according to their

comments, they find it difficult to edit. They miss

textual environment with the ability to search

through code while considering visual environment

as ‘‘not serious programming’’. Students should be

able to advance further and simply continue their

work in some ‘‘serious’’ object-oriented program-
ming language such as C# which is used in the next

course P2. There is a missing link between Scratch

andC#sinceweaker students donot transferknowl-

edge or connect concepts they learned in Scratch

with the concepts they learn inC# (for example click

event for sprite inScratch is the sameconcept as click

event for button in C#). Students are often intimi-

dated by complex syntax and are not able to make
games as they did in Scratch. The idea (Fig. 4.) is to

create the environment that is able to transfer

programs written in Scratch 2.0 (in visual form) to

theC#programming environment (in textual form),

which would enable students to continue program-

ming in C# using the predefined set of classes and

methods that follow the text written on Scratch

blocks as much as possible (according to the C#
syntax). Suchnewand improvedvisual environment

closely connected to C# would provide them an

important head start and easier transfer to the over-

whelming set of classes and methods. Students

would be able to continue programming games

they started in Scratch during next course, but they

would do it in C# instead.

Using Games to Help Novices Embrace Programming: From Elementary to Higher Education 529

Fig. 4.Mediated transfer from visual programming to C#.

References

1. C. M. Reigeluth, Instructional Theory and Technology for
the NewParadigm of Education,RED, Revista de Educación
a distancia, 32, 2012, p. 30.

2. K.Williams, Literacy andComputerLiteracy:Analyzing the
NRC’s ‘‘Being Fluent with Information Technology’’, Jour-
nal of Literacy and Technology, 3(1), 2003, pp. 1–20.

3. J. M. Wing, Computational Thinking, Communications of
the ACM, 49(3), 2006, pp. 33–35.

4. S. Uludag, M. Karakus and S. W. Turner, Implementing
IT0/CS0 with Scratch, App Inventor for Android, and Lego
Mindstorms, Proceedings of the 2011 conference on Informa-
tion technology education, 2011, pp. 183–190.

5. P. J. Denning and A. McGettrick, Recentering Computer
Science, Communications of the ACM, 48(11), 2005, pp. 15–
19.

6. C. Litecky, B. Prabhakar and K. Arnett, The IT/IS Job
Market: A Longitudinal Perspective, Proceedings of the
2006ACMSIGMISCPRConference onComputerPersonnel
Research: Forty four Years of Computer Personnel Research:
Achievements, Challenges & the Future, 2006, pp. 50–52.

7. S. Garner, P. Haden and A. Robins, My Program is Correct
But it Doesn’t Run: A Preliminary Investigation of Novice
Programmers’ Problems, Proceedings of the 7th Australasian
conference on Computing education, 2005, pp. 173–180.

8. M. Pedroni, Teaching Introductory Programming with the
Inverted Curriculum Approach, Diploma thesis, Department
of Computer Science, ETH, ETH, Eidgenössische Tech-
nische Hochschule, Zurich, 2003.

9. F. Levy andR. J.Murnane,TheNewDivision of Labor:How
Computers Are Creating the Next Job Market, Princeton
University Press, 2012

10. M. Prensky, Digital Natives, Digital Immigrants, On the
Horizon, 2001, pp. 1–6.

11. J. S. Brown, Growing Up Digital: How the Web Changes
Work, Education, and the Ways People Learn, USDLA
journal, 16(2), 2002, p. n2.

12. M. Prensky, Digital Game-based Learning, Computers in
Entertainmen, 1(1), 2003, p. 21.

13. D. Oblinger and J. Oblinger, Is It Age or IT: First Steps
Toward Understanding the Net Generation, Educating the
Net Generation, 2(1–2), 2005, p. 20.

14. S. Turkle and S. Papert, Epistemological Pluralism and the
Revaluation of the Concrete, Constructionism, 1991, pp.
161–192.

15. P. Wouters, E. D. van der Spek and H. Van Oostendorp,
Current Practices in SeriousGameResearch: AReview from
a Learning Outcomes Perspective, Games-based learning
advancements for multisensory human computer interfaces:
techniques and effective practices, 2009, pp. 232–255.

16. C. Kelleher, R. Pausch and S. Kiesler, Storytelling Alice
Motivates Middle School Girls to Learn Computer Pro-
gramming, Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2007, pp. 1455–1464.

17. S. Papert, Does EasyDo It? Children,Games, and Learning,
Game Developer, 5(6), 1998, p. 88.

18. J. Kirriemuir and A. McFarlane, Literature Review in
Games and Learning, Futurelab, A Graduate School of
Education, University of Bristol, 2004,

19. T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey and
J. M. Boyle, A systematic literature review of empirical
evidence on computer games and serious games, Computers
& Education, 59(2), 2012, pp. 661–686.

20. J. SmedandH.Hakonen,Towards aDefinition of aComputer
Game, Turku Centre for Computer Science Turku, Finland,
2003.

21. J. Juul, The Game, the Player, the World: Looking for a
Heart of Gameness, DIGRA Conf., 2003.

22. R. Van Eck, Digital Game-Based Learning: It’s Not Just the
Digital Natives Who Are Restless, EDUCAUSE Review,
41(2), 2006, p. 16.

23. G. Costikyan, I HaveNoWords & IMustDesign: Toward a
Critical Vocabulary forGames,Computer Games andDigital
Cultures Conference Proceedings, Tampere, 2002, pp. 9–33.

24. R. Hunicke, M. LeBlanc and R. Zubek, MDA: A Formal
Approach toGameDesign andGameResearch,Proceedings
of the AAAI Workshop on Challenges in Game AI, 2004, pp.
04–04.

25. I. Milne andG. Rowe, Difficulties in Learning and Teaching
Programming—Views of Students and Tutors, Education
and Information technologies, 7(1), 2002, pp. 55–66.

26. A. Gomes and A. J. Mendes, Learning to program—Diffi-
culties and solutions, International Conference on Engineer-
ing Education—ICEE, 2007.

27. L. E. Winslow, Programming Pedagogy—A Psychological
Overview, ACM SIGCSE Bulletin, 28(3), 1996, pp. 17–22.

28. A. Robins, J. Rountree and N. Rountree, Learning and
Teaching Programming: A Review and Discussion, Compu-
ter Science Education, 13(2), 2003, pp. 137–172.

29. B. Violino, Time to Reboot, Communications of the ACM,
52(4), 2009, pp. 19–19.

30. M. Hassinen and H. Mäyrä, Learning Programming by
Programming: a Case Study, Proceedings of the 6th Baltic
Sea conference on Computing education research: Koli Call-
ing, 2006, pp. 117–119.

31. N.F.A.Zainal, S. Shahrani,N.F.M.Yatim,R.A.Rahman,
M. Rahmat and R. Latih, Students’ Perception andMotiva-
tion Towards Programming, Procedia-Social and Behavioral
Sciences, 59, 2012, pp. 277–286.

32. A. Forte and M. Guzdial, Motivation and nonmajors in
computer science: identifying discrete audiences for intro-
ductory courses, IEEE Transactions on Education, 48(2),
2005, pp. 248–253.

33. J. M. Wing, Computational Thinking and Thinking about
Computing, Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences,
366(1881), 2008, pp. 3717–3725.

34. M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J.
Silver and B. Silverman, Scratch: Programming for All,
Communications of the ACM, 52(11), 2009, pp. 60–67.

35. C. M. Lewis, How Programming Environment Shapes
Perception, Learning and Goals: Logo vs. Scratch, Proceed-
ings of the 41st ACM technical symposium on Computer
science education, 2010, pp. 346–350.

36. J. Piaget, The Origins of Intelligence in Children, Journal of
Consulting Psychology, 17(6), 1953, p. 467.

37. E. Fusco, Matching Curriculum to Students Cognitive
Levels, Educational Leadership, 39(1), 1981, pp. 47–47.

38. W. Dann and S. Cooper, Education Alice 3: Concrete to
Abstract, Communications of the ACM, 52(8), 2009, pp. 27–
29.

39. R. Moser, A fantasy adventure game as a learning environ-
ment:Why learning to program is so difficult andwhat can be
done about it, ACM SIGCSE Bulletin, 1997, pp. 114–116.

40. L. Grandell, M. Peltomäki, R. Back and T. Salakoski, Why
Complicate Things? Introducing Programming in High
School Using Python, Proceedings of the 8th Australian
Conference on Computing Education, 2006, pp. 71–80.

41. K. Ala-Mutka, Problems in Learning and Teaching Pro-
gramming, Codewitz Needs Analysis, 2012.

42. S. Papert, Mindstorms: Children, Computers, and Powerful
Ideas, Basic Books, Inc., 1980.

43. M.Guzdial, Programming Environments for Novices,Com-
puter Science Education Research, 2004, pp. 127–154.

44. P. Brusilovsky, E. Calabrese, J. Hvorecky,A. Kouchnirenko
and P. Miller, Mini-languages: A Way to Learn Program-
ming Principles, Education and Information technologies,
2(1), 1997, pp. 65–83.

45. About Scratch, http://scratch.mit.edu/about/, Accessed
20.01.2015.

46. Snap! (Build Your Own Blocks), http://snap.berkeley.edu/,
Accessed 20.01.2015.

47. C. Kelleher and R. Pausch, ‘‘Lowering the Barriers to
Programming: A Survey of Programming Environments
and Languages forNovice Programmers,’’ DTICDocument
2003.

48. M. Boshernitsan and M. S. Downes, Visual Programming
Languages: A Survey, Citeseer, 2004.

49. R.Pausch and J. Zaslow,TheLastLecture:ReallyAchieving

Saša Mladenović et al.530

Your Childhood Dreams, Given at Carnegie Mellon Uni-
versity, 2007,

50. J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick and N.
Rusk, Programming by Choice: Urban Youth Learning
Programming with Scratch, ACM SIGCSE Bulletin, 2008,
pp. 367–371.

51. L. Werner, S. Campe and J. Denner, Children Learning
Computer Science Concepts via Alice Game-programming,
Proceedings of the 43rd ACM technical symposium on Com-
puter Science Education, 2012, pp. 427–432.

52. L. L.Werner, S. Campe, and J. Denner,Middle SchoolGirls
+Games Programming = Information Technology Fluency,
Proceedings of the 6th conference on Information technology
education, 2005, pp. 301–305.

53. D. Werner, J. Denner, M. Bliesner and P. Rex, CanMiddle-
Schoolers use StorytellingAlice toMakeGames,Results of a
Pilot Study, Orlando, 2009.

54. D. J. Malan and H. H. Leitner, Scratch for Budding
Computer Scientists, ACM SIGCSE Bulletin, 39(1), 2007,
pp. 223–227.

55. A. Wilson, T. Hainey and T. Connolly, Evaluation of
Computer Games Developed by Primary School Children
to Gauge Understanding of Programming Concepts, 6th
European Conference on Games-based Learning (ECGBL),
2012, pp. 4–5.

56. A. Fowler and B. Cusack, Kodu Game Lab: Improving the
Motivation for Learning Programming Concepts, Proceed-
ings of the 6th International Conference on Foundations of
Digital Games, 2011, pp. 238–240.

57. O.Meerbaum-Salant,M.Armoni andM.Ben-Ari, Learning
Computer Science Concepts with Scratch,Computer Science
Education, 23(3), 2013, pp. 239–264.

58. A.-J. Lakanen, V. Isomöttönen and V. Lappalainen, Life
Two Years After a Game Programming Course: Longitu-
dinal Viewpoints on K-12 Outreach, Proceedings of the 43rd
ACM technical symposium on Computer Science Education,
2012, pp. 481–486.

59. M.-H. Tsai, C.-H. Huang and J.-Y. Zeng, Game Program-
mingCourses forNonProgrammers,Proceedings of the 2006
internationalConference onGameResearch andDevelopment,
2006, pp. 219–223.

60. S. Leutenegger and J. Edgington, A Games First Approach
to Teaching Introductory Programming, ACM SIGCSE
Bulletin, 39(1), 2007, pp. 115–118.

61. S. Egenfeldt-Nielsen, Overview of research on the educa-

tional use of video games,Digital kompetanse, 1(3), 2006, pp.
184–213.

62. D.D.Curtis andM. J.Lawson,ComputerAdventureGames
as Problem-Solving Environments, 2002,

63. S. Egenfeldt-Nielsen, Third generation educational use of
computer games, Journal of Educational Multimedia and
Hypermedia, 16(3), 2007, pp. 263–281.

64. W. Dann, D. Cosgrove, D. Slater, D. Culyba and S. Cooper,
Mediated Transfer: Alice 3 to Java, Proceedings of the 43rd
ACM technical symposium on Computer Science Education,
2012, pp. 141–146.

65. K. Ash, Digital Gaming Goes Academic, Education Week,
30(25), 2011, pp. 24–28.

66. F. Ke, A Qualitative Meta-Analysis of Computer Games as
Learning Tools,Handbook of research on effective electronic
gaming in education, 1(2009), pp. 1–32.

67. F.W. Li andC.Watson,Game-basedConcept Visualization
for Learning Programming, Proceedings of the third interna-
tional ACM workshop on Multimedia technologies for dis-
tance learning, 2011, pp. 37–42.

68. O.Meerbaum-Salant,M.Armoni andM.Ben-Ari,Habits of
Programming in Scratch,Proceedings of the 16th annual joint
conference on Innovation and technology in computer science
education, 2011, pp. 168–172.

69. M.Gordon,A.Marron andO.Meerbaum-Salant, Spaghetti
for the Main Course: Observations on the Naturalness of
Scenario-Based Programming, Proceedings of the 17th ACM
annual conference on Innovation and technology in computer
science education, 2012, pp. 198–203.

70. L. W. Anderson, D. R. Krathwohl, P. W. Airasian, K. A.
Cruikshank, R. E.Mayer, P. R. Pintrich, J. Raths andM. C.
Wittrock, A Taxonomy for Learning, Teaching, and Asses-
sing: A Revision of Bloom’s Taxonomy of Educational
Objectives, Abridged Edition, White Plains, NY: Longman,
2001.

71. D. Krpan and I. Bilobrk, Introductory Programming Lan-
guages in Higher Education, MIPRO, 2011 Proceedings of
the 34th International Convention, 2011, pp. 1331–1336.

72. R. Kumar, Research Methodology—A Step-by-Step Guide
for Beginners, Sage Publications, London, Thousand Oaks,
2012.

73. H. Aguinis, The best and the rest: Revisiting the Norm of
Normality of Individual Performance, Personnel Psychol-
ogy, 65(1), 2012, pp. 79–119.

Saša Mladenović is vice dean for education at the Faculty of Science, University of Split (Croatia). He teaches number of

doctoral, graduate and undergraduate courses at the Department of Informatics. He received his Ph.D. in computer

science at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split (FESB). From

1999 to 2006 hewas acting as Technicalmanager of the Toll collection systemdepartment of Ecsat, Croatia—the company

responsible for software development at the Transportation department of CS groupDesigner, integrator and operator of

mission critical systems, France. His research interests include: problems in teaching programming, interoperability,

intelligent technologies like ontology and multi-agent systems, especially engineering applications of intelligent

technologies. He is IEEE member since 1996.

DivnaKrpan is a lecturer at theDepartment of Informatics at the Faculty of Science,University of Split. She holds a degree

in Mathematics and Informatics. The title of her graduate thesis was ‘‘Knowledge evaluation in e-learning systems’’. She

teaches number of undergraduate courses in programming.Hermain interests include research on improving teaching and

learning of computer programming for novice programmers at the introductory undergraduate programming courses.

Monika Mladenović is Computer Science teacher in elementary schools Blatine-Skrape and Spinut, external Associate

Teaching assistant at the Faculty of Science, University of Split (Croatia) and external Associate software developer at the

Clinical hospital Split for developing and maintenance of hospital business information system. At the Faculty of Science

she teaches basics of computer science and she acts as methodical mentor for graduate students. She is also PhD candidate

at the Faculty of Science, University of Split (Croatia) with the research area of using computer games for teaching

programming. She is ACM member since 2011.

Using Games to Help Novices Embrace Programming: From Elementary to Higher Education 531

