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The use of active learning pedagogies, as well as research into their effectiveness, has increased greatly the past few decades.

These pedagogies typically depend on student-to-student interactions to facilitate learning. Video recordings of student

interactions provide excellent observational data from which to study the dynamics of these pedagogies in a naturalistic

setting.However, these data are typically voluminous, includemanypotential features to follow, andas suchmake analysis

difficult. One way to decrease the difficulty in analysis is to use a robust coding framework. This study develops such a

coding framework using a well-established Mental Models theory of reasoning as a theoretical lens. Each element within

the coding framework is analogous to an element in thementalmodels theory. This coding frameworkwas applied to video

recorded data of six student teams reviewing a peer team’s prototype design in a classroom setting. The coding resulted in

567 transcription segments of which 68% related to the prototype review. All elements of the mental models theory are

evident and code-able in the data and the general structure of the verbalized reasoning is identified.A rich descriptionof the

verbalized reasoning is provided. Furthermore, this reasoning structure appears constant across changes in student

engagement and interaction purposes. As such, the identified structure of student reasoning, based on the mental models

theory, provides a robust coding framework.
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1. Introduction

The call to use active learning pedagogies has

increased greatly in recent years [1, 2]. Many of

these pedagogies rely on student-to-student inter-

actions as the vehicle for learning. Research into the

effectiveness of these pedagogies has greatly
increased as well [3]. Both quantitative and qualita-

tive research methods have been used based on a

variety of data types. One particular data type,

video-recorded student interactions, offers an

opportunity to view an active learning pedagogy

in use. This observational data allows a researcher

to follow the development of ideas and reasoning

between students. Such questions as, ‘‘How are the
students collectively processing a learning task?,’’

‘‘How well is the student reasoning based on evi-

dence?,’’ or ‘‘How well are students integrating

various tradeoffs in a complex problem?,’’ can be

readily informed. Informing questions of this sort is

potentially a strong tool to improving the pedagogy

being used. The starting premise of this study is

twofold. First, analyzing verbalized student-to-stu-
dent reasoning is a useful window to understand

how the pedagogy facilitates learning. Presumably,

the better the collective student reasoning is, the

greater opportunity there is for student learning.

Second, the expressed reasoning can be directly

observed in their dialog and video recorded for

analysis.

Recorded student-to-student reasoning is natur-
alistic data. It includes statements, utterances, ges-

tures, manipulations of learning materials, and a

variety of other communication and actions by the

students. Since the students are already speaking

with each other during active learning sessions,

recorded data avoids the problems that some pro-

tocols (such as ‘‘talk-aloud’’) create by interfering

with other cognitive processes that may be at work
during the naturalistic setting [4–6]. One difficulty,

however, with recorded observational data is that it

creates voluminous amounts of messy data [7]. The

data usually contains a wide variety of potential

features to observe. The subsequent analysis of the

‘‘sheer quantity [of qualitative data] can be daunt-

ing, if not overwhelming . . .’’ [8]. Thus, the very data

that provides an excellent view into the dynamic
functioning of pedagogy is encumbered with a large

overhead in analysis.

One way to streamline analysis of observational

data is to use a standard coding frame which

prescribes how to segment and structure the data.

Since the basic steps following recording are pre-

scribed, they can be completed in amoremethodical

method. However, such a coding frame needs to be
grounded in a theory of reasoning that describes the

reasoning being analyzed, otherwise the coding

frame could systematically obscure relevant fea-

tures in the data.

The goal of this study is to develop a coding frame

based on the mental models theory of reasoning [9–

12]. This theory is used as a lens to identify the

structure of expressed student reasoning within the
data in this study. This structure can then be used as
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a coding frame in subsequent studies to diagnose the

specific content of student reasoning. One clarifica-

tion is necessary at this point: the coding frame

elucidates the expressed reasoning, not the under-

lying cognitive reasoning processes.

This study analyzed video recorded student team
dialogues within a class setting. The students reason

with each other about a prototype machine con-

structed by a peer team. These data are analyzed

with the methodology of content analysis [13]. The

root question that informs developing the coding

frame is:

What is the structure of the students’ reasoning, as
expressed in their dialog, while reviewing a physical
prototype?

The intent is twofold. The first intent is to determine

if the verbally expressed reasoning displays a con-
sistent structural pattern. If the reasoning displays a

clear structure, then that structure can be used as a

coding frame to analyze the data. The second intent

is to assess how consistent the structure of the

reasoning is. Presumably, coding data will be

more streamlined and faithful if the underlying

reasoning structure is very consistent.

To these ends the paper is structured as follows.
First, a well-established cognitive theory of how

people make quick inferences is reviewed. This

theory forms a lens for investigating the study

data. A coding frame is developed from the theore-

tical lens, where each part of the theory forms an

element in the coding frame. How to appropriately

apply the coding frame within the methodology of

content analysis is discussed. The study data is then
coded to determine if a structure of reasoning

emerges. A structure of reasoning does emerge, as

will be discussed, and a variety of descriptive

statistics are gathered to characterize the structural

content of the data. The major elements of the

structure are then richly described including exam-

ples from the data. Finally, the major elements of

the structure are summarized into a general pattern.

2. Developing the theoretical lens

A theory of mental models was first proposed by

Craik [14]. Since then, theories of mental models

have developed in two distinct ways [15] where the

term mental models have distinct meanings. In the

first context, a mental model (usually stated as

singular) describes a person’s mental representation

of a knowledge-rich domain to support reasoning,
such as how to solve physics problems [16] or use a

calculator [17]. In this context, mental models are

stored in long-term memory and provide a frame-

work from which to solve problems. In the second

context, Johnson-Laird proposed that a set of

mental models (always stated as plural) are sponta-

neously created and manipulated in working

memory to support logical reasoning [9]. These

mental models are typically of short duration and

are used for making quick inferences. The student

dialogs in the study data were filled with quick
inferences based on physical observations and so

the Johnson-Laird theory was deemed more appro-

priate to use as a lens.

Just as there are two distinct uses for the term

mental model, there are competing theories of how

people make quick inferences: Mental Models and

MentalLogic.Themental logic theory [18, 19] posits

that people have a form of cognitive logic composed
of a variety of schemas. Reasoners insert content

into this natural logic to reach inferences. In con-

trast, the mental models theory of reasoning [9, 10]

posits that inferences are obvious features in the set

of models people spontaneously create and so do

not require ‘‘logic.’’ Both theories predict condi-

tions where fallacious inferences are commonly

reached.
Either the Mental Logic or the Mental Models

theory potentially could be applied in this study.

However, for this study Mental Models theory has

the advantages of describing reasoning in a simpler

and more general way. It also has the practical

advantage of not being burdened with multiple

logic schemas in which to map to the reasoning

content. Hence the Mental Models theory was
chosen.

2.1 Mental models theory

The mental models theory (hereafter referred to as

the theory) is primarily focused on logical reasoning

in tasks such as deductions and inferences [9]. The

theory posits that all reasoning, ranging from every-
day inferences to highly trained, is based on model

sets acting in working memory. The theory rests on

three assumptions: mental models are models of

possibilities, mental models are iconic, and mental

models describe truth rather than falsity [9, 10].

The first assumption is that mental models repre-

sent possibilities that are relevant for the reasoning

context. For example, in a coin toss all possible
trajectories of the coin are reduced to two possibili-

ties: heads or tails. So the mental models associated

with reasoning about coin tosses represent those two

possibilities and do not represent models of all

trajectories.As such,mentalmodels trackaparsimo-

nious (least possible) amount of information while

reasoning; theydonotburdenworkingmemorywith

contextually irrelevant, but possibly true informa-
tion.Thetheorygoesevenfurtherstatingthatreason-

ing is always founded on possibilities.

The second assumption is that mental models are

iconic. Parts and structures of mental models corre-
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spond to parts and structures of the real world. The

iconic structure ofmodels is not necessarily visual or
physical, though it may be. For example, that a coin

is ‘‘heads’’ or ‘‘tails’’ (iconic state) is frequentlymore

relevant than where it lands (physically iconic).

Third, mental models represent what is consid-

ered true and not what is false. People typically

reason by tracking how the world is, not how it is

not. This assumption also implies that people use a

parsimonious amount of information while reason-
ing. When people do reason with falsity, such as

with a counterexample, they must make mental

footnotes to track the reputed falsity of claims in

the counterexample.

A fourth assumption that is never stated, but

always shown in examples of the theory, is that

models are simple. The content in any one model is

usually limited to one or two pieces of information
with a single associating relationship.

When people reason, they create mental models

representing different facets of the problem. Their

conclusions are simply ‘‘lifted off’’ these models.

The following example is an adaptation of one

presented by Johnson-Laird [10, p. 171].

A studentmanipulating a prototypemachine observes:

The actuator moves a coin through the machine.
The actuator sometimes sticks and has a jarring
motion.

The coin jams when it is jarred.

The statements above can be denoted with the follow-
ing iconic structure:

Actuator moves Actuator sticks Actuator jars
Coin moves Coin jams

Where ‘‘Actuator moves’’ denotes a mental model of
the actuator moving, ‘‘coin moves’’ a model of the coin
moving, and so on. The left to right positions denotes
sequential operating states of the machine, and the
vertical position denotes actions that occur simulta-
neously. From this set of models you may infer,

The coin jams after the actuator sticks.

The theory posits such an inference is obvious within
the model set; it is simply lifted from the models. No
mental logic is needed.

The theory describes models as input to reasoning,

reasoning as the process, and inferences as the

output. The theory states that the cognitive process

of creating mental models is unknowable, but that
models are created from a variety of sources such as

suggestion, observation, and from experience. The

reasoning process connects these models or elim-

inates possibilities to produce inferences. Further,

inferences themselves are mental models and can be

part of subsequent reasoning; thus outputs can
become inputs. Fig. 1 displays this process.

2.2 Creating a lens based on mental models theory

The contents of mental models are in working

memory and thus available to speech, though the

underlying cognitive processes are below awareness

and are not observable [9]. In contrast, the student

dialogs, which are the result of cognitive processes,

are observable. Consequently the cognitive theory

must be interpreted to form a lens for verbally
expressed reasoning. Each characteristic of the

theory defines an analogous characteristic of the

lens as described below.

Models are parsimonious. Student dialog state-

ments vary in length from single word utterances to

extended statements containing multiple ideas. All

dialog statements should be partitioned into the

smallest phrases where each phrase conveys infor-
mation representative of a single mental model.

Models are iconic. Only dialog statements that

have one-to-one correspondence with aspects relat-

ing to the reasoning task are statements of models.

Student statements that are unrelated to the reason-

ing task, such as moderating the discussion, are

excluded because they do not express models used

in the reasoning task.
Models are stated from a truthful perspective.

Student dialog statements that use counter-exam-

ples should be separately tracked.

Models represent possibilities. Student dialog

statements that express what may be possible, or

possibly important, in the reasoning context are

statements of models.

Reasoning combines or eliminates models.
Words or phrases (e.g., ‘‘because,’’ ‘‘if,’’ ‘‘so that,’’

etc.) that establish relationships betweenmodels are

expressed acts of reasoning.

Reasoning creates inferences. Student dialog

statements create inferences. Inferences are

embedded in the relational elements that express

elements of reasoning; they are not separate state-

ments.

3. Applying the lens in the methodology of
content analysis

Content Analysis is a methodology for examining

the content and meaning in texts [13]. The term text
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is used broadly to include written documents or any

communication ‘‘produced by someone to have

meanings for someone else’’ [13, p. 19]. In this

study, the transcription of the student dialog is the

text being analyzed.

Content analysis can be either inductive (some-
times called conventional) or deductive (sometimes

called direct) [8, 20]. Inductive content analysis

seeks to identify themes that emerge within the

text, code the text within those themes, and then

interpret the text basedon those themes. In contrast,

deductive content analysis begins with themes iden-

tified in prior studies or by theory [8]. This current

study employs deductive content analysis because
the theory of Mental Models informs the coding

categories. Unlike typical content analysis, this

study does not seek to interpret the themes, but

rather to identify the structure of the reasoning for

use as a coding scheme.

One practical concern in content analysis is the

size of a meaning unit [21]. If the text is analyzed in

units as large as a paragraph, several different
meanings could reside in the single unit. Conversely,

if single words are analyzed as units, the interpreta-

tion becomes fragmented [21]. To appropriately

apply the lens developed above, each meaning unit

needs to be representative of a single mental model.

This implies that single phrases that state an iconic

possibility within the reasoning context are the

correct size of meaning units.
There is precedence in other studies of using this

size of unit. Christensen [22] described a methodol-

ogy for ‘‘studying design cognition in the real

world.’’ His methodology, termed in-vivo, [22–24],

employed a verbal protocol analysis [25]. In his

studies he recorded design discussions and then

segmented the transcripts into verb phrases (the

verb phrase being the meaning unit) to analyze the
reasoning. A verb phrase is the part of a sentence

that includes the verb and its object such as,

‘‘. . . push the actuator,’’ where push is the verb

and actuator is the object. This method made it

possible to ‘‘monitor thinking and reasoning’’ [22–

24] in a design context at a grain size of a verb

phrase. A verb phrase is similar in size to a parsi-

monious statement of a model, though a model is

not necessarily limited to only verbs and their

objects.

3.1 Coding Steps Using the Theoretical Lens

A key differentiation in the coding was to separate

verbalized models from verbalized reasoning. Fig. 2

shows this differentiation as a vertical dark line

between verbalized models (inputs) and verbalized

relationships (reasoning). Student statements that

did not go beyond stating observations, constraints,
or possibilities within the reasoning context were

considered to be verbalized models (hereafter called

model phrases). Statements that went beyond this

boundary, such as logically connecting two obser-

vations, were considered to be verbalized reasoning

(hereafter called reasoning phrases). Verbalized

models suggest the presence of actual mental

models, but should not be collapsed to a one-to-
one correspondence with mental models, because

actual mental models are unknowable [9]. Likewise,

verbalized reasoning should not be collapsed to the

cognitive process of reasoning.

Coding steps using the lens were as follows.

Corresponding characteristics of the mental

models theory are highlighted in bold.

Step 1: Segmenting the transcription. The video
recording was transcribed and included notes of

student physical actions and gestures. The tran-

script was then segmented to isolate each student

verbalized model. In general, most students’ state-

ments were single segments. Longer statements

typically segmented into two or three shorter seg-

ments. This step isolated the one-to-one correspon-

dence between the statement and the reasoning
context, which is necessary for the statement to be

iconic. Student statements that moderated discus-

sion or were off-topic were segmented into separate

segments.

Step 2: Writing model phrases. A model phrase

was written for each segment to express the content

in simplified verbiage. Segments that expressed the

same thought were reduced to repetition of the same
model phrase. This step helped explicate the con-

tent. Actions and gestures were included in the
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model phrases as warranted by context. For exam-

ple, a model phrase such as ‘‘[during normal opera-

tion] the chip didn’t flip,’’ expresses the action as

well as the student statement of, ‘‘the chip didn’t

flip.’’ This step presented the content in a parsimo-

nious way. Model phrases were not written for
segments unrelated to the reasoning task so that

all model phrases expressed possibilities in the

reasoning context.

Step 3: Writing reasoning phrases. A reasoning

phrase was written for every sequence of model

phrases that student dialog connected with logical

connectives. Such connectives as instead, because,

and, so that,or equivalentswere used as identifiers of
reasoning. Since communication is broader than the

syntax of uttered words, the video was reviewed

phrase by phrase for implicit connectives. When

warranted, the implicit connectives were annotated

in the transcript. These reasoning phrases explicated

how relationships were established between model

phrases.

Step 4:Creating a visual tree of verbalized reason-
ing. The above steps yielded a set of verbalized

model and reasoning phrases. To aid in identifying

patterns, these model and reasoning phrases were

structured in a chronological table. Each reasoning

phrase could then be examined for where its sup-

porting model phrases had originated and how it

subsequently was incorporated into further reason-

ing phrases. Table 1 shows seven segments from the
study data coded as model and reasoning phrases.

3.2 Study context, data, and coding

This study was conducted in amechanical engineer-

ing design class of 30 students. The students worked

in teams of three or four. The first project involved

creating a machine to flip poker chips individually

from an input stack into an output stack. A first

prototype was designed, constructed, and tested by

each team. A few days later each team redesigned

their machine and constructed a second prototype.
The prototypes weremade of corrugated cardboard

and the project lasted one and a half weeks. After

the second prototypes were constructed, the teams

conducted design reviews of peer teams’ second

prototypes. Each team was given a machine to

review, instructed to evaluate the machine and

make a list of strengths (positive attributes) and

weaknesses (negative attributes). After conducting
their first review, each team moved to another

machine to review, and then another, until they

had reviewed six machines.

A video recording was made of six teams sequen-

tially reviewing the same machine. Thus, the first

recorded team reviewed the prototype before

reviewing other machines, the second recorded

team had reviewed one prior machine, the third
team two prior machines, and so forth. The video

recording was transcribed and coded using the lens.

Throughout the coding, the video was reviewed

segment by segment to insure fidelity to the context.

After the coding was completed, the video and

coding were reviewed a final time.

4. Data analysis and description

Subsequent to coding, the transcription segments,

model phrases, and reasoning phrases were classi-

fied by emergent characteristics, that is, themes that

repeatedly appear in the coded data. Frequency
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Table 1. Example of seven transcription segments coded into model and reasoning phrases

Line Person Transcription segment

Actions, gestures in [bold]
Dialog in italic

Model Phrase Reasoning Phrase

Connectives: underlined

1 C [Moves another chip through
machine which binds up in output
stack]

2 C that one (mumble) got stuck [during normal
operation] chip sticks
in output

3 C [Pokes stuck chip with a finger]

4 B So you can push it too fast you can push the
actuator too fast

chip sticks in output if you push the actuator
too fast

5 A However it’s already past the five
chips [pointing at output stack]

(output stack) is past
5 chips

chip sticks in output if you push it too fast
however (output stack) is past 5 chips

6 C Yeah

7 A So they’re not falling as far chips are not falling as
far

chip sticks in output if you push it too fast
however (output stack) is past 5 chips so chips
are not falling as far



counts and descriptions of these emergent charac-

teristics are described in the following sections.

These counts and descriptions provide a basic

understanding of what was in the data. As will be

shown, the structure of the student reasoning

becomes clear, which qualitatively demonstrates
that the lens brings the reasoning into focus.

The descriptions are presented in the following

order. The teams are described first to provide a

context for the study. Following the team descrip-

tions, the dominant characteristics of the model

phrases are richly described. The model phrases

correspond to mental models in the theory and

hence these descriptions provide an understanding
of the basic elements used in verbalized reasoning.

These model phrases are further described in terms

of both their content and their apparent origin of the

content relative to the context of the learning

activity. The analysis concludes with rich descrip-

tions of how model phrases are combined to form

inferences: basic chains of models, redirecting

chains of models, and causal chains.

4.1 Team characteristics

The six teams were recorded for a combined 32½

minutes, which generated 567 transcription seg-

ments. Sixty-eight percent of the segments (386)

were related to the prototype review, which are
verbalized model statements in this reasoning con-

text (hereafter prototype segments) and the remain-

ing 32% (181)moderated discussion orwere off-task

(hereaftermoderating segments). The 386 prototype

segments were classified into three broad categories

based on conversation focus: evaluating the current

prototype (277), suggesting improvements (98), and

discerning the designers’ original intent (11).
The six teams displayed awide variety of focus on

task and approach. The first three teams spent

approximately the same amount of time in review.

Team 1 spent considerable time carefully observing

the functioning of the machine, whereas Team 2

made quick judgments about the functioning but

spent time conjecturing on why the designers

designed the parts as they did. One member on

Team 2 was more dominant than the others such

that a teammate had to make multiple conversa-

tional attempts to successfully contribute to the

conversation. Team 3 had strong disagreements,
which stalled their overall progress. The effect of

these team dynamics on team reasoning are

described later.

The last three teams spent less time reviewing the

machine than the first three teams, but about the

same amount as each other. Team 4 used a strategy

of summarizing inferences to help the scribe record

the lists of ‘‘strengths’’ and ‘‘weaknesses.’’ Team 5
used a strategy of contrasting the current prototype

with the previous four machines they had reviewed.

Team 6 was fairly distracted and generated only

52% prototype segments but 48% moderating seg-

ments.

Considered together, the teams approached the

reviewwithwidely different strategies and strikingly

different team dynamics. Interestingly, as will be
described, the structure of the verbalized reasoning

was consistent across all teams, but used for differ-

ent purposes. The team characteristic statistics are

listed in Table 2.

4.2 Mental models: building blocks of reasoning

The theory implicitly assumes that mental models

are small bites of information, each one being a

parsimonious representation of a possibility. When

the data is interpreted from this perspective, each

transcription segment appears to express a mental

model. For example the phrase, ‘‘If they want to cut

the footprint down . . . ’’ expresses the possibility that

the designers may wish to reduce the size of the
machine. Alternately, it may express the possibility

that the machine could be reduced in size. Conse-

quently reducing the transcription segments to

model phrases was straightforward, though on

some segments there was uncertainty concerning

the nuanced meaning of the content.
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Table 2.Model Phrase Characteristics of Team Discussions

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Total

Duration of discussion (min:sec) 6:43 8:20 7:04 3:40 3:10 3:36 32:33

Transcription Segments (Total Count) 131 151 71 82 65 67 567

Segment Count by
Conversation
Focus

Evaluating prototype 66 72 35 50 22 32 277

Improving prototype 34 27 6 9 19 3 98

Conjecture of designers’
intent

1 9 1 0 0 0 11

Off-task or moderating
discussion

30 43 29 23 24 32 181



Another aspect of models being parsimonious is

that they cannot be subdivided. Consequently, if

one tries to reduce a mental model to subparts, it

should no longer describe a possibility. This aspect

provided a minimum length to each segment. For

example, in the following segment the student
paused mid-statement while examining the proto-

type.

[student picks up the machine to look at it] they added . . .
they added like an extra . . . (pause). . . feel like, yeah,
[continues to move head to see features] . . . they
definitely added like extra stuff. . .

The first portion of the statement ‘‘they added

extra’’ is an incomplete possibility until he finally

adds ‘‘stuff.’’ Arguably ‘‘stuff’’ is a very general term

and yet itmade the statement a complete possibility.

The theory also posits that mental models are
iconic; parts and structure of the models reflect the

real world. For example, ‘‘this [part] doesn’t need

to be that high. . . ’’ reflects the physical structure,

‘‘[the machine is] difficult to operate. . . ’’ is iconic of

the operator’s experience, and ‘‘this part goes up

down up down. . . ’’ is iconic of motion. Significantly,

every prototype segment was iconic.

The theory posits that mental models represent
information as truthful and that mental footnotes

are engagedwhenever counterfactual information is

tracked. Throughout the discussions the students

appeared to state the information as they thought it

to be, rather than counterfactually. For example,

‘‘the slant helps the flip to be consistent. . . ’’ describes

what the student thought to be true, though he may

have had the facts or inferenceswrong. In the case of
this example, the team did not evaluate the

dynamics of the machine in enough detail to know

with certainty that the slant did help the chips to flip

consistently.

Verbal footnoting of counterfactual information

was not evident (e.g. ‘‘this slopeworks but if it didn’t

work then. . .’’); however another truth-preserving

tactic was evident. The students occasionally
entered cycles to refine their statements, with each

statement being a better approximation of truth:

A: ‘‘. . . that’s about. . . ’’
B: ‘‘seven, eight inches,’’
A: ‘‘I’d say closer to ten,’’
B: ‘‘that’s a foot, almost. . . ’’

This approach sidesteps the need for mental foot-

notes while preserving the truth of the models.

4.2.1 Content of prototype segments

Six broad categories describing the content of the
prototype segments emerged during coding. Thirty-

nine percent of the segments described the dynamic

functioning of the machine, ‘‘. . . when the chips fell I

think they’d rotate faster.’’ Since function was a

major goal for the machine this result was not

surprising. As the students discussed how the

machine worked and possible improvements, their

statements described the relative physical position

of machine parts accounting for 23% of the proto-

type segments, ‘‘if this (ramp) were shortened and

this were made steeper. . . .’’ The project emphasized

manufacturability where students calculated an

assembly and manufacturability cost. Correspond-

ingly, 16% of the prototype segments related to

construction costs, ‘‘actually they could probably

do it all in like two pieces, this whole thing. . . .’’

Prototype segments related to constraints came in

two forms. First, required specifications for the
machine would be cited, ‘‘. . . it’s over the (allowed)

footprint.’’ Second, physical constraints would be

stated, ‘‘There has to be room for the, the pusher. . . .’’

Constraints were evident in 13% of the segments.

Segments that conjectured the designers’ original

intent accounted for 2% of the segments which were

primarily clustered in a single episode in one team’s

discussion. All other prototype segments accounted
for the remaining 7%.

4.2.2 Model origins

The cognitive mechanisms for generating mental

models are not known [26, 9]. However, six broad

categories of apparent origins for the prototype

segments emerged during coding. Observations
made during testing accounted for 42% of all seg-

ments.Repeating apreviously verbalizedmodelwas

also common at 25%. Sixteen percent of the seg-

ments were spontaneous proposals of design

improvements, some of which likely originated in

prior experience of designing and building their

own machine. Together, these three categories

accounted for the large majority of segments.
Eight percent of segments were summary state-

ments of previous inferences. These summaries

usually came about as the students were scribing

the comments on their lists of strengths and weak-

nesses. Another 6% related to prior experience,

usually when contrasting the prototype being

reviewed with the students’ own design. The final

3% of segments did not include verbal or contextual
clues that suggested their origin.

In summary, the prototype segments express the

essence of mental models per the theory. The seg-

ments stated possibilities, were iconic, and stated

what was thought to be true. Though some teams

were more engaged than others, the structure and

size of the segments did not noticeably vary across

the teams. Rather, what appeared to vary was the
total number of segments, where team 3 (with open

disagreements) and team 6 (off topic) verbalized

models at a slower pace. The prototype segment

counts are listed in Table 3.

Steven Zemke590



4.3 Come let us reason together, or not

4.3.1 Building inference chains

The most dominant characteristic of the reasoning

was how fluently the discussions connected one

prototype segment to another. Students would

make inferential connections (identifiedwith under-

lining)within their own statements, ‘‘You have to use

the cardboard though because the paperclip would not

be that long. . . .’’Theywould alsomake connections

to statements of fellow students:

A: ‘‘. . . the design is kind of wobbly,’’

B: ‘‘[so] . . . base . . . put a base on the bottom. . . ’’

More than a third (43%) of the segments included

relational connectives to other segments. In total the

students connected prototype segments within their

own statements 91 times and to another student’s

segments 74 times.

These connections usually created inferences that
went beyond the information jointly contained in

the verbalized models being connected (induction).

The example above contains the two segments ‘‘the

design is wobbly’’ and ‘‘put a base on the bottom.’’

However, when the student joined them with the

implicit ‘‘so’’ the joining induces that adding a base

will solve the problem of being wobbly. This infer-

ence goes beyond the given information to provide a
likely, though not guaranteed, outcome.

The connections were also used to restate impor-

tant inferences that did not go beyond what was in

the verbalized models (deduction). These restate-

ments typically collapsed an inference chain to its

final piece.

A: ‘‘yeah but this is. . . I like this ‘cause it’s all one piece
of ’’
B: ‘‘cardboard. . . yeah so this [facing the scribe]we’ll just
say. . . ah. . . we like it because it is cheap. . . ’’

After discussing the number of parts and part

complexity, the final statement by ‘‘B’’ collapses

the reasoning chain into a single inference to the

student scribing the list, ‘‘. . . it is cheap. . . .’’

Roughly half of initial connections were followed
by a connection to a third segment. These chains of

inferences were common and basically built one

idea onto another and then onto another. Table 4

shows two sequential transcription statements

which subdivide into three segments. The resulting

three model phrases and two reasoning phrases are

shown to make it easier to recognize the linking.

This example was classified as a chain length of ‘‘3’’
to match the number of segments that are linked.

Table 6 displays the count of the various chain

lengths in each team.

Another interesting facet of the example above is

the change of segment types within the single chain.

The first segment described a physical part, the

second a constraint, and the third the dynamic

functioning of the machine. The logical linking of
the segments relies on the segment type that is linked

each time. In this way physical parts are related to

constraints which are related to the dynamic func-

tion. This connecting of a segment type to another

segment type was common in the expressed reason-
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Table 3. Prototype segment counts

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Total

Prototype
Segment Count
by Content

Description of dynamic function 37 40 20 20 10 22 149

Relative physical positions of parts 34 14 8 21 6 7 90

Manufacturability and assemblability 4 30 8 8 12 1 63

Descriptions of designers’ intent 2 6 1 0 0 0 9

Statement of constraint 20 6 6 6 9 2 49

Other 4 12 0 3 4 3 26

Prototype
Segment Count
by Apparent
Origin

Testing and observing prototype 31 40 25 26 16 22 160

Proposing improvements 17 22 6 8 6 2 61

Retrieving specific prior experience 4 6 3 4 5 1 23

Summary of multiple inferences 12 5 0 14 0 0 31

Repetition of previous statement 32 29 8 6 14 9 98

Other 5 6 1 0 0 1 13

Prototype Segments (Total Count) 101 108 43 58 41 35 386



ing and appeared to happen fluently without a

‘‘grinding of cognitive gears’’ [10].

4.3.2 Redirecting inference chains

Most of the connectives simply appended another

prototype segment; however some of the connec-

tives replaced or challenged a previous segment

(substitutive connection) within the chain. Substi-

tutive connectives were used 42 times while additive

connectives were used 123 times. An example of a
substitutive connective is shown in Table 5.

In the example in Table 5 person ‘‘B’’ substituted

that being hard to push is an advantage rather than

a small problem as stated by person ‘‘A.’’ Substitu-

tive connectives were common in the first four

teams, but operated in different ways. In Teams 1

and 4, the substitutive connections were used pri-

marily to refine and clarify ideas. In Team 2 one
member dominated the conversation and a team-

mate used a few careful substitutions to rejoin the

conversation and redirect the ideas. In Team 4 two

members frequently disagreed and substitutions

were typically brief ways to express those disagree-

ments. On average, additive connectives outnum-

bered substitutive connectives 3 to 1. However, in

the team with frequent disagreements the opposite
was true; substitutive connectives outnumbered

additive connectives 2 to 1. Group 5 and 6 had few

substitutions, most of which were used to refine

ideas. Table 6 lists the number and type of con-

nectives used in each team.

In summary, connectives followed more than a

third of all prototype segments to create chains of
reasoning. These connectives were used nearly

equally to link between a person’s own ideas or to

another’s ideas. About three quarters of the con-

nectives appended segments and the remaining

quarter modified existing inference chains. The

substitutionary connectives were used for refining

ideas, though at times they appeared to be used for

simply disagreeing. Across all teams the connective
reasoning had the same characteristics; one segment

would be connected to another with apparent flu-

ency from segment type to segment type.

4.3.3 Causal reasoning

Causal reasoning was also evident within the tran-

scripts. Reasoning connectives were coded as causal

if they described physical motion or interaction of

parts. Causal reasoning was further coded as ‘‘for-

ward’’ when stated cause to effect and ‘‘backward’’

when stated effect to cause. Forty-one percent of all

reasoning statements (67 of 165) were causal. Rea-

soning connectives that used causal terms or syntax
but were not related to physical causes were

excluded from these counts.
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Table 4. Example of student dialog showing a chain of connectives

Transcription
Actions, gestures in [bold]
Dialog in italic

Model Phrase Model Type Reasoning Phrase
Connectives: underlined

A: So if there was some kind of guide
[pointing] for the shover [gesture]. . .

If there was a
shover guide

Physical parts and
position

C: A guide so it wouldn’t come out. . .

. . . and so you know, know when
[gesturing with arm in air]. . . [you] are all
the way. . . it was over the edge.

Shover wouldn’t
come out

You know (feel)
when it was over the
edge

Constraint
Dynamic function

If there was a shover guide so the shover
wouldn’t come out

If there was a shover guide so the shover
wouldn’t come out and so you know
when it was over the edge

Table 5. Example of substitutive connectives used to redirect an inference chain

Transcription
Actions, gestures: [bold]
Dialog: italic

Model Phrase Reasoning Phrase
Connectives: underlined

A: Also it’s a little tough to, to push it. . .
. . . not that that’s a big deal. . .
. . . but it could be easier.

It is difficult to push

Difficult to push is not
a big deal

It could be easier to
push

It is difficult to pushbut difficult to push is not a big deal

It is difficult to pushbut difficult to push is not a big deal
but it could be easier

B: [However] I think the advantage of having it,
this hard to push. . .
. . . though, is that you can keep this [points at
top edge] lower.

Hard to push is an
advantage

The top edge can be
lower

It is difficult to push but hard to push is an advantage

It is difficult to push but hard to push is an advantage
because the top edge can be lower



The prominent characteristic of the causal rea-

soning was that the cause and effect were nearly

always ‘‘adjacent’’ as in this example:

A: ‘‘well you want it to slant up. . . ’’
B: ‘‘. . . because it puts the weight in the back. . . ’’

In this example the students had been discussing the
inclined ramp and ‘‘B’’ makes the observation that

slanting the ramp shifts the center of gravity of a

stack of chips rearward. Both the cause and effect

were immediately observable in the prototype. The

students did not construct long causal chains that

led from one inference to a distant target. Nor did

the students use physics to ‘‘insert’’ potential causal

reasoning into chains of observations. Rather there
was the occasional reference to a dynamic concept,

‘‘the momentum will carry it. . . ,’’ or ‘‘cause it to flip

faster. . . .’’

Reasoning from effect to cause is more difficult

than from cause to effect because a single effect

could have several potential causes [10]. Further,

inferences seemmore plausible when stated cause to

effect [27]. Similarly, the forward causal statements
outnumbered the backward statements 46 to 21.

However, the backward causal statements merely

seemed to be syntactically constructed to more

easily fit the flow of the conversation. For example

in the statement:

‘‘. . .right there it wasn’t flipping butmaybe that’s because
I messed it up. . .’’

The effect, ‘‘it wasn’t flipping,’’ is mentioned first

and the cause, ‘‘. . .I messed it up. . .’’ is mentioned

second. Hence though stated in reverse order, it is
still cause to affect reasoning. Nevertheless, it was

very evident that the causal reasoning was struc-

tured identically to the other reasoning. Prototype

segments were linked to other segments with infer-

ential connectives; the only difference was that the

inferential connectives were causal. Counts of

causal and non-causal inferences are listed in

Table 6.

5. Discussion

Johnson-Laird’s mental model theory was devel-

oped in the distant context of word problems, and

yet when used as a lens, it brought the design

reasoning with physical artifacts into clear focus.

The natural discourse segmented intelligibly into
statements that had all the characteristics of mental

models. They were statements of possibilities,

iconic, and stated as truthful rather than counter-

factually. The reasoning also exhibited character-

istics of the theory; students’ inferences were

directly based on their models [9].

Perhaps the most striking feature of the data was

how ‘‘quantized’’ the reasoning appeared. Students
would logically connect from one verbalized model

statement to the next much as stepping from one

stone to another; the model statements forming the

stepping stones and the logical connectives forming

the steps between them. When they stopped their

line of reasoning, they would stop on a model

statement. This quantized aspect of their reasoning

is shown in the following example figures.
In Fig. 3, student ‘‘A’’ states an aspect concerning

the physical prototype. This statement distills down

to a model phrase (MP 1), which the person joins to

another model phrase (MP 2) using a logical con-

nective (LC). The joining of the two model phrases

creates an inference. In the example shown, the

person continues with another logical connective

joining anothermodel phrase (MP3).The contentof
the reasoning resides in the model phrases and the

relationships reside in the logical connectives. The

figure includes example model phrases and logical

connectives that display the structure.
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Table 6. Reasoning phrase counts

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Total

Person Making
Inference

Building on own statements 31 27 16 5 6 6 91
Building on peer’s statements 23 13 4 18 10 6 74

Inference Chain
Length Count

= ‘‘2’’ 22 25 10 10 7 6 80
= ‘‘3’’ 19 10 6 5 2 2 44
= ‘‘4’’ 10 4 3 4 2 2 25
= ‘‘5’’ 3 1 1 2 2 1 10
= ‘‘6’’ 0 0 0 2 1 1 4
= ‘‘7’’ 0 0 0 0 2 0 2

InferenceTypeCount Additive 40 34 13 16 10 10 123
Substitutive 14 6 7 7 6 2 42

Causal Reasoning
Phrase Count

Stated cause to effect 15 12 7 7 2 3 46
Stated effect to cause 10 4 5 1 0 1 21
Non-causal statement 29 24 8 15 14 8 98

Reasoning Phrase (Total Count) 54 40 20 23 16 12 165



The same structure was present when the students

reasoned together. With joint reasoning, each stu-

dentwould contributemodel phrases and the logical

connectives would span each other’s models. In

Fig. 4 student ‘‘A’’ states a model phrase (MP 1)

and then logically connects a second model phrase

(MP 2). Student ‘‘B’’ then adds a logical connective

in the dialogue and appends another model phrase
(MP 3).

The same structure again appears with substitu-

tive inferences. In Fig. 5 ‘‘A’’ begins with twomodel

phrases and a logical connective to make an infer-

ence. Student ‘‘B’’ begins with the original model

phrase (MP 1) but logically connects it to a different

model phrase (MP 3 instead of MP 2). Approxi-

mately one quarter of inferences were substitutive.

The three basic structures of inferences described
above, individual, joint, and substitutive, were
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Fig. 3. The basic structure of the verbalized reasoning.

Fig. 4. The structure of joint reasoning.

Fig. 5. The structure of substitutive inferences.



evident throughout the transcriptions. Further-

more, these inferences structures were woven

together in combination and longer chains than

shown in the above examples. Finally, not all

model phrases were structured into inferences;

approximately half were left unconneted in the
dialogues. These structures emerge whether the

students seemed to be in full agreement or strongly

disagreeing, whether they appeared engaged or

disengaged, or whether their reasoning seemed

sound or naı̈ve. Stenning and Monaghan [28, p.

146] stated that ‘‘deductive reasoning is as common-

place as language,’’ and that, ‘‘we are constantly,

almost effortlessly, forging mappings between. . .
people/place/things. . .’’ The students’ reasoning

likewise seemed to effortlessly forge mappings

between aspects of the prototype.

5.1 The structure of reasoning in other contexts

This study examined student reasoning in a proto-

type review, consequently the data does not inform

what reasoning structures might exist in other

contexts. However, there are three reasons why
the identified structure could be expected in other

contexts. First, the Mental Models theory is a

general theory of reasoning and a theoretical lens

built upon it would likewise be general. Second, the

contextual information, that is the comments about

the prototype, was imbedded in the verbalized

models and not the overall structure. There was

no evidence that the reasoning structure actually
depended on the context. Third, the students used

the same reasoning structure for widely different

ends. If the reasoning structure depended on the

context, then the contextual shift from agreeing or

disagreeing, or from being engaged to disengaged,

could have displayed a shift in structure. However,

these local contextual shifts did not display a shift in

reasoning structure.
This study identified the structure of the student

reasoning based on theMental Models theory. This

structure provides a direct means to code the

observational data in the study, and hence an

approach to understanding and improving the

pedagogy used in the study. If the student reasoning

structure proves similar in other contexts, which the

data suggests but cannot confirm, then the identified
structure is a potential methodological tool in con-

texts broader than the study data.

6. Trustworthiness and limitations

6.1 Establishing trustworthiness

Trustworthiness has three aspects: dependability,

transferability, and credibility [21]. Credibility con-

cerns whether the data and analysis directly address

the research question or study focus. To be credible

the data must be sufficiently large to surface the

phenomenon and the meaning unit (coding size)

must be an appropriate size. In this study the data

included 32minutes of dialog, where approximately

22 minutes were students reasoning about the pro-

totype. If measured in terms of meaning units, the
datawas 386 units long. The structure of the reason-

ing was apparent throughout the dialogs and across

sections as short as a few consecutivemeaning units.

Consequently, the data was sufficiently large to

establish patterns and the meaning unit was of

proper size to identify those patterns.

Credibility also requires the coding categories to

span the content of the data [8]. If not, then data
may be inadvertently or systematically excluded.

The coding categories completely span the data if all

data can be reasonably coded into a defined cate-

gory. Furthermore, it is important to strictly adhere

to a clear coding scheme [21, 29]. This study adhered

to coding scheme prescribed by the theoretical lens.

Additionally, all student reasoning phrases coded

directly into the chosen categories. Consequently,
the coding categories spanned the data.

The aspect of dependability concerns whether the

data changes over time and context. Similar studies

conducted at other times should yield the same

result. Thedata in this study is limited toone context

and time, and so this study cannot make a depend-

ability claim beyond the immediate context of the

data. However, since the lens was based on a theory
tested in many contexts, it is likely the results span

time and contexts.

The aspect of transferability refers to whether the

findings of one study may be applied in another

context. Transferability is not established by the

study itself, but rather by a thorough description

of the study. The description gives readers a clear

understanding of the study context, analysis
process, and multiple examples from the data.

This understanding allows the reader sufficient

insight to determine if it is reasonable to transfer

the findings to a new context [8, 29]. This current

study provides a full description of the study

context, analysis process, and examples from the

data.

One final trustworthiness concern is errors intro-
duced by the coder [29]. Data may be coded for

manifest content or latent content. Manifest content

refers to physically identifiable elements in the text

such as specificwords, phrases, or references. Latent

content refers to interpretive elements where

nuanced meaning may change how data are

coded. Manifest content typically does not need

dual coding because the content is obvious whereas
latent content always involves dual coding [29]. The

structure of the student reasoning in this study was

manifest content, and hence dual coding was not
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required. Furthermore, the descriptive statistics

developed in this study identified the structure of

reasoning, and were not used to generate statistical

inferences [29].

6.2 Limitations

The primary limitation of this study is the assump-

tion that mental models are evident in common
dialog. The theory posits that the cognitive pro-

cesses of mental models are below conscious aware-

ness [9], though their content is consciously

available. This study assumes that the presence of

mental models naturally flows into the student

discussions and can be coded to some level in the

transcript. Since mental models theory is a working

memory construct [15] and speech is also formu-
lated in workingmemory [30] this assumption is not

a large step. Further, determining the precise con-

tent of mental models is impossible because people

‘‘are not always able to fully articulate their knowl-

edge’’ [15, p. 9685]. This limitation implies that

coding would lack precision concerning the exact

content of the mental models (which it did as noted

previously) and would reduce the certainty of the
listed descriptive statistics. However, the previous

analysis and discussion do not rely on interpreting

the exact content of the mental models, nor on

precise descriptive statistics. Rather, the analysis

relies on identifying the content of the models well

enough to describe the structure of the reasoning.

Another potential limitation regards whether the

theory can be directly applied in this context. The
mental models theory has extensive evidence for its

own validity [9–12]. However, the theory’s strongest

support relies on experiments using verbally stated

reasoning problems by individuals [31]. Changing

the context to a student design review with a

physically manifested reasoning problem could

likely affect the reasoning. That said, the theory

led to a coherent picture of the everyday reasoning
in the design reviews. This coherent picture should

be considered evidence, but certainly not sufficient,

to rule out other possible cognitive models.

Finally, any theoretical lens can also act as a filter

such that characteristics of the data are system-

atically overlooked. Hence, the lens informs aspects

of the data that come into focus, but not aspects of

the data that are not detected. However, the coding
framework in this study represented all reasoning

content in model phrases and all verbal connectives

in reasoning phrases. Consequently, this theoretical

lens did not systematically exclude relevant data.

7. Conclusions

Recorded student dialogue in active learning peda-

gogies provides a window to understand the

dynamic workings of the pedagogy. However,

these recordings create a voluminous amount of

messy data that can be daunting to analyze. One

way to streamline the analysis of such data is to use a

standard coding frame which prescribes how to

segment and structure the data.
This study developed and tested a coding frame

based on awell-establishedmentalmodels theory of

reasoning. Each aspect of the reasoning theory was

recast as an aspect of the coding frame. This coding

frame was then used to identify the structure of

expressed reasoning as students critiqued a peer

team’s prototype. The coding frame clearly identi-

fied the underlying structure of the expressed stu-
dent reasoning and supports three direct

conclusions:

1. The structure of the students’ expressed reason-

ing consisted of parsimonious statements about

the prototype chained together with logical

connectives to form inferences. This structure
was consistent across all team dialogs and

across a variety of team dynamics.

2. Logical connectives were used in two ways:

additive connectives extended chains of infer-

ence and substitutive connectives rerouted

chains of inference.

3. All characteristic elements of mental models,

and the basic reasoning with mental models, as
described in this established theory, were evi-

dent and code-able, throughout the dialog. As

such, this reasoning theory formed an effective

coding frame fromwhich to analyze the student

reasoning.

The findings of the study suggest avenues for future

work. First, similar studies could be conducted in
other contexts to informwhether the same structure

of reasoning emerges. The theoretical lens for this

study is a general theory of reasoningwhich suggests

that the reasoning structure in other these contexts

should be quite similar. If so, then the coding

framework could become a significant tool from

which to examine many active learning pedagogies.

Second, this study developed and verified an
analysis tool, but did not employ that tool to

analyze or improve the specific learning session

recorded to gather the data. Studies that identify

relationships between how an active learning peda-

gogy is structured and how the ensuing student

reasoning develops could inform how to best

design active learning exercises.

Finally, as mentioned earlier, the theoretical lens
is based on a very general theory of reasoning. It is

not confined to engineering education, and so these

findings could be applied to many disciplines across

the academy.
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