
Persistent Ideas in a Software Design Course: A Qualitative

Case Study*

PAMELA FLORES and NELSONMEDINILLA
Department of Information Systems and Languages and Software Engineering, Universidad Politécnica de Madrid, Campus de

Montegancedo, 28660 Boadilla del Monte, Madrid, Spain. E-mail: {pamela.flores, nelson}@fi.upm.es

SONIA PAMPLONA
Science and Engineering Department, Universidad a Distancia de Madrid, Carretera de La Coruña, Km. 38,500, Vı́a de Servicio,

no 15, 28400 Collado Villalba, Madrid, Spain. E-mail: sonia.pamplona@udima.es

This study aims to discover what persistent ideas students have when designing software, and discusses possible

relationships between them. The research was conducted through qualitative case study over an academic period with

Master’s degree students in a SoftwareDesign course. The ideas obtained as results were grouped in persistence levels: low,

mediumandhigh; additionally some ideas have been identified, that could be potentially persistent. Themain contribution

of this paper is focused on two aspects: (a) Software design education, which allows teachers to identify and address

problems related to SoftwareDesign course; and (b) Professional impact in the industry, by warning the software industry

about the main problems that students carry out, despite of the instruction.

Keywords: software design; persistent ideas; qualitative research; computer science education

1. Introduction

To increase the efficiency in software development is

one of the main objectives of the software industry.

This is achieved by applying the modularization

criteria proposed by Parnas [1]: (a) managerial:

separate groups would work on each module with

little need for communication; (b) product flexibil-
ity: to make drastic changes to one module without

a need to change others; (c) comprehensibility: to

study the system one module at a time. To achieve

these objectives is necessary to introduce the term

decomposition, since this action allows us to better

manage complexity [2]. However, to decompose at

software level involves much more than just divide,

therefore studying how to decompose during the
design process is very important. Among decom-

position alternatives are nearly decomposable sys-

tems, whose concept was introduced by Simon [3].

Other authors make use of the concepts of Simon,

such as Booch who builds five attributes that define

the complex systems [2]. Parnas, on the other hand,

states that intelligent decompositions address prop-

erly the complexity of a software system [4].
One of the objectives in teaching the Software

Design is learning nearly decomposable designs,

having as a reference the Information Hiding Prin-

ciple, introduced by Parnas [1]. However, the class-

room experience and other preliminary studies [5]

have led us to believe that students fail designing this

way. It becomes necessary to know what persistent

ideas students have with respect to the decomposi-
tion of software systems. We define persistent ideas

like those ideas that students have about a particular

topic and precondition the behavior of some activ-

ity, in this case, the activity of designing software.

These ideas remainduring the teaching and even can

be maintained until after the end of the academic

school period. Moreover, they can be preconceived

or acquired during the instruction period.

The term ‘‘persistent ideas’’ defined for this work
focuses on discovering and analyzing equivocal and

wise ideas, expressed by the students. The definition

of persistent ideas differs frommisconceptions term,

where misconceptions have generally been seen as

mistakes that impede learning [6, 7] or student’s

ideas that are incompatible with currently accepted

scientific knowledge [8]. The case study conducted

in this work consists on a group of students in the
Software Design course of the European Master in

Software Engineering of the Escuela Técnica Super-

ior de Ingenieros Informáticos (ETSIINF) at Uni-

versidad Politécnica de Madrid. The course focuses

on teaching Software Design with object-oriented

approach. The details on the content of the course

can be seen in [9]. The contribution of this work is

focused on two aspects:

1. Software Design Education. The persistent

ideas found in this study will provide to the

teachers the capacity to identify misconcep-

tions, difficulties and trends that students have
when designing software. Moreover, this

knowledge will enable the teacher to be aware

of the existence of these ideas and be ready to

address them if necessary.

* Accepted 1 September 2015. 937

International Journal of Engineering Education Vol. 32, No. 2(B), pp. 937–947, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.

2. Professional impact in the industry. To warn

software industry about themain problems that

recent graduates and future professionals have

when designing software.

This paper is organized as follows. Section 2

describes the related work. Section 3 presents the

methodology, research questions, environment and

indicators about research. Section 4 presents the

persistence levels as results. Section 5 presents a
discussion, regarding persistence ideas and their

relationships. Finally, Section 6 concludes the

paper and presents the future work.

2. Related work

In the literature, most of the works are related with

misconceptions in software engineering, especially

in the programming area. Nevertheless, these stu-

dies are in a different direction from our research

due to the methodology used. For example, in [10]
the authors present a work based on the research of

misconceptions in algorithms and data structures

through expert interviews and the analysis of 400

student’s evaluations. The paper [11] presents a

work, which is focused on discovering what do the

students know or should know about object-

oriented programming (OOP), including a cognitive

point of view.
There are few studies aimed at studying the

learning of the software design using qualitative

methods. One of them is the work [12], which

conducted a research on learning OOP from stu-

dents during two academic years. The aim of the

research was to see the impact of introducing a

pedagogical approach called Object-First in the

teaching process and identify misconceptions and
difficulties around OOP. Our work also uses a

qualitativemethodology and is focused ondiscover-

ing the persistent ideas manifested in a Software

Design course, regardless of the pedagogical tech-

nique. It means that studies what students think at

the beginning, during and at the end of the course.

Authors in [13] identify programmingmisconcep-

tions. This work is part of the first stage of the
construction of aConcept Inventory forComputing

Fundamentals, inspired by the Force Concept

Inventory in the field of teaching of physics [14].

Formal interviews were conducted with students in

order to reveal the misconceptions and were ana-

lyzed qualitatively. The research takes as the only

source of analysis the interview, while our work

presented here tries to capture the dynamics of
students through various resources obtained

during the academic period.

Meanwhile [15] analyzes five programs sent as

tasks to students in a course with the Object-First

approach. This analysis found concrete evidence

about learning OOP concepts and typical miscon-

ceptions previously identified in the literature of

OOP. Our work presented in this paper, does not

make a preliminary study of persistent ideas or

concepts, rather, it seeks to discover these precon-
ceptions through qualitative research.

Another work that fits within our research is

related to ‘‘Misconceptions ofDesigning:Adescrip-

tive study’’ [16], which is focused on researching the

concepts and beliefs that the students in first year

have when designing. The study is conducted

through an on-line descriptive survey to 520 stu-

dents in the first year. The questions asked in the
survey were focused on discovering what students

understand or relate to the activity of design, not

how they design or program. And here lies the

difference with our work presented below.

Finally, Sudol and Jaspan [17] in their study

construct a model of the misconceptions based on

student’s repeated responses and response time.

This methodology was used to evaluate and com-
pare the results between students of Computer

Science and practitioners of highly regarded com-

panies. In our study, the results correspond to the

facts derived from students, which were triangu-

lated, but were not evaluated or compared as in [17].

Our study differs from the above mentioned

works due to its purely qualitative nature at a

methodological level. In addition, we have studied
the progress of students throughout the academic

period, a research whose objectives go beyond

analyzing a particular instance during the teaching.

It was not considered to take ideas or misconcep-

tions from other studies in order not to interfere in

the analysis from the teacher and the researcher

point of view. Finally, specific teaching approaches

were not introduced at the curriculum level; neither
the course objectives nor the teachingmethods were

modified.

3. Research methodology

This research uses a qualitative research methodol-
ogy, including a case study. Qualitative methods

help to understand and explain the meaning of

social phenomena with the least possible modifica-

tion of the natural environment in which they occur

[18]. The case study is defined as the intensive

research of a single object of social inquiry, for

instance a classroom [19]. The study consisted of a

set of observations, interviews and document ana-
lysis obtained during the academic period. The

whole process was documented, discussed and ana-

lyzed between the researcher and the teacher.

Experience in implementing this methodology has

Pamela Flores et al.938

been acquired by the authors in previous studies [5,

20, 21].

The analysis process consists of four stages where

three of them were based on Coding, which is one

way of analyzing qualitative data. A code in a

qualitative inquiry is defined most often as a word
or short phrase that symbolically assigns a summa-

tive, salient, essence-capturing, and/or evocative

attribute for a portion of language-based or visual

data [22].

Figure 1 describes the actions taken at each stage

and their respective results. Noticing and Collecting

stages are performed iteratively several times until

encountered codes got stabilized. The Super codes
obtained in the Grouping stage come from the

grouping of tighter codes in the Collecting stage.

The grouping has been performed following the

criteria of the research questions, shown in Section

3.1. The process in Fig. 1 was systematically per-

formed for all qualitative data collected during the

academic period. The treatment of the data was

made with the help of the software Atlas.ti [23].
Furthermore, our study was aligned with quality

criteria defined by Lincoln and Guba [24], around

trustworthiness of a research, which is detailed

below.

Consistency. The process of the study is presented

in a way that allows traceability for audit.

Credibility. Techniques as peer debriefing and

triangulation were applied throughout the research.

Peerdebriefing consistedofdocumented subsequent

meetings (audio and text) between the teacher and

the researcher after each activity, throughout the

research process. Triangulation was performed for
several iterations with validation codes as follows:

1. Codes extraction by assignment.

After a systematic analysis and several iter-

ations of the resources of each student (text,

diagrams, interviews), we extracted the codes

generated throughout the whole process for

each particular task, as shown in Fig. 2.

2. Code verification by students.
Subsequently, the generated codes in the

previous step were placed on each student.

Fig. 3 allowed us to analyze the evolution of

codes for each student throughout the academic

period.

3.1 Research questions

Regarding the problematic, we raise the following

research questions:

� What ideas of Software Design persist through-

out the academic period?

� Is there any relationship between these persistent

ideas?

Persistent Ideas in Software Design Course: A Qualitative Case Study 939

Fig. 1. Analysis process.

Fig. 2. Example of codes for one student (S1 = Student 1).

3.2 Environment

The group is characterized by students of different

nationalities, which have completed the first degree
in Computer Science with different curricula. The

number of students was thirteen out of seventeen.

Four students were discarded due to instability

issues during the scolar period. The case study was

implemented in an academic semester period on the

Software Design course. The curriculum of the

course, which is focused on object-oriented design,

was not modified by the research.
Three assignments were sent to students. Two of

them were individual and the last one was in group.

The group assignment consisted of additional itera-

tions (versions) before the final assignment, which

were also analyzed; the distribution of assignments

can be seen in Fig. 4. In addition to the audio

obtained through student’s interviews about the

assignments, we also analyzed tutorials with stu-
dents and classroom observations. This allowed us

to see the evolution of each student throughout the

academic period. The assignments consisted in

designing a small graphical application shown in

classroom. The usage of a visual application

exceeded clarity over written or verbal statements.

This was proved in previous semesters, where writ-
ten and verbal statements created ambiguity in

students.

The description of the graphical applications can

be seen below:

JIKEA: Small graphical application that consists in

moving furniture in several rooms.

SOKOBAN: Is a type of transport puzzle, in which

the player pushes boxes or crates inside a ware-
house, trying to get them in different storage

locations.

3.3 Indicators

The amount of data collected was massive. The

summarized information about the research indica-

tors is shown in Table 1.

4. Results

The results of the analysis of qualitative data have

been classified in four persistence levels: low,

medium, high and potentially persistent. In this

work we focus in greater depth on the high persis-

tent level because of the relevance for the study.

Pamela Flores et al.940

Fig. 3. Example of students by codes (Cn = Code n).

Fig. 4. Timeline of assignment during the academic period.

Table 1. Research indicators

Indicator Detail Description

Raw Data Written assignments 34 documents � 35000 words
Audio from interviews � 6 hours
Audio from teacher � 40 hours
Audio from lessons � 16 hours

Quotations Text, translates, diagrams 197
Codes Preliminary codes 259

Tighter codes 61
Super codes 34

4.1 Low persistence

Low persistence are those ideas that disappeared

over the academic year, but being present at some

point in the timeline, could be a sign that existed

before the research started. Within this level, we

have found the following ideas:

� Separation in layers to hide information.

� Use of an element as a main program (Main).
� Identification of major functions and their sub-
sequent distribution modules (In the style of

Object Modeling Technique [25]).

� Separation of each concept into two elements,

one for data andanother for functions, tomanage

the persistence.

� Definition of classes as data.

� Inheritance used as taxonomy.

� Inheritance used to reuse code.
� Adding to a child an attribute that parent does

not have.

� Separation of elements that are similar in soft-

ware but are interpreted as different.

� Definition of methods with the same name that

should have a similar behavior, but are totally

different in their implementation.

� Definition of a concept through a property that is
not related to the concept (Example: Definition

of an ObjectInterface concept through a

unique method authorize()).

4.2 Medium persistence

Medium persistence are those ideas that appeared

sporadically in different tasks throughout the aca-

demic period. Within this level, we found the

following ideas:

� Grant a high level of control to an element.
� Definition of an identifier (ID) as an attribute of
each element.

� Simultaneous decomposition by concepts and

properties (Example: Definition of a concept

Figure like father and a son Movable, repre-
senting a property of the figures).

� Absence of the concept Game or insufficiency to

define it in a game application.
� Absence of an element that acts as container or

insufficiency to define it.

� Particularization of a method for the possible

combinations (Example: moveUp(), move-
Down(), moveLeft(), moveRight()).

� Particularization of the lists (Example: list-
Box, listWall, listPlayer).

4.3 High persistence

High persistence are those ideas that meet the

following criteria: (a) appeared recurrently, it
means they disappeared and reappeared on the

timeline and; (b) appeared at the end of the timeline,

it means that could be present throughout the

Persistent Ideas in Software Design Course: A Qualitative Case Study 941

Fig. 5. Resistance to give properties to a concept that in real life does not have.

process but were not manifested before. Within this

level, the following ideas are mentioned:

� Resistance to give properties to a concept that in
real life does not have.

The example shown below in Fig. 5 illustrates

how students refuse to assign to the elementWall

the property ‘‘move’’ and justify by saying that:

‘‘A player and a box can be moved. A wall is the

only content type that is not movable’’.

‘‘The problem relies in the conceptual implication

on the design.Walls cannotmove in the real life’’.

� Preference to inherit a property rather than

delegate it.

To illustrate this example, we will use Fig. 6. As

we can see on the left side of the figure, students
define an element called Collisionable,
which is delegated by the elements that use it. In

the right side of the figure, the same students in a

next iteration change the property Collision-
able that before was delegated to be an element

that inherits.

Students justify the cohesive overload as follow:

‘‘In order to ease this decision, we decided to

incorporate the Collisionable property by
inheritance, so every figure could implicitly know

if the figure next to it was collisionable or not’’.

� Cohesive overload of responsibilities in one ele-

ment.

We use the term cohesive when dealing with

interrelated responsibilities. Fig. 7 describes an

interesting case where the students try to distri-

bute the task, but finally retake the idea of over-

loading. This is a clear example of the root of this

idea. Fig. 7 shows different design iterations

performed in group for the task SOKOBAN. In

Iteration 1, there is an element Collision that
is a container and responsible for handling colli-

sions through collide() method. In Iteration

2, Map is a container and collide()maintains

the collisionmanagement. In Iteration 3, students

give a positive jump, by adding a canOver-
lap() method, which is responsible for author-

izing the movement, avoiding dependencies on

Pamela Flores et al.942

Fig. 6. Preference to inherit a property rather than delegate it.

Fig. 7. Cohesive overload of responsibilities in one element.

each element. Finally, in Iteration 4, the design

remains the same as in Iteration 3, but the

responsibilities as the same as in Iteration 2.

� Non cohesive overload of responsibilities in one

element.

We use the term non cohesive when dealing with

unrelated responsibilities between them. An

interesting case of this idea is student’s evolution

in a timeline, which is shown in Fig. 8. In the left
side of the figure, there is an element Game,
responsible for three issues (initialize the board,

win the game and hear themovement) for the task

of SOKOBAN. In Iteration 1 of the group work,

students show three elements, each one respon-

sible for the tasks listed above. In the Final

assignment, students merge again the elements
into one, with a confusing use of the inheritance.

Students justify the non cohesive overload as

follows:

‘‘Fusioning of Controller and GameRules
classes was done because Controller and

GameRules finally had the same behavior’’.

Persistent Ideas in Software Design Course: A Qualitative Case Study 943

Fig. 8. Non cohesive overload of responsibilities in one element.

Fig. 9. Definition of a property that is invisible to the outside elements.

� Definition of a property that is invisible to the

outside elements.

An example of this idea is the evolution of a

student with the individual and group assign-

ments, which is shown in Fig. 9. In the figure,

on the left side it is observed how Collision is

defined as an element, which is used internally by

different elements. In the central figure we can see
two issues, an element Movable, explicit for the

external elements, and an element Collision

which is not. Finally, in the final iteration of the

group assignment, predominates the use of Colli-

sion element as invisible for the inheritance.

� Information dependency from other elements to

make decisions.

This idea is manifested when one or more ele-

ments depend on information to execute an

action or make a decision. It is characterized by

asking or requesting information from the out-

side, sometimes in a univocal manner and other

times in a chained manner.

� Partial use of inheritance with polymorphic pur-

poses by adding in children particular methods

that a parent does not have, and are accessed from

outside.

This idea appears in one inheritance structure,

where the children are accessed from the outside

through particular methods not present in the

parent. It means that the polymorphism is vio-

lated with the addition of methods in a child and

the contract with the parent is ignored.

� Definition in inheritance of empty children equal

to their parent.

This idea is maintained during the timeline.

Students define an inheritance, where some

child is empty. This means that a child will have
the same behavior as the parent, which may be

justified only by code reuse.

� Interface definition to uniform the diversity and

hide information.

This idea supports the uniformity through the

creationof an abstract element as an interface, the

same which covers all different elements of the

application that enter within this new concept.

This behavior may be part of the ideas that could

have been acquired previously during the course,

since it started with this idea and it has remained
until the end.

� Notbeing explicit about howorwhere the lists are

handled.

This idea has been expressed in several ways
throughout the academic period. It is closely

related to the ‘‘Absence of an element that acts as

container’’ that appears in themediumpersistence

category. It is evident when students place

methods such as getAllElements() or get-
Figures(), without knowing where or how

they handle the data structure corresponding to

the lists.

4.4 Potentially persistent

Potentially persistent are those ideas which have

been taken from textual phrases of students assign-

ments or interviews. Nevertheless, they have not

been reflected in the designs throughout the aca-

demic year, therefore we cannot know if they have

beenkept or disappeared.Within this level, there are

the following ideas:

� A low dependency index is not having relation-

ships between concrete classes and having a low

number of relationships between classes.
� Confusion between encapsulation and hiding.

� The Information Hiding Principle was consid-

ered as: (a) the only known issue must be the

operation that solves the problem and; (b) that

parameters of each entity are hidden.

� The Information Hiding Principle is associated

by not having direct relationships between enti-

ties.
� Using get() and set() to hide the internals

details of the class.

5. Discussion

The ideas above suggest different relationships

between them (the second research question) and

also suggest common sources, some with long

trajectory. The ‘‘Preference to inherit a property

rather than delegating’’ was discussed in [25]
twenty five years ago and remains active as detected

in this study. One possible cause of this idea would

be the combination of two factors. On the one hand,

there is the tendency to reproduce the reality in the

software structure, as it has been reported in several

papers [5, 26]. On the other hand, there is the quality

of software inheritance to express taxonomies [27].

From the software design point of view, the pre-
ference to inherit instead of delegating has two

drawbacks: it establishes very strong dependencies

and it can produce a very dangerous use of the

inheritance [27].

The ‘‘Overload of responsibilities in an element’’

has also been cited in otherworks, for example in the

case of objects [28] and in the case of the Data Flow

Diagrams [29]. Assigning appropriate responsibil-
ities to a software element is a difficult task. It

became evident in the case of the ‘‘Definition of a

concept through a property that is not related to the

concept’’. In the present study, there have also been

found elements with non cohesive responsibilities to

Pamela Flores et al.944

the concept and elements with more responsibility

than they should have had. Both overloads (cohe-

sive and non cohesive) could have been related to

the distribution and perception of complexity in the

design. We can think that one element is simpler

than two elements even if that single element is
internally more complex. However, the overload

may be linked to the absence of an element in

order to share responsibilities, for example,

‘‘Absence of a conceptGame in a game application’’,

expressed in this work. The reason for this absence

could be associated with the tendency to reproduce

the reality that omits intangible concepts because

they are not seen. In [13] students apply the real
world semantics to declare variables. Non cohesive

or disjointed overload could be a manifestation of

the idea of giving a high level of control to an

element. In any case, the overload harms the objec-

tives of industrial software development.

The idea of ‘‘Grant a high level of control to an

element’’ was not detected in the final exercises, for

this reason it was classified as a medium persistence
level. However, it could be concealed in a non

cohesive overload, as mentioned above. The idea

of giving a high level of control to an element could

be a lag or reflection of the hierarchical organization

of the modules in the Structured Design [30],

supported by the idea of [3], but criticized by [31].

In the first assignment explicitly appeared the idea

of Main, whereas later disappeared or got moder-
ated. In this case study, we observed that the control

level gradually decreases throughout the course.

The elements with high level of control rely heavily

on other elements, and are critical design points. In

summary, they are harmful.

The ‘‘Information dependency from other elements

to make decisions’’ is a strong idea of persistence. It

is possibly related to the structured view of the
software, which means functions that transform

data. This view appeared notably at the beginning,

for example with: ‘‘Separation of each concept into

two elements, one for data and another for functions’’,

the ‘‘Definition of classes as data’’ and ‘‘Definition of

an ID as an attribute of each element’’. Later, the

vision of separating data and functions got sof-

tened, whereas remained present the dependence
on information of another element tomake decision

or execute something. The dependence became

more evident in the elements of high level of control

and then more subtle when the control level got

reduced. The information dependence of another

element may be further influenced by the reproduc-

tion of the reality. It is difficult to assign power of

decision to a software element that ‘‘represents’’ a
passive element of the reality.

Also, it is interesting that some students applied

techniques to hide information by using interfaces

or by trying not to share internal details of the class,

in order to make designs of reduced dependency.

However they finally failed to meet the objective.

The idea that ‘‘Use of get() and set()’’ hides the
internal details of the class, is another possible

difficulty for achieving a software design with mini-
mal dependency between elements. The greater the

dependence is, the fewer conditions the software has

in order to be developed industrially.

The difficulty of managing lists is a persistent

problem that has been manifested in several nuan-

ces. For example, ‘‘Not being explicit about how or

where the lists are handled’’, ‘‘Absence of an element

that acts as container or insufficiency to define it’’.
Possibly, the cause of this problem is the significant

difference of the structured approachwith respect to

the object-oriented approach, where conceptually

there is no data and all elements are variables.

Recently, the work in [13] found out in their study

the lack of foundations in understanding the object

concept in students.

Around the inheritance and polymorphism, sev-
eral ideas have been found: ‘‘Inheritance used as

taxonomy’’, ‘‘Inheritance used to reuse code’’, ‘‘Pre-

ference to inherit a property rather than delegating’’,

‘‘Definition in inheritance of empty children equal to

their parent’’, ‘‘Partial use of inheritance with poly-

morphic purpose by adding in children particular

methods that a parent does not have, and are accessed

from outside’’, ‘‘Absence of an element that unifies

diversity’’, ‘‘Simultaneous decomposition by concepts

and properties’’. They all reveal difficulties in under-

standing and applying inheritance, which is ameans

of decomposition. Inheritance and polymorphism

do not exist in the structured approach, but add

complexity to the object-oriented approach. In the

ideas found, interesting conflicts are seen between

individual (particularize) and uniform treatment of
diversity.

In addition to the harmful ideas, there have also

been found positive ideas: ‘‘Interface definition to

uniform the diversity and hide information’’ and

‘‘Definition of a property that is invisible to the

outside elements’’. Both lead to the same objective:

to hide information, it means, to reduce the depen-

dency of one element with respect to the other
elements.

At the end of our study, some ideas have

remained without determining their degree of per-

sistence, because they have not been made explicit

later and we cannot ensure they have disappeared.

In theworst case,we havedecided to classify themas

potentially persistent. These ideas are primarily

associated with the Information Hiding Principle
[1] which has historically been a difficult technique

for understanding and applying [5, 32, 33, 34].

Recently, the work [12] has detected misconception

Persistent Ideas in Software Design Course: A Qualitative Case Study 945

about the above mentioned Principle. There is also

an idea related to the conventional concept of

coupling, related with the inheritance, but not

with the Principle. This idea implies that the depen-

dency comes from the direct connections between

concrete classes and the amount of relationships
between classes.

Finally, the second research question (Is there any

relationship between persistent ideas founded?) can

be answered positively since there are several rela-

tionships between those ideas,whichprobably share

common ideas and difficulties.

On the one hand there are the cultural aspects

attached to the reality and to the concrete, that
condition the vision of the person who designs. It

means, to reproduce the reality which is perceived;

omit what is not seen; particularize; classify every-

thing; request information and decide instead of

letting someone else decide. On the other hand,

there are difficulties of instruction. It means the

habit of the structured approach (functions that

transform data); failure in understanding and
applying Information Hiding Principle and failure

in understanding and applying of the object-

oriented approach.

To summarize, the specific ideas about software

design that have emerged in this study are signs of a

complex combination of the individual vision of the

world and the effect of tutoring in particular.

6. Conclusions and future work

The research questions for this case study were

answered. Persistent ideas found in this paper and

their relationships represent a source of problems at

an academical level, but also at a professional level.

The contribution of this work has been focused on
two aspects: the education about Software Design

and the professional impact on the industry.

At an education level, the research done raises to

the Software Design teacher the great challenge of

trying to correct or prosecute persistent ideas that

difficult the enforcement of the three modulariza-

tion criteria (managerial, product flexibility and

comprehensibility), which increase the efficiency at
a software development level. Consequently, it will

lead in improving the learning of the Software

Design.

At a professional level, this research warns the

software industry about the source of problems that

students have despite overcoming a bachelor

degree. This means that the persistent ideas are

possibly transferred to industry. As part of the
future work we have considered the research

around the design of activities or assignments in

order to detect, and correct persistent ideas that

difficult the learning of the Software Design.

Acknowledgements—This work is supported by SENESCYT
(Secretarı́aNacional deEducación Superior,Ciencia,Tecnologı́a
e Innovación) of Ecuador.

References

1. D. Parnas. On the criteria to be used in decomposing systems
into modules, Commun. ACM, 15(12), 1972, pp. 1053–1058.

2. G. Booch, Object-oriented Analysis and Design with Appli-
cations (2ndEd.). Benjamin-CummingsPublishingCo., Inc.,
Redwood City, CA, USA, 1994.

3. H. Simon, The architecture of complexity, In Proceedings of
the American Philosophical Society, 1962, pp. 467–482.

4. D. Parnas, Software aspects of strategic defense systems,
Commun. ACM, 28(12), 1985, pp. 1326–1335.

5. P. Flores, N. Medinilla and S. Pamplona, What do software
design students understand about information hiding?: A
qualitative case study, In Proceedings of the 14th Koli Calling
International Conference on Computing Education Research,
Koli Calling ’14, pp. 61–70. ACM, 2014.

6. T. Sirkiä and J. Sorva, Exploring programming misconcep-
tions: an analysis of student mistakes in visual program
simulation exercises, In Proceedings of the 12th Koli Calling
International Conference on Computing Education Research,
pp. 19–28. ACM, 2012.

7. J. Smith, A. Disessa and J. Roschelle, Misconceptions
reconceived:A constructivist analysis of knowledge in transi-
tion, The Journal of the Learning Sciences, 3(2), 1994, pp.
115–163.

8. J. Clement, D. Brown and A. Zietsman, Not all preconcep-
tions aremisconceptions: finding ‘anchoring conceptions’ for
grounding instruction on students’ intuitions, International
Journal of Science Education, 11(5), 1989, pp. 554–565.

9. Universidad Politécnica de Madrid, Degree Programme
Structure, Available online at http://emse.fi.upm.es/en/
estructura.html, 2015.

10. H. Danielsiek, W. Paul and J. Vahrenhold, Detecting and
understanding students’ misconceptions related to algo-
rithms and data structures. In Proceedings of the 43rd
ACMTechnical Symposium on Computer Science Education,
SIGCSE ’12, pp. 21–26. ACM, 2012.

11. [11] P. Hubwieser and A. Mühling, What students (should)
know about object oriented programming, In Proceedings of
the Seventh International Workshop on Computing Education
Research, ICER ’11, pp. 77–84. ACM, 2011.

12. N.Ragonis andM.Ben-Ari,A long-term investigation of the
comprehension of oop concepts by novices. 2005.

13. L. Kaczmarczyk, E. Petrick, P. East and G. Herman,
Identifying student misconceptions of programming, In
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE ’10, pp. 107–111.
ACM, 2010.

14. D. Hestenes, M. Wells, and G. Swackhamer, Force concept
inventory, The Physics Teacher, 30(3), 1992, pp. 141–158.

15. K. Sanders and L. Thomas, Checklists for grading object-
oriented cs1 programs: Concepts and misconceptions, In
Proceedings of the 12th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education,
ITiCSE ’07, pp. 166 –170, ACM, 2007.

16. M.McCracken, W. Newstetter and J. Chastine, Misconcep-
tions of designing: A descriptive study, SIGCSE Bull, 31(3),
1999, pp. 48–51.

17. L. Sudol and C. Jaspan, Analyzing the strength of under-
graduate misconceptions about software engineering, In
Proceedings of theSixth internationalworkshoponComputing
education research, pp. 31–40, ACM, 2010.

18. S. Merriam, Qualitative Research and Case Study Applica-
tions in Education, Revised and Expanded from Case Study
Research in Education, ERIC, 1998.

19. R. Stake et al. Case studies in science education, volume i:
The case reports, 1978.

20. S. Pamplona, N. Medinilla and P. Flores, Exploring mis-
conceptions of operating systems in an online course, In
Proceedings of the 13th Koli Calling International Conference

Pamela Flores et al.946

on Computing Education Research, Koli Calling ’13, pp. 77–
86, New York, NY, USA, 2013, ACM.

21. S. Pamplona, N. Medinilla and P. Flores, Assessment for
learning: A case study of an online course in operating
systems, International Journal of Engineering Education,
31(2), 2015, pp. 541–552.

22. J. Saldaña, The coding manual for qualitative researchers,
Number 14, Sage, 2012.

23. T. Muhr, ATLAS/ti—A prototype for the support of text
interpretation, Qualitative sociology, 14(4), 1991, pp. 349–
371.

24. Y. Lincoln and E. Guba, Naturalistic Inquiry, Volume 75,
Sage, 1985.

25. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen et al. Object-oriented modeling and design,
Volume 199, Prentice-hall Englewood Cliffs, 1991.

26. W. Haythorn, What is object-oriented design? JOOP, 7(1),
1994, pp. 67–78.

27. B. Liskov, Keynote address-data abstraction and hierarchy,
ACM Sigplan Notices, 23(5), 1988, pp. 17–34.

28. M. Monteiro, On the cognitive foundations of modularity,
2011.

29. E.YourdonandA.Armitage,Análisis estructuradomoderno,
Volume 5. Prentice-Hall, 1993.

30. E. Yourdon and L. Constantine, Structured design: Funda-
mentals of a discipline of computer program and systems
design, Volume 5, Prentice-Hall Englewood Cliffs, NJ, 1979.

31. T. DeMarco, Controlling software project, 1982.
32. E. Berard and M. Twain, Abstraction, encapsulation, and

information hiding, Essays on Object-Oriented Software
Engineering, 1, 1993.

33. D. Parnas, The secret history of information hiding, In
Software pioneers, pp. 398–409, Springer, 2002.

34. P. Rogers, Encapsulation is not information hiding, Java-
World.com, 5(18), 2001, pp. 01.

Pamela Flores is a Ph.D. Professor at Escuela Politécnica Nacional, Ecuador. She obtained her Ph.D. degree in Computer

Science from the Universidad Politécnica de Madrid (UPM), Spain. In that period, she was a member of the Decoroso

Crespo laboratory in UPM and teaching assistant in undergraduate and graduate subjects related to Software Design.

Before this, she got her Master degree in Information Technologies from UPM in 2011, and her Engineering degree in

Computer Systems fromEscuelaPolitécnicaNacional del Ecuador in 2005,where sheworked as a teaching lecturer for two

years. Her area of interest is Computer Science Education, with a particular emphasis on Learning in Software Design.

Nelson Medinilla is a Ph.D. Professor at Universidad Politécnica de Madrid (UPM). He is an Electrical Engineer with a

degree from the Universidad de la Habana, with a PhD in Information Technology from the Universidad Politécnica de

Madrid. He worked for 20 years as a professor at Instituto Superior Politécnico José Antonio Echeverrı́a in La Habana.

For the next 20 years, he taught various subjects related to software design at the Software EngineeringDepartment of the

Information Technology Faculty (Universidad Politécnica deMadrid). His areas of research include SoftwareDesign and

Computer Science Education.

Sonia Pamplona is Ph.D. Professor at Universidad a Distancia de Madrid, UDIMA. She is a Computer Engineer with a

Degree from the Universidad Politécnica de Madrid (UPM) and a Ph.D. in Computer Science from Universidad

Politécnica de Madrid. She has worked for over 20 years in different areas of Information Technology education. She

currently teaches undergraduate courses of Operating Systems and Human-Computer Interaction and a postgraduate

course ofMobile Learning. Her area of research is Computer Science Education, with a special interest in online learning.

Persistent Ideas in Software Design Course: A Qualitative Case Study 947

