
A Software Engineering Framework to Assist Instructors in

Eliciting Course Requirements*

AZEDDINE CHIKH and JAWAD BERRI
Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.

E-mail: {az_chikh, jberri}@ksu.edu.sa

This paper proposes a software engineering framework that aims to assist instructors in expressing their courses’

requirements. The framework allows an instructor to elicit his know-what and know-how knowledge in teaching a

course through a set of learning activities that are the building blocks of e-courses. The instructor’s expertise is elicited

through a graphical user interface that provides the necessary tools for producing a course description which is then

converted automatically into a course specification allowing software engineers and programmers to implement it as an

e-course.We anticipate that this framework would be very helpful for instructors to express their course requirements in a

systematic and convenient way. In this paper we present the framework and show by means of a case study related to a

systems analysis and design course, how this framework is used to produce the e-course specifications from the instructor

requirements.

Keywords: software systems requirements engineering; education engineering; elicitation; specification; course requirements; unit of
learning; activity; metadata

1. Introduction

The availability ofWeb 2.0 technologies promoting

interaction and collaboration has enabled new

forms of services to satisfy user needs in terms of

information, entertainment and social networking

[1]. The learning field has benefited a great deal from

these technologies enabling the creationof e-courses

in all fields. The digital learning scene engendered by
Web 2.0 technologies is becoming collaborative,

participatory, and non-linear. In this context Web

2.0 Learning is emerging as a new paradigm of

modern education [2]. The widespread use of learn-

ing management systems and the prevailing of

computer devices such as mobile smart phones

and tablet computers along with the availability of

wireless networks in urban spaces have urged
instructors to transit from the traditional face to

face learning towards more interactive forms of e-

learning [3]. Lots of options exist nowadays tomove

to e-learning, the goal is to motivate and interest

learners through effective participation in class [4].

However, it is not always easy for instructors to

embark in this transition and not all of themare able

to make the suitable choice with regard to the
technology that best fits the context of their courses.

Although lots of efforts have been deployed in

developing environments and standards to ease e-

learning adoption, there are still barriers that pre-

vent instructors from developing systematically e-

courses to support their teaching. A major obstacle

is that these technologies require an understanding

of the functionalities that are offered and a certain
level of computer literacy. While most of efforts in

education engineering have been focusing on using
technical tools to support instructors in teaching

and to facilitate the learning process for learners,

very little attention has been dedicated to support

instructors in the development of new courses

through an engineering methodology that frees the

instructor from the complexity of the technology

and lets him focus on the pedagogical side. The

development of e-courses remains a real burden for
instructors as it requires the creation of the learning

material and it necessitates from instructors to have

software engineering skills to be able to accomplish

the different phases of e-courses’ development.

Education engineering can help a great deal in

defining the different actors’ roles in e-learning.

Teachers are the appropriate actors to provide the

know-what and the know-howwhich represents the
expertise related to teaching a subject. The know-

what is the necessary knowledge related to a domain

and the know-how is about the way this knowledge

is dispensed to learners. Teachers should be solicited

to express their expertise in a seamlessmanner using

a well-established methodology to transfer their

expertise into a e-course. On the other side, software

engineers who master the technologies and who are
aware about the technical complexity of existing

tools should be requested to codify the expertise of

teachers into e-courses. The development of e-

courses needs to be considered as an engineering

processwith resources, actors, and afinal product to

be developed through a succession of steps that is

likely to be similar to the software development life

cycle [5]. Through this vision instructors are system
users who express their needs and software engi-

* Accepted 1 September 2015.956

International Journal of Engineering Education Vol. 32, No. 2(B), pp. 956–968, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.

neers are the developers of the e-course. Software

requirements engineering (SRE) is a discipline that

can help a great deal with the analysis phase in the

development life cycle of e-courses. SRE is the

process of identifying the users’ needs and docu-

menting these in a form that can be evaluated,
communicated and subsequently implemented [6].

This process includes three major phases: elicita-

tion, specification, and validation of software

requirements.

This paper proposes an activity based framework

which aims to elicit requirements in the field of

education engineering that is meant to be used by

instructors to help them express their needs in the
development of e-courses. This framework is based

on the concept of Learning Activity which is the

building block of instruction. Then the require-

ments are translated into specifications which are

used by software developers to implement e-

courses. We anticipate that this framework would

be very helpful for instructors to express their course

requirements in a systematic and convenient way
andwill allow them to focus on the pedagogical side

of course development. We show in a case study

related to a course on Systems Analysis andDesign,

how this framework is applied.

2. Background

2.1 Learning design

Instructional Design is the systematic development

of instructional specifications using learning and

instructional theory to ensure the quality of instruc-

tion [7]. It is the entire process of analysis of learning

needs and goals and the development of a system to

meet those needs. It includes development of
instructional materials and activities; and tryout

and evaluation of all instruction and learner activ-

ities.

The IMS Learning Design (IMS-LD) [8] specifi-

cation intends to represent the learning design (LD)

of units of learning (UoL) in a semantic, formal and

machine interpretable way. A UoL can be any

instructional or learning event of any granularity,
e.g. a course, a workshop, a lesson or an informal

learning event. A LD is defined as the description of

the learning process that takes place in theUoL.The

key principle in learning design is that it represents

the learning activities and the support activities that

are achieved by different actors (learners, instruc-

tors, tutors) in the context of aUoL. These activities

can refer to different learning objects (LO) that are
used in activities, and it can refer to services that are

used to collaborate and to communicate in the

learning process. The IMS-LD specification is

developed to meet some specific requirements:

1. Completeness: The specification must be able to

fully describe the learning process in a UoL,

including references to the digital and non-

digital LOs and services needed during the

process. This includes: (a) Integration of the

activities of both learners and staff members.
(b) Integration of resources (LOs and commu-

nication/collaboration services) used during

learning. (c) Support for both single and multi-

ple user models of learning. (d) Support for

mixed mode (blended learning) as well as pure

online learning.

2. Pedagogical expressiveness: The specification

must be able to express the pedagogical mean-
ing and functionality of the different data ele-

ments within the context of an LD. While it

must be sufficiently flexible to describe LDs

based on all kinds of pedagogies, it must

avoid biasing designs towards any specific ped-

agogical approach.

3. Personalization: The specification must be able

to describe personalization aspects within an
LD, so that the content and activities within a

unit of learning can be adapted based on the

preferences, portfolio, pre-knowledge, educa-

tional needs and situational circumstances of

users. In addition, it must allow the designer,

when desired, to pass the control over the

adaptation process to the learner, a staff

member and/or the computer.
4. Compatibility: The specification must enable

LDs to use and effectively integrate other avail-

able standards and specifications where possi-

ble, such as the IMS (imsglobal.org) and IEEE

LTSC (ltsc.ieee.org) specifications. The IMS

LearningDesignspecificationconsistsofseveral

components. First of all it consists of a concep-

tual model (an ontology) for the description of
teaching-learning processes which is expressed

asanUMLmodel. Inessencethemodelsaysthat

learnersperformasetof learningactivitiesusing

LOsandservices (activityenvironment) inorder

toattain someexplicitor implicit learningobjec-

tives. As a result of the activities, the learners

produce outcomes (e.g. reports, forum/wiki

contributions, etc.) that subsequently can be
used by others in their learning or support

activities (e.g. an instructor can provide feed-

back to a report written by a learner). Instruc-

tors, other staff members or peers can perform

support activities to help learners when needed.

The design can be static or adaptive, taken into

account the existing competencies, needs and

circumstances of the persons involved.

2.2 Activity based learning

Activity based learning is a paradigm of learning

A Software Engineering Framework to Assist Instructors in Eliciting Course Requirements 957

that focuses on the activity as the granular unit of

analysis. It is a milieu that nourishes peer to peer

learner interaction, collaboration and social com-

munication [9]. A learning activity stimulates cog-

nitive and social processes by placing learners into

the context of the real world allowing them to
communicate and search interdisciplinary domains

[10]. This paradigm fits very well with e-learning

which is inherently modular and interactive. Mod-

ularity of e-learning systems is expressed through

units of learning that are independent and autono-

mous allowing them to be exchanged and reused.

Interactivity is materialized by all the technology

enhanced learning environments that promote com-
munication and data exchange and provides hyper-

media resources for navigation [11]. Reusing

learning activities is an important feature of activity

based learning systems to exchange units of learning

seamlessly. Successful implementation of this fea-

ture faces two challenges namely: the activity’s

granularity and the technology used to represent

activities. The granularity is related to the activity
content; it is the level of finesse at which the activity

is described. Granularity needs to be characterized

uniformly through a unified model to allow activity

exchange between learning courses. For instance, an

activity can be coarse such as ‘‘Prepare a presenta-

tion about the greenhouse effect’’ or it can be fine

focusing on a very simple task such as ‘‘Add slide

numbers to the presentation’’. On the technical side,
reusing learning activities across different learning

systems and platforms presupposes that activities

are represented using common standards to allow

seamless search, exchange and integration. This is

possible if these environments are equipped with: (i)

the structural components required for the support

of learning activities, (ii) common ways for repre-

senting learning scenarios and (iii) the required
educational systems’ services [12].

An interesting implementation of the concept of

activity in e-learning is the system LAMS (Learning

Activity Management System) [13]. LAMS is a tool

for designing, managing and delivering online col-

laborative learning activities. It is designed as a

visual authoring environment for creating

sequences of learning activities. LAMS is very
interesting as it is based on activities which are the

basic learning chunks for the development of learn-

ing courses. As an implementation of the learning

activity concept, it provides a complete environ-

ment including various tools and technical facilities

to be used as a standalone system or to be combined

with other existing learning management systems

[14]. However, LAMS has a couple of limitations
which are: (i) the system is oriented towards the

design and management of learning sequences

based on activities. In other words, LAMS user

(author or instructor) is drove to start with the

design of learning activities and sequence of activ-

ities presupposing that he has done the basic and

essential homework that is to analyze the require-

ments of the course in terms of know-how where

knowledge and concepts are expressed, organized
and formalized; (ii) LAMS user is bound to express

the user’s know-how using the taxonomy of activ-

ities available in the system through the ‘‘Activity

Toolkit’’. Although the taxonomy is diversified

including a significant set of activities, these

cannot encompass all types of learning activities

that a user can think of; (iii) Sequencing of activities

is basic as it does not include the richness of relation-
ship semantics such as prerequisite and composi-

tion. Moreover, LAMS is not an open system for

coding or extending existing features.

3. Related work

Requirements engineering has been used in e-learn-
ing to solve strategic issues. Indeed the incorpora-

tion of e-learning into the curricula of traditional

higher education institutions involves many com-

plex issues such as strategic management decisions,

strategic information technology plans, change

management to enhance the stakeholders’ willing-

ness to participate, and course development [15].

The problem is how to successfully identify the key
processes for the adoption of e-learningwithin some

organization? The solution to this issue could be

brought by business consultants where the most

efforts would be spent on requirements elicitation.

Authors in [16] describe a methodology for require-

ments elicitation of traditional higher educational

environments in order to gain a comprehensive

understanding of its key processes. The authors
claim that such an understanding might be helpful

in the strategic planning and e-learning implementa-

tion that is both successful in achieving learning

outcomes, and are also completely integrated into

all key processes with positive reception from

stakeholders. The methodology uses the basic

underlying theoretical principles of Software

Requirements (RE). The methodology was
designed to accelerate the RE process and accord-

ingly reduce the initial development cost.

Scenarios have been advocated as a mean of

improving RE yet few methods or tools exist to

support scenario-based RE. Authors in [17]

reported a method and software assistant tool for

scenario-based RE that integrates with use case

approaches into object-oriented development. The
method and operation of the tool are illustrated

with a financial system case study. Scenarios are

used to represent paths of possible behavior

through a use case, and these are investigated to

Azeddine Chikh and Jawad Berri958

elaborate requirements. Scenario paths are auto-

matically generated from use cases. Scenarios are

validated by rule-based frames which detect proble-

matic event patterns. Authors in [18] proposed a

supporting collaborative requirements elicitation

framework using Focus Group Discussion Techni-
que. A prototype of Focus Group Discussion for

requirements elicitation tool, FGD-RElicit assist all

stakeholders (the course developer and the school

instructors) during the requirements elicitation pro-

cess.

Scenarios are used in [19] directly in the design

where the authors show how the Learning Design

(LD) Editor needs to perform two sets of functions:
allowing to create pedagogic scenarios and defining

the flowof activity alongwith the various branching

conditions. These are used either as a single design

or as a template. There is a quite distinct require-

ment that calls for an LD Editor to be able to

populate a design with specific resources and ser-

vices. In the former case there is a role of an ‘‘expert’’

who defines a pedagogic scenario, while in the latter
case it is often the instructor whowrites the scenario

with what is needed for a particular session. As

suggested in LD [20], modeling a learning design is

a three-stage process: informal modeling in nature

language, semi-formal modeling in UML activity

diagrams, and formal modeling in XML.Modeling

a learning design starts with elicitation. The goal of

elicitation is to acquire all information needed to
describe the desired learning design. Such process

information involves the objectives and context of

the learning design, the learning content and facil-

ities used in the learning process, the principal

entities such as roles and activities, and any relation-

ships among them in terms of workflow. It is

expected to describe behavior features of the process

(e.g., under which conditions an activity can start or
complete), if necessary and possible. In LD, it is

suggested to describe process information in a

structured manner.

4. Unit of learning development

In our approach of education engineering we pro-
pose a global method for developing a unit of

learning UoL (which can be a course, a module, a

lesson, etc.). This method is based on the Model

Driven Architecture (MDA) [21] which provides an

approach that uses models to represent UoL devel-

opment from requirements to business modeling to

technology implementations. MDA is a software

engineering framework that promotes visualizing,
storing, and exchanging software designs and

models which can then be used for the production

of documentation, acquisition specifications,

system specifications, technology artifacts and

executable systems. There, they can be accessed

repeatedly and automatically transformed by tools

into schemas, code skeletons, test harnesses, inte-

gration code, and deployment scripts for various

platforms [22]. The development of a UoL includes

three main phases: UoLAnalysis, UoLDesign, and
UoL Implementation.

1. UoL Analysis: this phase starts with the elicita-

tion step where the instructor provides a meta-
data based description of his UoL. This

description will be later translated into a UoL

specification, which needs to be validated.

2. UoLDesign: this phase aims to design aUoL. It

aims to create the IMS Content Package: a

formal model represented in LD (Learning

Design) has to be specified in the form of

XML. The creation of a UoL involves the
creation of a learning design and also the

bundling of all its associated resources, either

as files contained in the unit or as web refer-

ences, including assessments, learningmaterials

and learning service configuration information.

As a result, a packaging mechanism is used to

pack the learning design and its associated files

into a single container the IMS Content Pack-
age.

3. UoL Implementation: the IMSContent Package

will serve as the main input for this phase. This

requires a learningmanagement systemor some

dedicated software environment that is able to

parse the IMS Content Package.

5. Analysis of a unit of learning

The MDA approach decouples the requirements
analysis phase, which goal is to express the require-

ments of UoLs, from the design and implementa-

tion phases. This approach prevents the instructor

from being biased by any designmethod or tool and

avoids turning the requirement analysis phase into a

pure implementation and coding task. Also the

proliferation of learning management systems and

the popularity and availability of Web 2.0 technol-
ogies in e-learning deviates sometimes instructors

from their core pedagogical function that is to

facilitate, prompt and guide the learning process

towards expressing their needs in terms of what the

technologies offer and what are its limitations. This

work focuses on the requirement analysis phase as it

facilitates the expression of the instructor’s expertise

in an intuitive way through activities description.
Figure 1 illustrates the three steps of the require-

ments analysis life cycle for a given UoL.

5.1 Elicitation

In an activity-based learningwhere the activity is the

A Software Engineering Framework to Assist Instructors in Eliciting Course Requirements 959

building block of instruction, elicitation consists in

describing the activities included in the UoL and

their sequencing. We define a learning scenario as a

series of learning activities to be achieved by actors;

using learning objects, tools and services. It reflects
the instructor’s pedagogy in delivering the UoL.

The elicitation step handles the question of how

instructors’ needs could be represented as a UoL

description (user requirements). It relies mainly on

the instructor’s knowledge, teaching experience,

best practices in one side and the UoL material

(course description; resources/ references. . .) in

another side. This step is meant to help instructors
towrite user requirements using the activity descrip-

tion model (ADM).

ADM is useful because (1) it forces instructors to

think about how learners will learn while they are

exposed to the UoL; (2) it also helps building a

testing dataset at the end of the UoL implementa-

tion phase. The ADM, which is based on activities,

allows to describe theUoLat several levels as shown

in Figure 2:

1. UoL scenario (level 0): the instructor describes

first themain activities of theUoL. Examples of

main activities could be: doing a course project;

summarizing a book chapter; simulating a pro-

cess; comparing two design approaches.
2. Activity structure (levels 1 to n): is considered as

a recursive breakdown of the UoL scenario.

Indeed, each main activity from UoL scenario

should be further detailed into an activity

structure composed of sub-activities. Examples

of sub-activities of the main activity ‘‘doing a

course project’’ could be: analyzing the pro-

blem; designing the solution; and implementing
the solution. Recursively, each sub-activity

could in turn be broken down into smaller fine

grain activities giving rise to a structure at a

lower granularity level.

Each learning activity in the ADM (Fig. 3) is
identified with a unique identifier (ID) and is

expressed in a narrative way. For each activity the

instructor specifies a set of metadata: (i) Instruc-

tional metadata such as the activity type; the learn-

ing situation; the prerequisite knowledge; the

objectives and outcomes; (ii) Quality metadata

related to quality such as usability; reliability; main-

tainability, and performance; (iii) Components
metadata identifying the required activity’s compo-

nents: learning objects; services/tools; and actors;

and (iv) Relationship metadata defining the rela-

tionships between activities.

Azeddine Chikh and Jawad Berri960

Fig. 1. Requirements analysis of a UoL.

Fig. 2.Multi-level UoL description.

� Instructional metadata

1. Short description.

2. Activity category: individual, collaborative

or cooperative.

3. Activity type: learning activity or support

activity.

4. Activity granularity: main activity (0),

atomic (level of activity structure).
5. Objectives: Learning outcomes of the learn-

ing activity.

6. Preconditions: what must be true before the

learning activity begins.

7. Post conditions: what must be true when the

learning activity is completed?

8. Interactivity Level.

9. Difficulty.

These two last attributes are adopted from LOM
metadata

� Quality metadata

1. Usability;

2. Reliability;

3. Performance. . .

� Components metadata

1. Description of learning objects used as

resources in the learning activity.

2. Description of actors/roles (learner, tutor. . .)

involved in the learning activity.

3. Description of tools/services used in the

learning activity

� Relationship metadata

If a learning activity invokes or includes other

activities then these will be linked to it by a set of

possible relationships defined within the frame-

work:

1. The present activity is a prerequisite for

another one.

2. The present activity is a part of another one.
3. The present activity is an alternative for

another one.

5.2 Specification

The UoL description (User requirements) repre-

sented in ADM will further be exploited to deter-

mine the UoL specification (Course requirements).

The derivation of course requirements from user

requirements is automatic. One advantage of this

derivation is that itwill contribute to better structur-

ing course requirements. The UoL specification

accommodates the required activities and their
ordering as well as the potential constraints related

to the involved actors, and the available resources

and services. It includes functional and non-func-

tional requirements:

1. Functional course requirements:

An example of functional course requirements for

a Systems Analysis and Design course is given

below:

FR1: Learners in this UoL should achieve the

following learning activity: Add the short descrip-

tion of the activity.

2. Non-functional course requirements:

We look at each of the previous functional course

requirements in turn, and consider whether there

are any non-functional requirements.
They encompass the following categories:

� Instructional requirements:

An example of instructional requirements for a

Systems Analysis and Design course is given

below:

NFR1: Interactivity in FR1 shall be: Add the inter-

activity level of the activity from ADM

� Quality requirements: usability; reliability;

performance. . .

Examples of Quality requirements for a Systems
Analysis and Design course are given below:

(a) Usability requirement:

NFR2: Usability in FR1 shall be: Add the usabil-
ity of the activity from ADM

(b) Reliability requirement:

NFR3: Reliability in FR1 shall be: Add the

reliability of the activity from ADM

A Software Engineering Framework to Assist Instructors in Eliciting Course Requirements 961

Fig. 3. The ADM structure

(c) Performance requirement:

NFR4: Performance in FR1 shall be: Add the

performance of the activity from ADM

� Components requirements:

Examples of components requirements for a Sys-
tems Analysis and Design course are given below:

(a) Resources requirements: learning objects;

NFR5: The activity in FR1 shall make use of the

following Learning objects: Add the list of LOs

from ADM

(b) Services requirements: tools/devices and

other services;

NFR6: The activity in FR1 shall make use of the

following services: Add the list of services from

ADM

(c) Actors requirements: learners; tutors, other

staff. . .

NFR7: The activity in FR1 shall involve the

following actors: Add the list of actors from

ADM

� Relationships requirements:

An example of Relationships requirements for a

Systems Analysis and Design course is given below:

NFR8: The activity in FR1 is a prerequisite to: Add

the list activities from ADM

5.3 Validation

This step aims to ensure that the UoL specification

obtained in step2 reflects well the real instructors’

needs initially expressed as UoL description repre-

sented in ADM (step1). ADM is very efficient

during this step to test and validate the user require-

ments.

6. Framework architecture

In order to assist the instructor in eliciting the course

requirements, the proposed framework provides a

graphical user interface which offers an ADM

template for activity description, a set of sample

activities and activity structures, as well as a set of

UoL scenarios. Course requirements elicitation is a
cognitive activity that consists in expressing the

know-what and know-how related to a course.

The know-what is the necessary knowledge about

the course content including the concepts, the

competencies and skills that need to be grasped by

learners. The know-how is the way to dispense the

knowledge to learners which includes the pedago-

gicalmethods and the technologies used.The frame-
work has been designed so that to be used by any

instructor and hence does not require a high level of

IT literacy.

The framework’s architecture presented inFigure

4 includes fourmodules: (1)UDE (UoLDescription

Editor); (2) UDB (UoL Description Browser); (3)

UDM (UoL Description Manager); (4) USG (UoL

Specification Generator).

6.1 UoL description editor

TheUoLDescription Editor (UDE)module, which

is basedon theADM,aims to create andupdate user

requirements, during the step 1 of the requirements

analysis life cycle. It allows creating new activities

and updating existing ones. Activities’ related data

is stored within a repository. Each activity of the

UoL is obtained by instantiation of the concept of

activity in ADM. The UDE module offers a con-
venient interactive working space for an efficient

elicitation of user requirements. It allows instruc-

tors writing a short description of the activity,

specifying its different activity components

(resources, services and actors), describing its

instructional characteristics as well as its quality

features. Once activities are finalized the instructor

Azeddine Chikh and Jawad Berri962

Fig. 4. The framework architecture.

can define links between activities that define the

possible sequence between them.

Activities in the repository can be reused into

other UoLs. In such case they are retrieved and

probably updated to adapt to the new UoL. The

resulting activities are stored in the repository as
new instances. Reusing activity instances to develop

aUoL is a bottomup approachwhere the elicitation

starts by the activity instances that are then adjusted

to fit with the UoL at hand. This approach is very

convenient for the development of compatible

UoLs, for example belonging to the same course,

and may save significant time and efforts since it

does not require to start over from scratch for every
UoL. The second approach is to describe an activity

by using theADMrequiring a new description from

scratch. Both approaches might be used in the

elicitation of a given course. Hence for developing

the same UoL, the instructor can describe activities

either from scratch using the ADM, or by reusing

existing activities from the repository.

6.2 UoL description browser

TheUoLDescription Browser (UDB) module aims

to create and update UoL scenarios or activity

structures. This process follows a top-down

approach. When the instructor has finished expres-

sing the main activities of the UoL in the UDE, he

starts building the UoL scenario (an interconnected
set of the main activities). An activity structure (an

interconnected set of sub-activities) could be built

for each main activity of the previous level. The

resulting sub-activities could be recursively broken

down into others.

We leave some freedom to the learners bymaking

the activity structure very flexible. Indeed we adopt

the point of view of the authors in [23] who consider
a learning activity as intrinsically evolutionary and

unpredictable. The instructor can only build an a

priori description of what he wants it to be; he must

then have the means of modifying and adapting it

dynamically, whereas it is being carried out. This

supposes that he has at his disposal the means of

observing the activity.

The UoL scenario or the activity structure inte-
grates all the activities (sub-activities) defined in the

UDE working space considering all the constraints

defined in the ADM. The integration is done by the

UDB which helps the instructor to create a new

scenario or structure for a given UoL or activity.

When building aUoL scenario or activity structure,

the instructor makes use of activities or sub-activ-

ities using the drag and drop technique offered by
the GUI. He can choose the suitable synchroniza-

tion mode parallel or sequential. Whether in the

creation of a UoL scenario or an activity structure,

the UDB ensures that the activity ordering satisfies

the constraints described by the relationship meta-

data category in ADM. Finally the UoL scenario

and the activity structure can then be displayed to

the user. They can be modified by the instructor in

case he wishes to reorder the activities sequence or

simply add or remove some activities. This cycle can
be repeated as long as the user is not satisfied with

the current UoL scenario or activity structure.

When the user agrees he can choose to accept the

UoL scenario or activity structure which is then

saved in the repository. UoL scenarios and activity

structures are the building blocks of a course and

hence can be adapted and reused.

Reusing these blocks in new similar UoLs is very
attractive and does not require lots of develop-

ments. New functions however need to be added

to the graphical user interface to allow their inter-

active adaptation in the UDE working space.

The browsing function allows accessing the user

requirements through dynamic hyperlinks. In fact

the repository is dynamically converted into a hyper

document.

6.3 UoL description manager

The UoL Description Manager (UDM) module

handles the access to the existing user requirements.

It includes an interactive Graphical User Interface

(GUI) that facilitates retrieving, browsing, deleting,

and disseminating user requirements.
User requirements, which are represented in

ADM with a unique identifier, can be listed in the

GUI and can be reordered according to a set of

criteria extracted formADMmetadata. Hence they

allow the instructor to browse them in a convenient

way. The Search function allows the instructor to

retrieve user requirements using a graphical query

editor.

6.4 UoL specification generator

The UoL Specification Generator (USG) module is

used in the specification step of the requirements

analysis life cycle. It aims to automatically generate

the course requirements from the user requirements

elicited in step 1. In fact a first draft of course
requirements is generated using the template of

course requirements presented is Section 5.

For functional course requirements, the short

description of a learning activity is extracted from

the instructional metadata of ADM and inserted to

the following template:

FRi: Learners in this UoL should achieve the
following learning activity: short description to

insert from ADM

For non-functional course requirements informa-

tion is extracted from the four metadata categories

A Software Engineering Framework to Assist Instructors in Eliciting Course Requirements 963

of ADM and inserted to the corresponding tem-
plate:

For example for the actors requirements, the list

of actors, which should be involved in a learning

activity, is extracted from the componentsmetadata

of ADM, related to actors and inserted to the

following template:

NFRj: The activity in FRi should be involve the

followingactors:List ofactors to insert fromADM

In fact, UoL description using ADM is represented

in the repository with XML. It respects a predefined
XML schema. Then the UoL specification is

obtained through XSLT, which transforms the

logical XML content of the UOL, into a formatted

content in HTML.

Figure 5 shows the DTD (Document type Defini-

tion) of the ADM model. This DTD is written in a

formal syntax that explains precisely which ele-

ments may appear where in the document and
what the elements’ contents and attributes are. It

helps to specify what ADM does and doesn’t allow.

A validating parser will compare an XML instance

of ADM to its DTD and lists any places where the

document differs from the constraints specified in

the DTD.

Figure 6 shows the XSLT (Extensible Stylesheet

Language Transformations) that specifies the rules
by which one valid XML instance of ADM is

transformed into an HTML document readable

on the web-browser. It contains a set of template

rules. Each template rule has a pattern and a

template. An XSLT processor compares the ele-

ments and other nodes in the inputXML instance of

ADMto the template-rule patterns in the stylesheet.

The following figure is limited to functional require-
ments.

7. Case study

The following case study is used to illustrate how

instructor’ needs are expressed using the framework

and how the needs are then represented in ADM.

Systems Analysis and Design (IS240) is a core

course offered to students in the second level at the

department of information systems. The course

includes 12 UoLs which are completed in one
semester. We will focus on the fourth UoL which

is about Domain Modeling [24]. In UoL4, students

learn how to read, interpret, and create a domain

model class diagram. The instructor who usually

teaches this course organizes UoL4 into a set of

activities including some collaborative activities.

These activities are listed in Table 1.

Azeddine Chikh and Jawad Berri964

Fig. 5. XML schema of ADM (ADM.dtd).

Fig. 6. XSLT for generating UoL specification (Functional requirements)

A Software Engineering Framework to Assist Instructors in Eliciting Course Requirements 965

Table 1. UoL description (User requirements) using ADM

Course : Systems Analysis and Design
Unit of Learning: Domain Modeling
ID: IS240-1400301

Activitiy Instructional metadata Quality metadata
Components
metadata

Relationship
metadata

1. Identifying classes
using brainstorming

� Short description: use a checklist of all of
the usual types of things typically found
and perform brainstorming to identify
domain classes of each type

� Activity category: collaborative

� Activity type: learning

� Activity granularity: 0

� Objectives: Identify domain classes
needed in the system

� Precondition: students know how to
identify use cases to define functional
requirements

� Post condition: students are able to use
the brainstorming technique to identify
classes.

� Interactivity Level: High

� Difficulty: Difficult

Reliability:

� Steps of the
brainstorming
technique should
be respected

� Identified classes
should be
meaningful

Performance:

� Identifying classes
from a simple case
study (1 page)
should not exceed
45 mn.

Resources:

� Brainstorming
technique
definition

� brainstorming
technique steps

� brainstorming
technique
application sample

Actors/roles:

� Groups of learners

� Users from
industry

� Tutors

Tools/services:

� Checklist on
classification of
things

2. Identifying classes
using nouns

� Short description: Identify all of the
nouns that come up when the system is
described and determine if each is a
domain class or an attribute

� Activity category: individual

� Activity type: learning

� Activity granularity: 0

� Objectives: Identify domain classes
needed in the system

� Precondition: students know how to
identify use cases to define functional
requirements

� Post condition: students are able to use
the noun technique to identify classes.

� Interactivity Level: Medium

� Difficulty: Easy

Reliability:

� Steps of the noun
technique should
be respected

� Identified classes
should be
meaningful

Performance:

� Identifying classes
from a simple case
study (1 page)
should not exceed
30 mn.

Resources:

� Noun technique
definition

� Noun technique
steps

� Noun technique
application sample

Actors/roles:

� Learner

� Tutor

Tools/services:

� Wordnet

� Activity 2 is an
alternative for
Activity 1

3. Representing
classes

� Activity category: individual

� Activity type: learning

� Activity granularity: 0

� Objectives: Represent a class in UML

� Precondition: students know how to
identify a class

� Post condition: students are able to
represent a class in UML.

� Interactivity Level: Medium

� Difficulty: Easy

Reliability:

� Classes
represented in
UML should be
correct

Resources:

� Rules of class
representation in
UML

� Samples of classes

Actors/roles:

� Learner

Tools/services:

� Power Designer
tool

� Activity 1 is a
prerequisite for
Activity 3.

� Activity 2 is a
prerequisite for
Activity 3.

4. Representing
associations

� Short description: Identify all of the
nouns that come up when the system is
described and determine if each is a
domain class or an attribute

�
.
.

�
.
.

� Activity 3 is a
prerequisite for
Activity 4.

5. Representing
inheritance

� Short description: Identify all of the
nouns that come up when the system is
described and determine if each is a
domain class or an attribute

�
.
.

�
.
.

� Activity 3 is a
prerequisite for
Activity 5.

6. Representing
aggregation and
composition

� Short description: Identify all of the
nouns that come up when the system is
described and determine if each is a
domain class or an attribute

�
.
.

�
.
.

� Activity 3 is a
prerequisite for
Activity 6.

7.1 Elicitation

In order to illustrate the instructor’s work in

describing a UoL we focus on eliciting a particular

activity in UoL4 that is activity 3 ‘‘Representing
classes’’. This activity consists in representing a class

in UML. Representing classes is very helpful for

students in modeling. This activity clarifies the

concept of class and helps students mastering its

graphical representation usingUML.For this activ-

ity, the instructor did not create a description from

scratch. Instead, he has chosen to reuse a similar

activity done previously in a course about software
engineering (IS324). Hence, the activity description

is retrieved, is adapted and plugged into theworking

space as part of UoL4. The instructor has changed

the name of this activity and specified the prerequi-

site constraint: that is to be sequenced after activities

1 and 2.

7.2 XML representation

Figure 7 shows the XML file that represents the

ADM instance related to the Domain Modeling

UoL. It is valid regarding the ADM DTD that it

includes. Everything in this instance must match a

declaration in the DTD

Figure 8 shows an XSL output of the UoL4

specification, which is generated by application of
the XSLT (Fig. 6) on the XML instance of the UoL

4 description (Fig. 7). It is a set of six functional

requirements corresponding to the six activities of

UoL4 described in the case study.

7.3 Discussion

Expressing the instructors’ needs using the pro-
posed framework revealed many interesting

points. First, focusing at an early stage of the

course development exclusively on expressing the

needs decouples the analysis from the course design

and frees the instructor from thinking about the

technology requirements and the available tools.

Second, while observing the instructor at work in

this analysis phase, it was clear that workingwith an
interactive framework with the possibility to add

and remove activities and to refine them through a

set of cycles has led to the creation of activities that

are very well articulated in the UoL. Third, the

existence of activity instances has eased and expe-

dited the instructor’s task by just reusing existing

activities which can be adjusted and plugged in the

UoL. Last, the generator of the learning scenario is

Azeddine Chikh and Jawad Berri966

Fig. 7. UoL 4 description using ADM (XML instance).

Fig. 8. XSL output of course UoL 4 specification (functional requirements).

a tool that helped the instructor reorganizing and

testing the learning scenario sequence that best fit

the students’ background and optimizing the time

allocated to each activity.

8. Conclusion

The software engineering framework proposed in
this paper aims at supporting instructors during the

analysis phase of e-course development. Instructors

are solicited to provide their expertise as learning

activities through a convenient graphical user inter-

face.Hence the focus of the instructor is to provide a

description of UoLs related to the e-course which

are then converted automatically into specifications

for further design and implementation.
Current work is focusing on enhancing the gra-

phical user interface to provide more interactivity

for the user and to allow reusing of UoLs the same

way as activities are reused. Future work will

emphasize on coupling the framework with the

IMSLD in order to automatically generate a first

design draft of UoLs. The specification generated

for an e-course that complies with the DTD can be
mapped to feed most of the categories of the

IMSLD resulting in the complete e-course design.

Also we are investigating the use of domain and

learning design ontologies in the elicitation phase in

an effort to standardize the UoL description, to

enforce interoperability, and allow them to be

shared and reused by communities of instructors.

Acknowledgements—This work was supported by the Research
Center of the College of Computer and Information Sciences,
King Saud University, Project # RC120913. The authors are
grateful for this support.

References

1. L. A. Mills, G. Knezek and F. Khaddage, Information
seeking, information sharing, and going mobile: three
bridges to informal learning, Computers in Human Behavior,
32, 2014, pp. 324–334.

2. M. Wang, Integrating organizational, social, and individual
perspectives in Web 2.0-based workplace e-learning, Infor-
mation Systems Frontiers, 13(2), 2011, pp. 191–205.

3. A. Garcia-Cabot, E. Garcia-Lopez, L. de Marcos, L.
Fernandez and J-M Gutierrez-Martnez, Adapting Learning
Content to User Competences, Context and Mobile
Device using a Multi-Agent System: Case Studies, The
International Journal of Engineering Education, 30(4), 2014,
pp. 937–949.

4. D. Sampson, J. M. Spector, I. Aedo-Cuevas andN. S. Chen,
Editorial on current advances in learning technologies,
educational technology & society journal, 15(4), 2012.

5. I. Sommerville, Software engineering, Pearson Education,
2011.

6. B. A. Nuseibeh and S. M. Easterbrook, Requirements
engineering: a roadmap, in A. C. W. Finkelstein (ed), The

future of Software Engineering, Companion volume to the
proceedings of the 22nd International Conference on Soft-
ware Engineering, ICSE’00, IEEE Computer Society Press,
2000.

7. What Is Instructional Design?, http://www-personal.umich.
edu/�jmargeru/prototyping/design_definition.html,
Accessed on 10/2/2015.

8. IMSLD (2003). IMS Learning Design. Information Model,
Best Practice and Implementation Guide, Binding docu-
ment, Schemas. http://www.imsglobal.org/learningdesign/
index.cfm, Accessed on 20/2/2015.

9. H. Jonassen, Learning as activity, Educational Technology,
42(2), 2002, pp. 45–51.

10. S. S. Liaw, H. M. Huang and G. D. Chen, An activity-
theoretical approach to investigate learners’ factors toward
e-learning systems, Computers in Human Behavior, 23, 2007,
pp. 1906–1920.

11. P. Godfrey, R. D. Crick and S. Huang, Systems Thinking,
Systems Design and Learning Power in Engineering Educa-
tion, The International Journal of Engineering Education,
30(1), 2014, pp. 112–127.

12. D. G. Sampson and P. Karampiperis, Towards next genera-
tion activity-based learning systems, International Journal on
E-Learning, 5(1), 2006, pp. 129–149.

13. LAMS Website, Learning Activity Management System,
http://lamsfoundation.org/index.htm, Accessed on 25/2/
2015.

14. J. Dalziel, Implementing learning design: the learning activ-
ity management system (LAMS), Proceedings of the 20th
annual conference of the Australasian society for computers in
learning in tertiary education (ASCILITE), Adelaide, Aus-
tralia, 7–10 December, 2003, pp. 593–596.

15. R. Koper and B. Olivier, Representing the learning design of
units of learning, Educational Technology & Society, 7(3),
2004, pp. 97–111.

16. E. Cloete, A. V. D. Merwe and L. Pretorius, A process
modeling approach to requirements elicitation to incorpo-
rate e-learning as a core learning strategy, Proceeding of the
seventh world conference on integrated design and process
technology, Austin, Texas, 2003.

17. A.G. Sutcliffe,N.A.M.Maiden, S.Minocha andD.Manuel,
Supporting scenario-based requirements engineering, IEEE
transactions on software engineering, 24(12), 1998, pp. 1072–
1088.

18. M. K. Zarinah and S. S. Siti, Supporting collaborative
requirements elicitation using focus group discussion tech-
nique, International Journal of Software Engineering and Its
Applications, 3(3), 2009, pp. 59–70.

19. R.Koper andC. Tattersall,Learning design—Ahandbook on
modeling and delivering networked education and training.
Springer-Verlag, Berlin, Heidelberg, 2005.

20. R. Koper and Y. Miao, Using the IMS LD standard to
describe learning designs, in L. Lockyer, S. Bennet, S.
Agostinho and B. Harper (eds), Handbook of research on
learning design and learning objects issues, applications and
technologies, IGI Global, Hersey, 2008, pp. 41–86.

21. A. Kleppe, J. Warmer and W. Bast, MDA explained. The
model driven architecture: practice and promise, Addison
Wesley, 2003.

22. Object Management Group—Model Driven Architecture
(MDA) MDA Guide rev. 2.0 OMG Document ormsc/
2014-06-01, http://www.omg.org/cgi-bin/doc?ormsc/14-06-
01, Accessed on 12/2/2015.

23. C. Martel, L. Vignollet, C. Ferraris, J. P. David and A.
Lejeune, LDL: an EML alternative, Proceedings of the Sixth
International Conference on Advanced Learning Technolo-
gies—ICALT, Kerkrade, The Netherlands, 2006.

24. J.W. Satzinger,R.B. JacksonandS.D.Burd, Introduction to
systems analysis and design, 6th edition, Cengage learning,
2012.

A Software Engineering Framework to Assist Instructors in Eliciting Course Requirements 967

Azeddine Chikh is faculty member at King Saud University—Saudi Arabia. Prior to joining KSU, he worked as Chair of

the Computer Science Department at University of Tlemcen, Algeria. He holds a PhD in Information Systems from

National Institute of Computer Sciences in Algeria and Paul Sabatier University in France in 2004, a Masters in

Information Systems from National Institute of Computer Sciences in Algeria 1994, a Masters in e-learning from

Switzerland in 2007, and a graduate certificate in systems engineering from theUniversity ofMissouriRolla,USA, in 2003.

Heworked as a researcher at the European project « PALETTE: Pedagogically sustainedAdaptive LEarning Through the

exploitation of Tacit and Explicit knowledge ». His research interests include learning design; communities of practice and

social networks; document reuse; ontologies and semantic web; and software requirements engineering.

Jawad Berri is faculty member at King SaudUniversity— Saudi Arabia. He received his Ph.D. in Computer Science from

Paris-Sorbonne University in France in 1996. Jawad’s research interests focus on context-aware web systems, learning

technologies and natural language processing. He has been involved in many projects related tomobile learning, semantic

web, automatic summarization, web information filtering andmobile agents for web information discovery.Heworked as

a researcher at the CNRS – the French National Research Center, the Computer Science Institute at the University of

Zurich – Switzerland and Sonatrach – the Algerian Petroleum and Gas Corporation. Jawad’s contributions in research

projects in the industry and academia led to the publication of papers in numerous journals and conferences. Jawad is a

senior member of the IEEE.

Azeddine Chikh and Jawad Berri968

