
A Radial Basis Function Neural Network for Predicting the

Effort of Software Projects Individually Developed in

Laboratory Learning Environments*

CUAUHTÉMOC LÓPEZ-MARTÍN1, IVICA KALICHANIN-BALICH2,

ROSA LEONOR ULLOA-CAZAREZ3 and NOEL GARCÍA-DÍAZ4

1,2,3 Universidad de Guadalajara, CUCEA, Periférico Norte N8 799, Núcleo Universitario Los Belenes, P.O. Box 45100,
Zapopan, Jalisco, México.
4 Universidad de Colima, FIME, P.O. Box 28400, Coquimatlán, Colima, México.
4 Instituto Tecnológico de Colima, Avenida Tecnológico No 1, P.O. Box 28976, Villa de Álvarez, Colima, México.

E-mail: 1 cuauhtemoc@cucea.udg.mx, 2 ivicak@cucea.udg.mx, 3 rosi_ulloa@cucea.udg.mx, 4ngdiaz@ucol.mx

Prediction techniques have been applied for predicting dependent variables related to Higher Education students such as

dropout, grades, course selection, and satisfaction. In this research, we propose a prediction technique for predicting the

effort of software projects individually developed by graduate students. In accordance with the complexity of a software

project, it can be developed among teams, by a team or even at individual level. The teaching and training about

development effort prediction of software projects represents a concern in environments related to academy and industry

because underprediction causes cost overruns, whereas overprediction often involves missed financial opportunities.

Effort prediction techniques of individually developed projects have mainly been based on expert judgment or based on

mathematical models. This research proposes the application of a mathematical model termed Radial Basis function

Neural Network (RBFNN). The hypothesis to be tested is the following: effort prediction accuracy of a RBFNN is

statistically better than that obtained fromaMultiple LinearRegression (MLR).The projectswere developedby following

a disciplined development process in controlled environments. The RBFNNandMLRwere trained from a data set of 328

projects developed by 82 students between the years 2005 and 2010, then, the models were tested using a data set of 116

projects developed by 29 students between the years 2011 and first semester of 2012. Results suggest that aRBFNNhaving

as independent variables new and changed code, reused code and programming language experience of students can be

used at the 95.0% confidence level for predicting the development effort of individual projects when they have been

developed based upon a disciplined process in academic environments.

Keywords: laboratory learning environments; software development effort prediction; radial basis function neural network; multiple
linear regression

1. Introduction

The use of computational prediction models has

been proposed inside the Engineering Education

and Computer Science Learning [1]. These models

have been applied in Higher Education Institutions

(HEI) by predicting dependent variables regarding

students who withdraw before completing a course

[2], course enrolling [3], scores on final comprehen-

sive exam [4], student perception in values of satis-
factory, neutral and unsatisfactory [5], affective

state during an online self-assessment test [6], final

grades in a course [7], students who pass or fail the

course in terms of the average score for midterm

and/or final examinations [8–9], student responds in

yes-no questions in a survey (‘‘I am satisfied with

this class’’, ‘‘This course contributed to my educa-

tional development’’, ‘‘This course contributed to
myprofessional development’’’, ‘‘I am satisfiedwith

the level of interaction that happened in this

course’’, ‘‘In the future, I would be willing to take

a fully online course again’’) [10], student scores

based upon comprehensive basic sciences exam,

comprehensive pre-internship exam, and medical

school Grade Point Average (GPA) [11], the aver-

age of grades obtained by student at each scholar

year [12], teacher scores on a summative assessment

based on capstone teaching event [13], graduate

who is an alumni association member [14], student
qualified for the first step of themedical exam after 2

years [15], as well as academic motivation scale

involving intrinsic motivations (motivation to

know, to accomplish things, to experience stimula-

tion) and extrinsic motivations (external, intro-

jected, and identified regulation) [16].

Software Engineering Education and Training

for HEI suggest the application of principles, meth-
ods, processes and technology associated with soft-

ware engineering theory and practices to the

development of a software product by a student

who individually develops a software project [17].

Individual processes in software development

represent a concern for managers because unless

software developers have the capabilities provided

by individual training, they cannot properly sup-
port their teamsor consistently and reliably produce

* Accepted 1 September 2015.982

International Journal of Engineering Education Vol. 32, No. 2(B), pp. 982–994, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.

quality products [18]. It has implied that several

studies have addressed their approach to analyze

the performance of students from an individual

point of view [19–25]. One of the individual prac-

tices in software engineering education and training

is the software development effort prediction start-
ing with the development of small projects to be

integrated to large systems [17]; actually, effort

prediction is one of the three main practices used

for training students at personal level, the others

two are related to software defects and software size

[23].

Creating a highly accurate and reliable model for

predicting the development effort of software pro-
jects is a continuous concern of researchers and

software managers [26] because bad predictions

may address to poor planning, low profitability,

and, consequently, products with poor quality. At

date, researchers have approached their efforts to

(1) determinewhich technique has the greatest effort

prediction accuracy, or (2) propose new or com-

bined techniques that could provide better predic-
tions [27–28].

The models used for predicting dependent vari-

ables related to students ofHEI have been statistical

linear regression models (a regression model that

contains one [6] or more than one independent

variable [2, 7–9, 14, 16]), item response theory

model (statistical analysis of measurement scales)

[3], support vector machines (a set of related super-
vised learningmethods that analyze data and recog-

nize patterns, used for classification and regression

analysis) [4, 8], data mining (exploration of data

bases with considerable extension, in hope of find-

ing useful patterns) [5, 10], statistical analysis based

on correlations [11, 15, 16] and distributions [11], as

well as neural networks (mathematical models that

attempt to mimic the connectivity and learning
attributes of a human brain) [4, 6, 8, 9, 12, 13].

Those techniques that have been specifically

applied for predicting the development effort of

software projects could be classified into the follow-

ing two general categories [29]:

1. Expert judgment. It implies a lack of analytical
argumentation and aims to derive predictions

based on experience of experts on similar pro-

jects; this technique is based on a tacit (intui-

tion-based) quantification step [30].

2. Mathematical models, which are based on a

deliberate (mechanical) quantification step [30],

such as statistical regression [31], classifiers

based on associative memories [32], fuzzy
logic [33], mathematical morphology [34] or

machine learning such as case-based reasoning,

artificial neural networks, decision trees, Baye-

sian networks, support vector regression,

genetic algorithms, genetic programming, and

association rules [28].

The techniques that have been specifically applied

for predicting the effort of software projects devel-
oped individually in academic environments are

expert judgment [35], and mathematical models

such as fuzzy logic [33, 36], associative memory

classifier [32], genetic programming [37], and

neural networks as multilayer feedforward percep-

tron [38] and general regression neural network [39,

40]. Because of statistical regressions are themodels

most frequently compared with mathematical
models [28, 41], the prediction accuracy in the

mentioned studies of this paragraph (except in

that where expert judgment was applied [35]), was

comparedwith that obtained from statistical regres-

sions.

Regarding neural networks and statistical regres-

sions models, they have also been applied in other

fields such as accounting, finance, health, medicine,
engineering, manufacturing or marketing. Some

problems have been identified when compared

accuracies between neural networks and statistical

regressions [28, 41]. The identified problems are the

following: there have not been clear some of the

characteristics like sample size or number of vari-

ables, clarity on the determination of parameters of

the neural networks, statistical techniques have not
been used, results obtained from the trained model

are not tested on a new data set that is not used for

training the models, and it has not been clear

whether statistically significant difference exists in

the performance of different techniques that are

compared. These problems are taken into account

in our study.

The contribution of our study is investigating the
application of a mathematical model termedRadial

Basis Function Neural Network (hereafter named

RBFNN) for predicting the development effort of

software projects that have been developed by

students graduated from HEI related to computer

engineering, such that this RBFNN (1) could be

useful for a practitioner by registering his/her own

data history following a disciplined process specifi-
cally designed for developing software at individual

level, and then this obtained data set could be used

for generating his/her own RBFNN, and (2) a

trainer or teacher could apply the method followed

in this study for gathering data of students in several

courses and generate his/her own RBFNN for

predicting the effort of projects to be developed in

future courses. A neural network was selected
because it has the ability to learn non-linear func-

tions [42] and non-linear relationships are common

among development effort and independent vari-

ables in software projects [43]. A RBFNN is pro-

A Radial Basis Function Neural Network for Predicting the Effort of Software Projects 983

posed once we did not found any study in which a

RBFNNhas been applied to individually developed

software projects. The prediction accuracy of the

RBFNN is compared to that of a Multiple Linear

Regression (hereafter named MLR).

The RBFNN and MLR were trained from pro-
jects developed in a controlled environment and

following a disciplined software development pro-

cess named Personal Software Process (PSP), whose

practices and methods have been used in academic

environments for delivering quality products on

predictable schedule [35] using samples of thou-

sands of students [23]. There is a relationship

between PSP and the Capability Maturity Model
(CMM). CMMgives an available description of the

goals, methods, and practices needed in software

engineering industrial practice, while thePSP allows

its instrumentation at an individual level: twelve of

the eighteen key process areas of the CMM are at

least partially considered in PSP [18].

The RBFNN and the MLR are trained using a

data set of 328 software projects developed by 82
students between the years 2005 and 2010, then, the

models are tested using a new data set of 116

projects developed by 29 students between the

years 2011 and first semester of 2012. All of the

111 students were studying a graduate program

related to computer science. Graduate students

were selected because previous qualitative analyses

have shown that within a PSP course, undergradu-
ate students were more concerned with program-

ming than with the software process issues [19, 21].

Three independent variables for predicting the

effort were obtained from the projects, two of them

related to size measured in source lines of code (new

and changed code, and reused code) and the third

one related to people (programming language

experience of students) reported by the students in
months, whereas the dependent variable was mea-

sured in minutes. The hypothesis to be investigated

in our research is the following:

H1: Effort prediction accuracy of a RBFNN is

statistically better than that obtained from a

MLR, when new and changed code, reused

code, and programming language experience

of students data obtained from projects indivi-

dually developed with personal practices, are

used as independent variables.

The study is organized as follows: Section 2 has

been assigned for describing the RBFNN. In Sec-

tion 3, the independent and dependent variables are
defined. Section 4 justifies and defines the prediction

accuracy evaluation criterion for the two models.

Section 5 is assigned to a detailed analysis of related

studies in which models have been proposed for

predicting the development effort of individually

developed projects. In Section 6 the experimental

design followed in order to obtain the data set of

software projects is described. Section 7 has been

assigned for the results of this study. Subsection 7.1

describes the training and testing of the RBFNN

and MLR models. Subsection 7.2 presents the
statistical procedure for comparing the prediction

accuracy between the two models. Finally, the

Section 8 is related to conclusions, limitations and

future work of this study.

2. Radial basis function neural network

A RBFNN is a network consisting of one input

layer, onemiddle-layer (hidden layer) and anoutput

layer. A RBFNN has as characteristic that the

activation of a hidden unit is related to the distance
between the input vector and a prototype vector

[42]. These kind of neural networks have their origin

in techniques for performing exact interpolation of

a set of data points in a multi-dimensional space.

The exact interpolation requires every training

input vector to be mapped exactly onto the corre-

sponding target vector. The RBFNN included two

phases: unsupervised and supervised phases. In its
first phase, input data are clustered and cluster

details are sent to hidden neurons, where radial

basis functions of the inputs are computed by

making use of the center and the standard deviation

of the clusters. The radial basis functions are similar

to kernel functions in kernel regression. The activa-

tion function or the kernel function can use a variety

of mathematical functions; the following Gaussian
radial basis function is the most commonly used

[42]:

f ðxÞ ¼ e
� x�cik k

2�2
i

2

� �

ð1Þ

Where ci is the center and �i is the width of the

influence of the ith middle neuron. The double

vertical line in both extremes of the numerator

means Euclidean distance.

The learning process to adjust the weights of the

connections between the hidden layer and the
output layer is of supervised learning type, where

ordinary least squares technique is used. Thus, the

RBFNN involves both unsupervised and super-

vised learning. Figure 1 shows the architecture of

a RBFNN including dependent and independent

variables for this study.

The input of the algorithm for the RBFNN is the

set of (P, T) pairs, where P is a vector containing
project attributes and T is target, or effort. The

algorithm also depends on the spread constant

termed spread for the radial basis layer. The net

input to the activation function is the vector dis-

Cuauhtémoc López-Martı́n et al.984

tance between its weight vector ci and the input

vector P, multiplied by the bias b. Each neuron in

the hidden layer has a bias b = (0.8326/spread). The
spread gives the distance at which the activation

function has value of 0.5. It establishes the width of

an area in the input space to which each neuron

responds with more than 50% if its value. A smaller

spread value, a more selective the RBFNN is (i.e., a

lower spread value, a higher selective RBFNN is).

The learning algorithm creates as many radial basis

neurons as there are input vectors in the training set,
and sets the hidden layer weights to P. That is, there

is a layer of radial basis neurons in which each

neuron acts as a detector for one distinct input

vector. If there are p input vectors, then there will

be p neurons.

The learning algorithm returns a network with

weights and biases such that the outputs are exactly

Twhen the inputs are P. The output node parameter
~W ¼ ðW1;W2; . . . ;Wi; . . .WnÞ andB are calculated

so that this requirement is fulfilled. It is done by

using a trial and solving a linear system as described

as follows:

The trial consists of presenting each of the input

vectors P from the training set to the RBFNN and

memorizing theoutputvector~f ofthehidden layeras
~fi. Thus, a sequence of vectors ð~f1;~f2; . . . ;~fi; . . . ;~fnÞ
is created and memorized. Knowing that an input

P has to produce an output T ¼ �i the following

system of equations can be solved to determine the

parameters ~W ¼ ðW;W2; . . . ;Wi; . . .WnÞ and B of

the output node:

~f1 1
~f2 1

. . .

. . .

. . .
~fn 1

2
6666666664

3
7777777775

:

W1

W2

. . .

. . .

. . .

Wn

B

2
666666666664

3
777777777775

¼

e1

e2

. . .

. . .

. . .

en

2
666666664

3
777777775

Since no two vectors P are a multiple of each

other, the vectors~fi are linearly independent; there-
fore, the system has a unique solution.

3. Software measurement (independent and
dependent variables)

Amongst a wide range of software product size

measures, source lines of code (LOC) remains in

favor of many models [44].

There are two measures of source code size:

physical source lines and logical source statements.

The count of physical lines gives the size in terms of
the physical length of the code as it appears when

printed [18]. In this research, two of the independent

variables are New and Changed (N&C) as well as

Reused code and all of them were considered as

physical lines of code (LOC). N&C is composed of

added and modified code. The added code is the

LOC written during the current programming pro-

cess, while the modified code is the LOC changed in
the base program when modifying a previously

developed program. The base program is the total

LOCof the previous project while the reused code is

the LOC of previously developed programs that are

used without any modification [18]. A coding stan-

dard should establish a consistent set of coding

practices that is used as a criterion when judging

the quality of the produced code [18]. Hence, it is
necessary to always use the same coding and count-

ing standards. The software projects of this study

followed these two guidelines.

After the product size, people factors (such as

experience on applications), platforms, languages

and tools have the strongest influence in determin-

ing the amount of effort required to develop a

software product [45]. Therefore, programming
language experience is used as a third independent

variable in this research, which was measured in

months, whereas development effort was measured

in minutes.

A Radial Basis Function Neural Network for Predicting the Effort of Software Projects 985

Fig. 1. Architecture of a radial basis function neural network.

4. Accuracy criterion

A common criterion used for evaluating the models

in the software development effort prediction has

been the Mean Magnitude of Relative Error or

MMRE [28]; however, it is biased since it is based

on ratios which leads to the asymmetry; hence, the

use of Absolute Residuals (AR) was recently pro-
posed. AR is unbiased and it is not based on ratios

[46]. The AR measure is defined as follows:

ARi ¼ Actual Efforti � Predicted Effortij j ð2Þ

The AR is calculated for each observation i, the

effort of which is predicted. The aggregation of the

AR over multiple observations (N) can be obtained

by the mean (MAR) as follows:

MAR ¼ ð1=NÞ
XN

i¼1
ARi ð3Þ

The accuracy of a prediction model is inversely

proportional to the MAR.

5. Related work

Several kinds of neural networks have been applied
for predicting the development effort of software

projects. In the year of 2008, the feed-forwardmulti-

layer perceptron with back propagation learning

algorithm was reported as the neural network most

commonly used in the effort prediction of large

software projects [47], and it has been also used

until the year of 2009 [26], 2013 [48] and 2015 [29].

Radial Basis Function Neural Networks have
been applied for predicting the software develop-

ment effort of projects [49–56]; however, the pro-

jects they used were developed by teams of

developers, in addition, they used the MMRE as

accuracy criterion; moreover, they did not report

statistical significance nor checked the assumptions

for dependence and normality data. We have not

found any study in which a RBFNN is applied to
individually developed projects. Table 1 describes

those identified studies where the development

effort of individually developed projects has been

predicted using amodel. The prediction accuracy of

all the models proposed in Table 1 was compared to

that of a statistical regression. Results showed that

in the testing phase of models, the accuracies of

predictions achieved by fuzzy logic [33, 36], classifier
based on associativememory [32], multilayer neural

network [38], genetic programming [37], as well as a

general regression neural network [39, 40], were

statistically equivalent to a least squares regression

model (either simple or MLR).

In our study, new and changed code, reused code

and programming language experience of students

are used as independent variables for training and
testing the RBFNN and the MLR models; the

sample sizes for training and for testing the models

were: 328 for training (developed between the years

2005–2010 by 82 students) and 116 for testing

(developed in the year 2011 and first semester of

2012 by 29 students).

6. Experimental design

In our study, the experiment used for obtaining the

data has already been used in all those studies

included in Table 1. The experiment was done

within a controlled environment having the follow-

ing characteristics:

1. All of the students were experienced and were

working for some software development enter-

prise. However, none of them had previously

taken a course related to personal practices for

developing software at the individual level.

2. The kind of the developed projects had a similar
complexity as those suggested in [18]. From a

set of 18 projects, a subset of seven projects was

randomly assigned to each of the students.

Description of these 18 projects is presented in

[35].

3. Each student developed seven project assign-

ments. Only the last four of the assignments of

each developer were selected for this study. The
first three projects were not considered because

they had differences in their process phases and

Cuauhtémoc López-Martı́n et al.986

Table 1. Studies of individually developed software projects (N&C: New and changed lines of code; Reused: Reused lines of code; PLE:
Programming language experience of students reported in months; NSP: Number of software projects; NS: Number of students who
developed the projects; PT: Period of time the projects were developed)

Study Proposed model Independent variable(s)
Training
NSP NS PT

Testing
NSP NS PT

[33] Fuzzy logic N&C 105 30 2005–2006 20 7 2007
[36] Fuzzy logic N&C and Reused 163 53 2005–2007 68 21 2008
[32] Associative memory N&C and Reused 163 53 2005–2007 68 21 2008
[38] Multilayer neural network N&C and Reused 132 40 2005–2008 77 24 2009
[39] General regression neural network N&C and Reused 163 53 2005–2007 80 30 2008–2009
[40] General regression neural network N&C, Reused and PLE 156 51 2005–2008 156 47 2009–2010
[37] Genetic programming N&C, Reused and PLE 219 71 2005–2009 130 38 2010

in their logs, whereas the last four projects were

based on the same logs and they had the

following phases [18]: (1) Plan: plan the work

and document it by predicting the size and

development effort of projects; (2) Design:

represent the program either by using a flow
diagram or pseudo-code; (3) Design review:

personal reviews conducted by a student on

his/her own previous design errors; (4) Code:

implement the design by using a programming

language; (5) Code review: personal reviews

conducted by a student on his/her own previous

code errors; (6) Compile: compile the program

and fix and log all defects found; (7) Testing:
execute the compiled program and fix and log

all defects found; and (8) Postmortem: record

actual size, development effort, and defect data

on the plan. Design and code reviews were

structured, they involved data-driven review

processes that were guided by personal review

checklists derived from the historical defect

data of the student. As for logs used by student
were [18]: (1) Plan Summary Form recording

planned and actual data regarding size and

development effort by phase, as well as defects;

(2) Time recording log including the date of the

assignment; start and finish times by phase; (3)

Defect recording log involving the date of the

documented error, number and type of error,

phase in which the error was injected, phase in
which the error was removed, fix time, and

description of the error; (4) Process improve-

ment proposal which provided students to

record process problems and proposed solu-

tions.

4. Each developer selected his/her own imperative

programming language whose coding standard

had the following characteristics: each compiler
directive, variable declaration, constant defini-

tion, delimiter, assign sentence, as well as flow

control statement was written in one line of

code.

5. Students had already received at least one

formal course on the programming language

that they selected to be used through the assign-

ments. Because the type of programming lan-
guage is a main factor that has significant

influence on the productivity of developers

[57], in this study the selected projects were

those coded using programming languages of

a same paradigm (object oriented) and same

generation (the third). The sample for this study

involved only those students whose projects

were coded in C++ or JAVA.
6. Because this study was an experiment, with the

aim of reducing bias the students were not

informed about the experimental goal.

7. Students filled out a spreadsheet for each pro-

ject and submitted it electronically for exam-

ination and feedback.

8. Each course was taught to no more than fifteen

students.

9. Since a coding standard establishes a consistent

set of coding practices that is used as a criterion

for judging the quality of the produced code
[18], the same coding and counting standards

were used in all projects. Theprojects developed

during this study followed these guidelines. All

projects adhered to the counting standard

shown in Table 2.

10. Students were constantly supervised and

advised about their process. Data used in this

study are from those students whose data for all
seven assignments were correct, complete, and

consistent.

11. The code written in each project was designed

by the developers to be reused in subsequent

projects.

7. Results

7.1 Training and testing the models

The following MLR equation was generated [58]
from the actual data of the 328 projects developed

between the years 2005–2010 by 82 students

(Appendix A):

Effort = 63.735 + (1.037*N&C) – (0.186*

Reused) – (0.425*Programming

Language Experience) (4)

In accordance with the theoretically justifiable

functional form, it is first necessary to analyze if the

predicted effort relates correctly to the data of its

independent variables [59], that is, if the relationship

between effort and new and changed code, reused

code, and programming language experience of stu-

dents is according to the software development

theory. According to the signs of each of the three

parameters of the MLR, the model meets with the

following assumptions related to the software devel-

opment:

1. The higher the value of new and changed code

(N&C), the higher the development effort is.

A Radial Basis Function Neural Network for Predicting the Effort of Software Projects 987

Table 2. Counting standard

(1) Count type: Physical
(2) Statement type Included? (Yes/No)
(2a) Executable Yes
(2b) No executable

Declarations Yes, one by text line
Compiler directives Yes, one by text line
Comments and Blank lines No

(3) Clarifications
{ and } Yes

2. The higher the value of reused code, the lower

the development effort is.

3. The higher the value of programming language

experience of students, the lower the develop-

ment effort is.

When amodel is used for predicting development

effort, an acceptable value for the coefficient of

determination is r2 � 0.5 [18]. Equation 4 had a r2

equal to 0.51. The ANOVA for this equation had a
statistically significant relationship among the vari-

ables at the 99% confidence level. To determine

whether the model could be simplified, a parameter

analysis for the MLR was done. Results of this

analysis showed that the highest p-value of the

three independent variables was 0.0002, which cor-

responded to reused code. Since this p-value was less

than 0.01, reused code is statistically significant at
the 99% confidence level and consequently, the

independent variable of reused code was not

removed.

The MLR equation was then applied to the

original data set of 328 projects, and an AR for

each project, as well as a MAR for the MLR, was

then calculated. TheMLR yielded aMAR = 17.51.

Regarding the RBFNN, to determine its spread
value, a k-fold cross validation was used on the

training set. A k = 10 was selected since it is the

most common value in the machine learning field

[60]. The lower (best) MAR for the RBFNN was

equal to 16.52; it resulted when the spread value was

equal to 570. A spread value which is either lower or

higher than spread = 570 generated a higher value

than MAR = 16.52 for the training set.
In the testing phase, the trained RBFNN and

MLRwere applied to a new data set of 116 projects

developed in the year 2011 and first semester of 2012

by 29 students, whose data were obtained from

experiments that had the same characteristics as

those projects used for training the models (Appen-

dix B). The MLR yielded aMAR = 19; whereas the

MAR for the RBFNN had a value of 17.88.

7.2 Accuracy comparison between models

The prediction accuracy of the MLR and RBFNN

models should be statistically compared [61]. The

selection of a suitable statistical test for comparing

of the accuracy of the two models should be taking

into account the assumptions of dependence and

normality [62]:

(a) Dependence: Data of the software projects can

bedescribed as npairs (Xi,Yi), i=1, . . . , n, where
i is the i-th project, n is the number of projects,

Xi and Yi are the ARs obtained from the MLR

and RBFNN models, respectively. Since each

of the pairs Xi and Yi is obtained from the

corresponding project i, then Xi,. . . , Xn and

Yi,. . . , Yn , are pairwise dependent samples;

therefore a procedure to test the differences

between the two sets Xi, and Yi (MLR –

RBFNN) should be selected for determining

whether theMAR set of 116 differences is equal
or greater than zero with statistically significant

difference. If a MAR should be used for com-

paring the accuracy between models, a normal-

ity test for the set of those 116 differences should

be applied.

(b) Normality: The tests for normality of a data set

are Chi-squared, Shapiro-Wilk, skewness, and

kurtosis.

Table 3 shows the results of the four normality

tests on MLR – RBFNN data set in testing phase.

Since the smallest p-value amongst some of the tests

performed is less than 0.01, we can reject with 99%

confidence that MLR – RBFNN data set comes

from a normal distribution.

Based upon the finding that the two data sets of

this study are dependent and not normally distrib-
uted, the suitable statistical test for comparing the

accuracies of the two models may be the Wilcoxon

test [63]. After applying this statistical test, a p-value

equal to 0.0489 was obtained, that is, there was a

statistically significant difference amongst the med-

ians of the MLR and the RBFNN at the 95.0%

confidence level.

8. Discussion

Several dependent variables regarding Higher Edu-

cation students have been predicted by applying

techniques based upon mathematical models.

These variables have been dropout [2], course selec-

tion [3], academic performance [4, 9, 11, 12], course
satisfaction [5, 10], mood [6], achievement [7], learn-

ing performance [8], teacher performance from a

student point of view [13], alumni association mem-

bership [14], academic success [15], and motivation

[16]. Based upon the results that no single technique

prediction is best for all situations, and that a careful

comparison of the results of several approaches is

most likely to produce realistic predictions [66], in
our study, a RBFNN was proposed for predicting

the development effort of software projects.

Owning to the fact that the levels of software

projects in engineering education and training have

Cuauhtémoc López-Martı́n et al.988

Table 3. Statistical tests for data normality (testing phase)

MLR–RBFNN

Chi-Squared 0.0045
Shapiro-Wilk 0.0000
Skewness 0.0000
Kurtosis 0.0000

been classified in the small and in the large projects

[17], previous studies on development effort predic-

tion have addressed their approach by proposing

models for predicting the development effort of

software projects separately for each level. Software

projects have been developed either by teams or
individually developed by practitioners as those

included in Table 1. The approach of studies related

to individual projects is based upon the following

assumptions: the productivity of people is primarily

influenced by the variations of average team size for

the development [64]; the performance of a software

development organization is determined by the

performance of its engineering teams, and the
performance of an engineering team is determined

by the performance of the team members, and the

performance of the members is, at least in part,

determined by the practices these engineers follow

in doing their work [23]. That is, people productivity

differs when they develop software alone or in team,

and the performance on individual level is impor-

tant because of its influence on team performance.
Therefore, the analysis of individually developed

software projects has been an ongoing concern [19–

25].

In our study, each problem identified in [28, 41]

when comparing neural networks with statistical

regressions was also addressed as follows:

1. The sizes of samples as well as their dependent

and independent variables were described with

detail.

2. Two independent data samples of software

projects were used, one of them for training

the models and other sample for testing them.

The two mentioned samples were developed by

following the same experiment design. Depen-
dent variable was the development effort,

whereas independent variables were related to

size of projects and with people factors.

3. The RBFNN contained a parameter named

spread that had influence in the RBFNN pre-

diction accuracy. The manner how this final

parameter was determined, was mentioned in

this study.
4. Statistical techniques were used to select the

significant variables as has been suggested [41]

[65] based upon a regression analysis, which

was made from a global analysis (based on

coefficient of determination) as well as from

an individual statistical analysis of its para-

meters. In addition, a functional form of the

statistical regression (MLR) was also analyzed
as suggested in [59]. Finally, once the assump-

tions of dependence andnormality of the results

of evaluation criterion by model (absolute

residuals) were done, the prediction accuracy

comparison of two models was based upon a

suitable statistical test.

Regarding studies of software engineering in the

context of education and training, we identified the

following ones related to this study:

1. A comparison between teaching agile and dis-

ciplined processes suggested that a more effi-

cient approach for inexperienced students in

software engineering would be a disciplined
process [67], which means that the process

used in our study was suitable since that the

PSP is a disciplined process, and because all the

participants did not have any experience in a

discipline process, once they had not received

any PSP course.

2. A common concern identified in students is how

they solve problems during the software devel-
opment project [68], in the process used in our

study, a process improvement proposal (PIP)

was used for all the students (a PIP provides

students to record process problems and pro-

posed solutions).

3. Software verification and validation (V&V) is

one of the significant areas of software engi-

neering. Therefore, a study covered static V&V
in a educational environment [69]. To achieve a

static verification and validation activities, our

study included design and code review phases

by using design and code review checklists

obtained from defect recording logs (derived

from the historical defect data by student).

9. Conclusions, limitations and future
work

After the RBFNN proposed for predicting the

development effort of software projects that have

been individually developed for graduate students

in a controlled laboratory learning environment
was trained and tested, the following hypothesis

was accepted:

H1: Effort prediction accuracy of a RBFNN is

statistically better than that obtained from a

MLR, when new and changed code, reused

code, and programming language experience

of students data obtained from projects indivi-

dually developed with personal practices are

used as independent variables.

In comparing our studywith those ones described

in Table 1, the models proposed in each of the
studies described in Table 1 reported prediction

accuracy statistically equivalent to its correspond-

ing statistical regression model, whereas in our

study the RBFNN had prediction accuracy statisti-

cally better than that of a MLR at the 95.0%

A Radial Basis Function Neural Network for Predicting the Effort of Software Projects 989

confidence level. It means that the RBFNN out-

performed the prediction accuracy obtained from

proposed models such as fuzzy logic, associative

memories, genetic programming and two kinds of

neural networks: multilayer feedforward percep-

tron and general regression neural network.
Reliability of a prediction model depends on the

quality of data from which the model has been

generated: if the data were obtained from a source

without any control or having a wide variability in

its environment such as following different pro-

cesses of development, recording the data of pro-

jects in a variety of logs, the use of various coding or

counting standards, or coded projects on program-
ming languages of several generations, then its

accuracy could be uncertain. This fact should not

only be related to a RBFNN, but for any other

prediction model.

As for the limitations of our study, in spite that

the sample size was bigger than similar previous

studies, it only involved two kinds of imperative

programming languages (C++ and Java); in the
future it would be interesting to propose additional

models involving projects from other kind of pro-

gramming paradigms (such as declarative). In addi-

tion, more factors should be involved, such as those

related to people (as development experience of

students), platforms, and software tools.

Results of our research suggest that a RBFNN

can be used for predicting the development effort of
projects when they have been developed individu-

ally in a controlled environment and based upon a

disciplined process as that suggested by the Personal

Software Process. This conclusion was based on the

use of a bigger sample data set which included more

recent software projects than all previous studies

described in Table 1.

A practical implication of our study is that
RBFNN could be useful for a practitioner who

registers his/her own data history following a dis-

ciplined process. Then, from this data set, the

practitioner could generate models such as MLR

or RBFNN for predicting the effort of his individu-

ally developed projects. In addition, a trainer or

teacher could apply themethod used in this study by

gathering data of student performance in several
courses and generate his/her own models for pre-

dicting the effort of projects to be developed in

future courses or to be added to large software

systems.

Future research involves the use of support vector

regression machines for predicting the development

effort of software projects developed either indivi-

dually or by teams of students.
Acknowledgments—The authors would like to

thank the CUCEA of Universidad de Guadalajara,

Universidad de Colima, Instituto Tecnológico de

Colima, and Consejo Nacional de Ciencia y Tecno-

logı́a (CONACyT) for their support during the

development of this research.

References

1. C. Yañez-Márquez, M. Aldape Pérez, I. López Yáñez and
O. CamachoNieto, EmergingComputational Tools: Impact
on Engineering Education and Computer Science Learning,
International Journal of Engineering Education, 30(2), 2014,
pp. 1–10.

2. I. Lykourentzou, V. Nikolopoulos, G. Mpardis and V.
Loumos, Dropout prediction in e-learning courses through
the combination of machine learning techniques, Computers
& Education, Elsevier, 53(3), 2009, pp. 950–965. DOI:
10.1016/j.compedu.2009.05.010.

3. A. Kardan, H. Sadeghi, S. S. Ghidary and M. R. Fani Sani,
Prediction of students course selection in online higher
education institutes using neural network, Computers &
Education, Elsevier, 65, 2013, pp. 1–11. DOI:10.1016/j.
compedu.2013.01.015.

4. S. Huang and N. Fang, Predicting student academic perfor-
mance in an engineering dynamics course: a comparison of
four types of predictive mathematical models, Computers &
Education, Elsevier, 61, 2013, pp. 133–145. DOI:10.1016/
j.compedu.2012.08.015.

5. W. W. Guo, Incorporating statistical and neural network
approaches for student course satisfaction analysis and
prediction, Expert Systems with Applications, Elsevier,
37(4), 2010, pp. 3358–3365.DOI:10.1016/j.eswa.2009.10.014

6. C. N.Moridis and A. A. Economides, Prediction of students
mood during an online test using formula-based and neural
network-basedmethod,Computers&Education,Elsevier,53,
2009, pp. 644-652. DOI:10.1016/j.compedu.2004.04.002.

7. I. Lykourentzou, I. Giannoukos, G. Mpardis, V. Nikolo-
poulos and V. Loumos, Early and dynamic student achieve-
ment prediction in e-learning courses using neural networks,
Journal of the American Society for Information Science and
Technology, Wiley Online Library, 60(2), 2008, pp. 372–380.
DOI: 10.1002/asi.20970.

8. Y. Hu, C. Lo and S. Shih, Developing early warning systems
to predict student’s online learning performance, Computers
in Human Behavior, Elsevier, 36, 2014, pp. 469-478. DOI:
10.1016/j.chb.2014.04.002.

9. C. Romero, M. I. López, J. M. Luna and S. Ventura,
Predicting students’ final performance from participation
in on–line discussion forums, Computers & Education, Else-
vier, 68, 2013, pp. 458-472. DOI:10.1016/j.compedu.
2013.06.009.

10. Y. Kuo, A. E. Walker, K. E. E. Schroder and B. R. Belland,
Interaction, Internet self-efficacy, and self-regulated learning
as predictors of student satisfaction in online education
courses, Internet and Higher Education, Elsevier, 20, 2014,
pp. 35-50, DOI: 10.1016/j.iheduc.2013.10.001.

11. Y. Farrokhi-Kahejh-Pasha, S. Nedjat, A. Mohammadi, E.
M. Rad, R. Majdzadeh, F. Monajemi, E. Jamali and S.
Yazdani, The validity of Iran’s national university entrance
examination (Konkoor) for predicting medical students’
academic performance, BMC Medical education, BioMed
Central, 12(60), 2012, pp. n/d. DOI: 10.1186/1472-6920-12-
60.

12. P. Poole, B. Shulruf, J. Rudland and T.Wilkinson, Compar-
ison ofUMATscores andGPA in prediction of performance
in medical school: a national study, Medical Education,
Wiley Online Library, 46(2), 2012, pp. 163–171. DOI:
10.1111/j.1365.2923.2011.04078.x.

13. J. H. Sandholtz and L. M. Shea, Predicting performance. A
comparison of university supervisors’ predictions and tea-
cher candidates’ scores on a teaching performance assess-
ment, Journal of Teacher Education, SAGE, 63(1), pp. 39–50,
DOI: 10.1177/0022487111421175.

14. M. D. Newman, J. M. Petrosko, Predictors of alumni
association membership, Research in Higher Education,

Cuauhtémoc López-Martı́n et al.990

Springer Link, 52(7), pp. 738-759. DOI: 10.1007/s11162-011-
9213-8.

15. J. C. Hissbach, D. Klusmann, W. Hampe, Dimensionality
and predictive validaty of the HAM.Nat, a test of natural
sciences for medical school admission, BMCMedical Educa-
tion, BIOMed Central, 11(83), pp.n/d. DOI: 10.1186/1472/-
6920-11-83.

16. M. Muñoz-Organero, P.J. Muñoz-Merino and C. Delgado,
Student behavior and interaction patterns with an LMS as
motivation predictors in e-learning settings, IEEE Transac-
tions on Education, IEEE, 53(3), pp. 463–470. DOI: 10.1109/
TE.2009.2027433.

17. D. J. Bagert, T. B. Hilburn, G. Hislop, M. Lutz, M.
McCrackenandS.Mengel,Guidelines for SoftwareEngineer-
ing Education Version 1.0. CMU/SEI-99-TR-032, ESC-TR-
99-002, Software Engineering Institute, Carnegie Mellon
University, 1999.

18. W. Humphrey A Discipline for Software Engineering. Addi-
son Wesley, 1995.

19. S. K. Lisack, The Personal Software Process in the Class-
room: Student Reactions (An Experience Report). 13th
IEEE Conference on Software Engineering Education &
Training, Austin, Texas, USA, March 6–8, 2000. DOI:
10.1109/CSEE.2000.827035.

20. L. Prechelt and B. Unger, An experiment measuring the
effects of PSP Training. IEEE Transactions on Software
Engineering, 27(5), pp. 465–472, 2000. DOI: 10.1109/
32.922716.

21. P. Runeson, Experiences from Teaching PSP for Freshmen.
14th IEEE Conference on Software Engineering Education &
Training, Charlotte, North Carolina, USA, Feb 9–21, 2001,
pp. 98–107. DOI: 10.1109/CSEE.2001.913826.

22. C. Wohlin, Are individual differences in software develop-
ment performance possible to capture using a quantitative
survey?Empirical SoftwareEngineering, Springer, 9(3), 2004,
pp. 211–228. DOI: 10.1023/B:EMSE.0000027780.08194.b0.

23. D. Rombach, J. Münch, A. Ocampo, W. S. Humphrey and
D. Burton, Teaching disciplined software development.
Journal Systems and Software, Elsevier, 81(5), 2008, pp.
747–763. DOI:10.1016/j.jss.2007.06.004.

24. [C. F. Kemerer and M. C. Paulk, The impact of design and
code reviews on software quality: an empirical study based
on PSP data. IEEE Transactions on Software Engineering,
35(4), 2009, pp. 534–550. DOI: 10.1109/TSE.2009.27.

25. W. H. Shen, N. L. Hsueh and W. M. Lee, Assessing PSP
effect in training disciplined software development: A Plan–
Track–Reviewmodel, Information and SoftwareTechnology,
Elsevier, 53(2), 2011, pp. 137–148. DOI: 10.1016/j.infsof.
2010.09.004.

26. S. Berlin, T. Raz, C. Glezer and M. Zviran, Comparison of
estimation methods of cost and duration in IT projects,
Information and Software Technology, Elsevier, 51, 2009,
pp. 738–748. DOI: 10.1016/j.infsof.2008.09.007.

27. M. Jørgensen and M. J. Shepperd, A Systematic Review of
Software Development Cost Estimation Studies, IEEE
Transactions Software Engineering, 33(1), 2007, pp. 33–53.
DOI: 10.1109/TSE.2007.256943.

28. [J. Wen, S. Li, Z. Lin, Y. Hu and C. Huang, Systematic
literature review of machine learning based software devel-
opment effort estimation models. Information and Software
Technology, Elsevier, 54(1), 2012, pp. 41–59. DOI: 10.1016/
j.infsof.2011.09.002.

29. C. López-Martı́n, Predictive accuracy comparison between
neural networks and statistical regression for development
effort of software projects,Applied Soft Computing, Elsevier,
27, 2015, pp. 434-449. DOI: 10.1016/j.asoc.2014.10.033.

30. T. Halkjelsvik and M. Jørgensen, From origami to software
development: A review of studies on judgment-based predic-
tions of performance time, Psychological Bulletin, 138(2),
2012, pp. 238–271. DOI: 10.1037/a0025996.

31. Y.Yang, Z.He,K.Mao,Q. Li, V.Nguyen, B. BoehmandR.
Valerdi, Analyzing and handling local bias for calibrating
parametric cost estimationmodels, Information andSoftware
Technology, Elsevier, 55(8), 2013, pp. 1496–1511. DOI:
10.1016/j.infsof.2013.03.002.

32. C. López-Martı́n, I. López-Yáñez and C. Yáñez-Márquez,

Application of Gamma Classifier to Development Effort
Prediction of Software Projects, Applied Mathematics &
Information Sciences (AMIS), Natural Sciences Publishing
Corporation, 6(3), 2012, pp. 411–418.

33. C. López-Martı́n, C. Yañez-Marquez and A. Gutierrez-
Tornes, Predictive Accuracy Comparison of Fuzzy Models
for SoftwareDevelopmentEffort of Small Programs, Journal
of Systems and Software, Elsevier, 81(6), 2008, pp. 949–960.
DOI: 10.1016/j.jss.2007.08.027.

34. R. A. Araújo, A. L. I. Oliveira, S. Soares and S. Meira, An
evolutionary morphological approach for software develop-
ment cost estimation, Neural Networks, Elsevier, 32, 2012,
pp. 285–291. DOI: 10.1016/j.neunet.2012.02.040.

35. C. López-Martı́n and A. Abran, Applying Expert Judgment
to Improve an Individual’s Ability to Predict Software
Development Effort, International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), World
Scientific, 22(4), 2012, pp. 467-483. DOI: 10.1142/
S0218194012500118.

36. C. López-Martı́n, A fuzzy logic model for predicting the
development effort of short scale programs based upon two
independent variables, Applied Soft Computing, Elsevier,
1(1), 2011, pp. 724–732. DOI: 10.1016/j.asoc.2009.12.034.

37. A.Chavoya,C. Lopez-Martin, R.Andalon andM.E.Meda,
Genetic programming as alternative for predicting develop-
ment effort of individual software projects, PLOS ONE
Journal, 7(11), 2012, e50531. DOI: 10.1371/journal.pone.
0050531.

38. I. Kalichanin-Balich and C. Lopez-Martin, Applying a
Feedforward Neural Network for Predicting Software
Development Effort of Short-Scale Projects. IEEE Software
Engineering Research and Applications (SERA), Montreal,
Canada, 2010. DOI: 10.1109/SERA.2010.41.

39. C. López-Martı́n, Applying a general regression neural net-
work for predicting development effort of short-scale pro-
grams.Neural Computing and Applications, Springer-Verlag,
20(3), 2011, pp. 389-401. DOI: 10.1007/s00521-010-0405-5.

40. C. López-Martı́n, A. Chavoya and M. E. Meda, Software
Development Effort Estimation in Academic Environments
Applying a General Regression Neural Network Involving
Size and People Factors, 3rdMexican Conference on Pattern
Recognition, LNCS 6718, Springer-Verlag, Cancun,Mexico,
2011, pp. 269–277. DOI: 10.1007/978-3-642-21587-2_29.

41. M. Paliwal and U. A. Kumar, Neural networks and statis-
tical techniques: A review of applications, Expert Systems
with Applications, Elsevier, 36(1), 2009, pp. 2–17. DOI:
10.1016/j.eswa.2007.10.005.

42. C. M. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, 1995.

43. H. Chao-Jung and H. Chin-Yu, Comparison of weighted
grey relational analysis for software effort estimation. Soft-
ware Quality Journal, Springer-Verlag, 19(1), 2011, pp. 165–
200. DOI: 10.1007/s11219-010-9110-y.

44. S. D. Sheetz, D. Henderson and L. Wallace, Understanding
developer and manager perceptions of function points and
source lines of code, The Journal of Systems and Software,
Elsevier, 82(9), 2009, pp. 1540–1549. doi: 10.1016/j.jss.2009.
04.038.

45. B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clarck,
E. Horowitz, R. Madachy, D. Reifer and B. Steece,
COCOMO II, Prentice Hall, 2000.

46. M. Shepperd and S. MacDonel, Evaluating prediction
systems in software project estimation, Information and
Software Technology, Elsevier, 54(8), 2012, pp. 820–827.
DOI:10.1016/j.infsof.2011.12.008.

47. H. Park and S. Baek, An empirical validation of a neural
network model for software effort estimation, Expert Sys-
tems with Applications, Elsevier, 35(3), 2008, pp. 929–937.
DOI: 10.1016/j.eswa.2007.08.001.

48. A. B. Nassif, D. Ho and L. F. Capretz, Towards an early
software estimation using log-linear regression and a multi-
layer perceptron model, The Journal of Systems and Soft-
ware, Elsevier, 86(1), 2013, pp. 144–160. DOI: 10.1016/
j.jss.2012.07.050.

49. M. Shin and A. L. Goel, Empirical Data Modeling in Soft-
ware Engineering Using Radial Basis Functions, IEEE

A Radial Basis Function Neural Network for Predicting the Effort of Software Projects 991

Transactions on Software Engineering, 26(6), 2000, pp. 567–
576. DOI: 10.1109/32.852743.

50. A.Heiat,Comparisonof artificial neural networkand regres-
sion models for estimating software development effort.
Information and Software Technology, Elsevier, 44(15), 2002,
pp. 911-922. DOI: 10.1016/S0950-5849(02) 00128-3.

51. A. L. I. Oliveira, Estimation of software project effort with
support vector regression, Neurocomputing, Elsevier, 69,
2006, pp. 1749–1753. DOI: 10.1016/j.neucom.2005.12.119.

52. A. Idri, A. Zahi, E. Mendes and A. Zakrani, Software Cost
Estimation Models Using Radial Basis Function Neural
Networks, IWSM-Mensura, LNCS 4895, Palma de Mal-
lorca, Spain, November 5-8, 2008, pp 21–31. DOI: 10.1007/
978-3-540-85553-8_2.

53. K. V. Kumar, V. Ravi, M. Carr and N. R. Kiran, Software
development cost estimation using wavelet neural networks,
The Journal of Systems and Software, Elsevier, 81, 2008, pp.
1853–1867. DOI: 10.1016/j.jss.2007.12.793.

54. C. S. Reddy, P. S. Rao, K. Raju and V. V. Kumari, A New
Approach For Estimating Software Effort Using RBFN
Network, International Journal of Computer Science and
Network Security, 8(7), 2008, pp. 237–241.

55. A. Idri, A. Zakrani and A. Zahi, Design of Radial Basis
Function Neural Networks for Software Effort Estimation,
International Journal ofComputerScience, 7(4), 2010, pp. 11–
17.

56. P. V.G.D. PrasadReddy,K.R. Sudha, P.Rama-Sree and S.
N. S. V. S. C. Ramesh, Software Effort Estimation using
Radial Basis and Generalized Regression Neural Networks.
Journal of Computing, 2(5), 2010, pp. 87–92.

57. Z. Jiang and C. Comstock, The Factors Significant to Soft-
ware Development Productivity. International Journal of
Computer, Information, Mechatronics, Systems Science and
Engineering, World Academy of Science, Engineering and
Technology, 1, 2007, pp. 160–164.

58. D. Montgomery and E. Peck, Introduction to Linear Regres-
sion Analysis, John Wiley, 2001.

59. I. Myrtveit and E. Stensrud, Validity and reliability of
evaluation procedures in comparative studies of effort pre-

diction models, Empirical Software Engineering, Springer,
17, 2012, pp. 23-33. DOI: 10.1007/s10664-011-9183-7.

60. P. Refaeilzadeh, L. Tang and H. Liu, Cross-Validation,
Encyclopedia of Database Systems, Springer-Verlag Berlin
Heidelberg. 2009. DOI: 10.1007/SpringerReference_63669.

61. B. A. Kitchenham and E. Mendes, Why comparative effort
prediction studies may be invalid. IEEE 5th International
Conference on Predictor Models in Software Engineering,
PROMISE, Vancouver, Canada, May 18–19, 2009. DOI:
10.1145/1540438.1540444.

62. S. M. Ross, Introduction to Probability and Statistics for
Engineers and Scientists, Third Edition, Elsevier Press, 2004.

63. W. J. Conover, Practical Nonparametric Statistics, Third
Edition, Wiley, 1999.

64. J. Zhizhong, P. Naudé and C. Comstock, An Investigation
on the Variation of Software Development Productivity,
International Journal of Computer, Information, Mechatro-
nics, Systems Science and Engineering, World Academy of
Science, Engineering and Technology, 1, 2007, pp. 72–81.

65. B.A.Kitchenham, E.MendesE. andG.H. Travassos, Cross
versus Within-Company Cost Estimation Studies: A Sys-
tematicReview, IEEETransactions on SoftwareEngineering,
33(5), 2007, pp. 316–329. DOI: 10.1109/TSE.2007.1001.

66. B. Boehm, C. Abts and S. Chulani, Software development
cost estimation approaches: A survey, Journal of Annals of
Software Engineering, Springer, 10, 2000, pp. 177–205. DOI:
10.1023/A:1018991717352.

67. P. N. Robillard and M. Dulipovici, Teaching Agile versus
Disciplined processes,The International Journal of Engineer-
ing Education, 24(4), 2008, pp. 671–680.

68. J. Vanhanen and T. O. A. Lehtinen, Software Engineering
Problems Encountered by Capstone Project Teams, The
International Journal of Engineering Education, 30(6A),
2014, pp. 1461–1475.

69. D. Mishra, T. Hacaloglu and A.Mishra, Teaching Software
Verification and Validation Course: A Case Study, The
International Journal of Engineering Education, 30(6A),
2014, pp. 1476–1485.

Cuauhtémoc López-Martı́n et al.992

Appendix A.

Data set of 328 software projects developed by 82 students between the years 2005 and 2010 used for training the models. N&C: New and
changed lines of code; R: Reused lines of code; PLE: Programming language experience of students (in months); E: Effort (in minutes).

N&C R PLE E N&C R PLE E N&C R PLE E N&C R PLE E

17 21 24 65 41 12 6 71 20 30 12 88 35 64 36 67
36 24 24 100 18 39 48 60 49 19 12 95 54 40 36 130
42 11 24 100 43 8 48 119 52 25 12 84 17 38 6 95
95 8 14 171 56 12 48 87 24 81 36 73 64 23 6 110
97 30 14 131 18 108 12 34 25 46 36 53 48 10 6 128
34 78 24 43 36 40 12 81 37 25 36 85 20 54 18 59
35 38 24 52 13 50 12 51 52 59 36 75 31 21 18 71
50 80 24 52 13 48 12 58 27 70 12 97 34 61 18 86
11 33 12 44 17 43 12 89 45 19 12 102 50 66 18 93
25 8 12 50 30 25 12 71 50 43 12 104 10 42 36 83
10 42 36 35 54 94 8 100 68 81 12 115 16 47 36 45
12 25 36 38 8 64 12 53 18 23 12 87 27 25 36 83
23 22 36 54 22 30 12 84 24 52 12 112 38 30 36 121
31 33 36 61 29 40 12 79 31 77 12 57 21 52 36 64
15 44 12 41 40 19 12 68 52 70 12 130 25 30 36 56
22 23 12 41 16 71 12 77 25 77 36 61 44 52 36 69
24 38 12 39 37 71 12 74 35 40 36 81 53 50 36 111
40 25 60 112 40 31 12 122 35 58 36 100 11 43 12 80
14 31 36 79 71 39 12 177 12 47 12 92 22 33 12 63
31 33 36 85 19 70 36 35 32 5 12 98 34 37 12 113
35 31 36 107 32 74 36 82 36 10 12 82 35 53 36 48
18 40 24 70 66 21 36 84 45 19 12 128 43 23 36 52
18 33 24 97 29 104 6 85 15 100 36 29 40 17 36 90
46 10 48 83 58 9 6 99 21 53 36 45 20 31 60 64
81 32 24 155 59 36 6 85 13 57 12 76 32 36 60 60
119 100 24 168 67 6 6 97 22 35 12 107 47 51 60 112
18 44 24 32 44 30 60 112 33 24 12 126 55 56 60 72

A Radial Basis Function Neural Network for Predicting the Effort of Software Projects 993

N&C R PLE E N&C R PLE E N&C R PLE E N&C R PLE E

37 12 24 50 41 100 36 58 8 30 48 38 17 49 48 68
12 27 60 57 44 62 36 74 22 34 48 75 47 28 48 129
20 35 60 65 49 82 36 48 23 8 48 107 28 43 18 67
22 9 60 42 95 86 36 111 40 41 48 71 34 42 18 93
29 8 60 49 12 22 24 53 44 32 48 82 30 27 18 70
75 30 12 104 23 9 24 38 46 84 48 57 45 10 18 79
39 63 12 98 31 15 24 45 55 59 48 80 69 22 60 132
20 15 4 114 18 86 6 87 16 54 6 86 17 15 24 81
41 35 4 121 34 55 6 116 26 42 6 76 33 11 24 63
81 69 4 129 48 41 6 120 35 21 6 90 19 35 24 93
70 23 24 133 23 64 36 90 41 29 6 111 27 44 24 77
11 33 36 74 49 64 36 129 16 47 10 99 38 39 24 100
19 56 36 59 49 19 36 142 23 61 10 92 65 49 24 128
23 11 36 71 30 98 24 107 25 27 10 122 27 69 12 51
26 40 36 102 52 78 24 115 22 77 12 48 34 39 12 69
19 47 48 55 59 52 24 111 25 70 12 65 57 76 12 93
21 31 48 43 72 10 24 132 42 57 12 101 67 58 12 132
27 12 48 55 12 50 6 67 11 6 12 68 11 86 10 56
31 49 48 54 15 57 6 56 19 16 12 67 17 65 10 45
11 42 48 23 18 15 6 83 50 9 12 134 11 59 10 31
15 8 48 42 30 40 6 106 35 100 6 86 12 51 10 40
24 33 48 51 17 55 6 86 70 101 6 108 33 29 24 92
44 5 48 97 18 54 24 57 9 46 12 59 43 52 24 127
75 46 48 115 32 70 24 70 30 9 12 87 65 44 24 93
100 17 48 153 58 10 24 105 30 21 12 75 20 52 12 95
115 111 48 144 77 55 24 94 42 46 12 75 30 35 12 116
15 33 36 38 28 99 12 46 49 40 12 109 47 28 12 85
37 46 36 50 29 84 12 72 52 47 12 77 40 66 36 56
54 42 36 100 40 69 12 92 24 58 8 68 62 43 36 81
79 43 48 133 45 60 12 88 46 55 8 75 62 37 36 125
10 46 48 30 46 100 12 70 37 37 8 93 28 39 12 54
11 57 48 34 67 35 12 144 49 40 36 116 39 8 12 98
12 40 48 39 18 32 36 42 56 66 36 58 43 32 12 99
12 52 48 62 27 15 36 60 56 17 36 103 22 44 12 64
12 51 3 58 30 32 36 39 57 13 36 87 40 32 12 70
16 65 3 59 40 5 36 59 59 35 7 129 50 29 12 78
38 18 3 145 12 97 12 33 29 32 7 74 48 18 12 74
10 49 24 39 37 39 12 117 27 22 7 110 12 21 24 39
24 36 24 92 82 44 12 155 27 20 7 108 38 36 24 89
29 22 24 98 41 111 36 92 19 50 6 70 29 87 60 50
60 16 24 156 77 82 36 162 26 46 6 51 42 55 60 62
16 49 6 115 36 94 24 63 56 13 6 88 61 63 60 68
31 54 6 90 54 99 24 83 48 12 6 99 80 76 60 97
15 14 24 63 14 45 6 47 18 35 36 77 35 64 6 63
16 14 24 40 18 6 6 41 27 14 36 79 44 47 6 76
24 10 24 113 19 32 6 69 54 30 36 100 64 34 6 94
26 5 24 60 35 29 8 135 57 30 36 99 16 69 36 65
15 33 5 90 42 65 8 105 15 41 60 42 23 92 36 69
39 15 5 135 36 55 24 103 20 22 60 49 52 93 36 74
40 10 5 120 50 13 24 72 26 34 60 57 17 59 6 57
40 12 5 131 11 36 24 54 51 34 60 60 20 27 6 64
13 53 18 83 20 34 24 71 26 24 12 67 21 21 6 113
31 22 18 88 32 29 24 95 37 7 12 63 20 26 4 74
23 38 6 54 67 11 24 88 15 48 36 62 28 34 4 69
25 28 6 91 20 35 12 82 20 27 36 63 36 62 4 82

Appendix B.

Data set of 116 projects developed by 29 students between the years 2011 and first semester of 2012 used for testing themodels.N&C:New
and changed lines of code;R:Reused lines of code; PLE:Programming language experience of students (inmonths);E: Effort (inminutes).

N&C R PLE E N&C R PLE E N&C R PLE E N&C R PLE E

21 39 36 55 20 38 10 62 17 62 8 45 39 46 42 64
39 52 10 58 15 23 24 64 20 89 60 45 59 77 38 66
24 40 60 66 22 20 10 66 34 48 48 47 30 84 19 71
27 28 36 75 43 78 24 66 37 78 48 54 38 102 12 71
32 11 10 76 30 50 12 68 27 44 8 55 50 62 19 74
54 29 36 100 16 43 4 69 24 94 8 57 45 83 18 76
30 47 36 104 29 26 48 73 32 32 60 59 56 21 8 78

Cuauhtémoc López-Martı́n et al.994

N&C R PLE E N&C R PLE E N&C R PLE E N&C R PLE E

46 39 60 120 39 43 8 77 41 80 8 59 23 81 18 79
54 31 60 139 22 27 12 79 39 25 48 67 41 22 12 79
17 42 48 31 17 29 12 80 20 89 60 73 22 96 18 84
16 60 48 32 39 43 8 85 39 20 60 80 43 54 18 85
10 19 36 35 75 7 36 88 39 20 60 90 40 16 19 90
13 43 10 37 28 23 10 91 91 12 8 92 25 63 8 92
27 53 60 43 22 13 12 93 27 44 60 102 30 20 12 95
40 56 48 44 41 22 48 93 20 20 14 105 35 49 36 95
23 13 36 46 65 60 30 93 23 44 14 110 33 48 10 98
11 33 36 48 18 11 12 96 23 13 14 125 20 74 8 100
17 46 48 48 37 12 36 98 45 12 8 143 17 32 12 102
20 37 12 48 50 27 30 99 23 72 54 42 37 17 12 105
15 67 60 53 35 65 10 100 22 99 50 44 42 43 36 105
20 56 24 53 77 19 8 100 18 94 42 45 39 20 36 107
22 65 7 53 27 51 8 101 36 87 50 47 109 30 22 107
27 26 12 53 22 36 12 106 14 75 42 49 14 41 10 110
18 38 12 54 42 43 4 106 33 37 50 51 46 36 11 113
41 96 30 54 32 23 24 107 22 65 11 53 32 15 10 114
19 92 8 57 46 36 7 113 27 104 54 55 65 21 8 114
26 44 48 60 77 51 8 125 28 47 12 59 37 23 36 119
30 45 7 60 40 40 10 145 30 45 11 60 38 20 12 140
26 47 36 61 15 44 48 42 30 60 12 61 46 28 10 173

Cuauhtémoc López-Martı́n obtained his Ph.D. degree in Computer Science in 2007 at Instituto Politécnico Nacional,

México City. Currently he is Researcher Professor at Universidad de Guadalajara, Jalisco, México. His areas of interest

are: Software Engineering Education, Software Engineering Processes, Statistics and Machine Learning Techniques

applied to Software Engineering and Prediction Models for Software Engineering.

Ivica Kalichanin-Balich obtained his Ph.D. degree in Information Technologies in 2015 at Universidad de Guadalajara,

Jalisco, México. His areas of interest are: Statistics and Machine Learning Techniques applied to Software Engineering

and Prediction Models for Software Engineering

Rosa Leonor Ulloa-Cazarez is a Ph.D. Student in Information Technologies at Universidad de Guadalajara, Jalisco,

México. Her areas of interest are: Online Education, Statistics and Machine Learning Techniques applied to Education

and Prediction Models for Education.

Noel Garcı́a-Dı́az obtained his Ph.D. degree in Information Technologies in 2014 at Universidad de Guadalajara, Jalisco,

México. He is Researcher Professor at Universidad de Colima as well as at Instituto Tecnológico de Colima, México. His

areas of interest are: Statistics andMachine Learning Techniques applied to Software Engineering and PredictionModels

for Software Engineering.

