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Software engineering courses usually face a situation where a reasonable size application has to be developed within a

semester period. But, on the one hand, if students begin from scratch and start with the knowledge acquisition and

requirements phases, they usually do not get to the deployment one. And, on the other hand, developing quality software

should go on being themain focus of a software engineering course. Our proposal is the development of a haptic simulator

as a teaching/learning tool for this purpose using the SHULE framework and following a Scrum development

methodology. The core of this framework includes a combination of design patterns that also guide the development of

thewhole simulator. This approach has beenused in the development of a cataract surgery simulator as a teaching/learning

tool, and the experience is shown as an example of the general Scrum development that is presented.
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1. Introduction

Design patterns are not an easy subject for students

to learn. When they are presented in class, students

can get the general idea of their design but it is not

until they code them in a real application when they

really know how patterns work. These elements of

reusable object-oriented software, as they were

defined by the GoF [1], have become an essential

ingredient for any quality software development.
But in order to truly understand their importance,

they have to be used in more than a small code

example. They do not just affect the software design

itself improving flexibility and reuse, but also the

way that software can be developed in terms of the

division of tasks. This is a key point when facing a

software development using any methodology, and

specially when using Agile methodologies.
Although Scrum cannot be considered as a meth-

odology for analysis or design, such as The Unified

Software Development Process [2], it is a methodol-

ogy for work planning andmanagement. This Agile

development framework defines the process, rules,

practices, roles and artifacts necessary in order to

increase productivity of development teams, based

on an iterative and incremental cycle of software
creation and development [3].

The first systematic review on empirical studies of

Agile software development [4] found 36 empirical

studies published before 2005, 9 of them performed

at university courses. The project duration for these

ones varied from3weeks to 1 year, and the team size

was between 4 and 6, only one of the studies showed
a team of 16. They usually developed a research

prototype and none of them used a framework as

the starting point. They concluded thatmore studies

were needed, especially about Scrum, because the

studies investigated XP almost exclusively. In 2012,

another systematic reviewwas conducted to capture

the status of combining agility with global software

engineering in studies published between 1999 and
2009 [5]. The majority of the existing research was

industrial experience reports and the paper was

focused on knowing the reasons for successful

empirical cases reported.

Regarding teaching in higher education, no agile

review has been found, but a review on empirical

studies of pair programming was conducted by

Salleh et al. [6]. They concluded that students’ skill
level was the factor that affected effectiveness the

most.

Software development does not always show

successful results. Sometimes projects are delayed

or even abandoned. A study performed by Chow

andDac-Buu [7] of the use of agilemethodologies in

the literature tried to identify the critical success

factors that help software development projects
using agile methods to succeed. A web-based

survey was conducted from 109 agile software

projects from 25 countries and multiple regression

analysis was performed. They found that out of 48

possible factors only 10were supported by evidence.
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And only three of them could be considered as

critical ones: a high-caliber team, a correct delivery

strategy and a proper practice of Agile software

engineering techniques. Besides focusing on the last

one, our course is also devoted to teamwork.

Transitioning from individual work to self-mana-
ging teams requires a reorientation by developers.

In a nine-month field study of professional devel-

opers in a Scrum team performed by Moe et al. [8],

highly specialized skills and a corresponding divi-

sion of work was found to be the most important

barrier for achieving effective teamwork.

The application of Scrum implies a continuous

process of testing and learning, where rules and
practices can be dynamically adapted in order to

ensure an optimal use of available resources in order

to increase efficiency. This process fits perfectly a

software engineering course where requirements

may not be clearly stated at the beginning, especially

because students are new to the problem environ-

ment, and small improvements can be defined

through the process in order to add value to the
stakeholders.

Our proposal for using design patterns in a Scrum

development takes our framework, SHULE, as its

starting point [9]. SHULE (Simulators for Haptic

Use in Learning Environments) is a framework for

building haptic simulators as teaching/learning

tools. The core of SHULE combines several

design patterns for offering a flexible and reusable
architecture for developing haptic simulators. The

haptic layer is provided by HBOgre (Haptic-Bullet-

Ogre), a library that abstracts the low level details of

haptic devices and haptic interaction and offers a

simplified way to create virtual scenes inside the

Ogre 3D engine.

The experience we are showing in this work uses

SHULE and HBOgre to develop a cataract surgery
haptic simulator. For a Scrum development, the

lead user role is vital. In our case, a veterinary

surgery professor played that role. It is very impor-

tant to get a lead user from outside the software

world because that is the way students get a more

real experience.Users usually do not speak the same

technical language as software engineers do. Stu-

dents have to practice to try to communicate their
ideas and work to a non-technical audience.

Developing haptic simulators must be linked to

tasks where the sense of touch is part of the experi-

ence being transmitted, especially if these simulators

are to be used as teaching/learning tools. In this

sense, performing a surgical procedure lays on the

surgeon’s sensory information, that is, the informa-

tion gathered by sight, hearing and mainly touch.
Acquiring the necessarymanual and visual skills for

such task is just a question of experience, which is

usually obtained by practicing.

Partly thanks to the use of haptic interfaces (i.e.

hardware that simulates touch); training surgery

using virtual reality simulators is becoming more

important every day [10]. This is due to the fact that

those systems allow practicing in a secure and

controlled environment, without having any kind
of risk for both the patient and the medical trainee,

the same way virtual words are being used for other

types of training processes in health [11]. Working

with haptic interfaces in a virtual environment

allows having almost infinite practical cases [12]:

from simply measuring the pulse of a patient or the

hardness of a tissue to learning how to perform a

special cut during a complex surgical procedure.
This context presents the issue of the lack of a

standard framework [13] that enables to develop

virtual reality simulators to be used as tools for

teaching surgery.

The goal of this paper is to detail the use of the

proposed software design described in [9] as a

framework that can be used to develop haptic

simulators in the context of a software engineering
course using an Agile methodology approach. The

main advantages of this approach are, on the one

hand, that students do not start a project from

scratch, nor in its design, nor in its implementation,

so that valuable results can be achieved in a seme-

ster. On the other hand, the architecture combines

several design patterns for students to adjust and

complete, which is the way to really learn them.
Besides, the development process including a lead

user provides an environment closer to the real

world, and the final product obtained, a cataract

surgery haptic simulator, can be used as a teaching/

learning tool in a context so different from software

engineering as veterinary surgery. Our proposal

does also include several tools that the teacher can

use to evaluate the student’s performance during the
process and also the final product quality.

This work is structured as follows: section 2

summarizes SHULE’s design. Section 3 details the

Scrum process proposed for a software engineering

course including the first phase and a generic sprint,

together with an example application. Finally, sec-

tion 4 presents the conclusions of this work.

2. Framework

The work presented in [9] includes the formal

definition and the object-oriented software design

of a framework that allows to model haptic teach-

ing/learning systems by using virtual reality simula-
tors. Although in that work, the application field

presented is surgery, the framework has been pro-

posed as a more general purpose one. Its main

features are detailed below.
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2.1 System’s description

The main goal of the framework is to build haptic

simulators that can be used as teaching/learning

tools in educational environments. A haptic simu-

lator includes the sense of touch, so that any kind of

procedure involving some degree of expertise

related to that sense is suitable for being considered.

The framework incorporates the domain expertise
knowledge in order to produce rich feedback to the

user. The only requirement is that the process to be

represented has to have a sequential order in the

main tasks performed.

The framework allows to dynamically model a

sequential procedure. The procedure is considered

as a series of ordered steps. Each step includes every

possible action (named state) that can be performed
in such context, both the ‘‘expected’’ and the unu-

sual ones. Furthermore, each action is triggered by

some events or situations that may occur during the

performance of the procedure. It should be noted

that, unlike steps, actions do not follow a sequential

order because a step can be completed in different

ways.

Therefore, the framework must offer a mechan-
ism to control, at any time, the action that is

currently being performed and thus determine

which one is next, based on the events. Thanks to

this design, an expert may model a procedure

according to its needs and preferences and, if

needed, insert any modifications later in a simple

way.

However, the key of the framework lies on learn-
ing from its use,which implies the need to capture all

the information related to the performance of the

procedure during the simulation. In other words,

capture the information related to which elements

of the simulation have been touched, moved or

modified, in which exact place, in what way, etc.

With the purpose of evaluating the information,

the framework must also offer a mechanism to
capture such information in a precise and automatic

way.

2.2 Design patterns used

The previous section described that the framework

has some ‘‘gaps’’. From the design’s point of view,

the proposed solution described in [9] to fill those

gaps includes the combination of three design

patterns:

2.2.1 State machine

The first obstacle is to find a representation of the

mechanism that allows the simulation to control the

action at any given moment and determine which is

the next action, based on the events that occur. The

State Machine design pattern [14] meets these

requirements, because it can alter the behavior of

an object when its internal state changes. Besides it

perfectly fits the proposed abstraction model for

modeling such procedures, as it is comprised of

states and transitions.

2.2.2 Visitor

The next obstacle is to find amechanism that is able
to capture the information related to the perfor-

mance of the procedure. During the simulation, the

user interacts with the elements of the simulation,

which constantly produces information. However,

before collecting any kind of information, the

framework needs to know from where it can be

done. The Visitor design pattern [1] comes in very

handy for this task, because it allows defining new
operations for a class without changing it. For the

particular case of the framework, such operations

will consist of setting the mechanisms that gather

the information on each state.

2.2.3 Observer

The last obstacle is a direct result of the latter since it

concerns the automatic capture of information. The

best candidate for this task is the Observer design

pattern [1]. It defines a one-to-many dependency
between objects so that when one object changes its

internal state, it notifies to all its dependent objects

to update automatically. Inside the framework, the

Observer’s role consists of gathering the informa-

tion resulted from the user interacting with the

elements of the simulation involved in the proce-

dure.

2.3 Information

Once the basic components of the framework archi-
tecture have been settled, there is still an important

part missing. Thanks to the combination of the

three designed patterns mentioned above, the

mechanism for obtaining information about the

user performance with the simulator is already

determined. That information has to be also

included into the frameworkdesign in such a generic

way that it can be suitable for many types of specific
information.

Inside the framework, the information has been

designed associated to each element in each state.

Three types of information are provided: recordable

data, reasonable data and computable data. The

first one corresponds to the information that has to

be stored and later showed to the teacher about the

student’s performance. The second one is the infor-
mation for providing the student with feedback

about her performance. The last one is the informa-

tion used to elaborate a grade for each step and a

final grade of the whole procedure.

In order to make the information treatment as

Camino Fernández et al.1038



flexible as possible, the Strategy design pattern has

been used [1]. Three families of algorithms have

been defined, one for each type of information, so

that the specific strategies can vary independently

from the clients that use it, in this case, the class

representing that information.

3. Scrum process

Software engineering courses usually face a situa-

tion where a reasonable size application has to be

developed within a semester period. When students

enter these courses, they have already had at least

four semesters of programming related courses, so

that they have acquired the basic background
needed to accomplish a whole project development.

Our proposal is to use our framework, SHULE,

for developing a haptic simulator as a teaching/

learning tool following a Scrum development meth-

odology [15]. Themain advantages of this approach

are:

� Development does not start from scratch, so

valuable results can be achieved in a semester

period of time.

� The framework is flexible enough to allowdealing
with a broad range of applications as final pro-

ducts.

� The architecture combines several design pat-

terns and using design patterns is the way to

learn design patterns.

� Implementing a Scrum methodology on a real

product brings real business world into the class-

room.
� If the development can incorporate a lead user,

software engineering students’ experience will

result enormously enriching.

� The final product can be used as a teaching/

learning tool in another environment.

� The teacher can use several tools to evaluate the

student’s performance during the process and

also the final product quality.

Themain issues to consider for each new project are

the final product and the development team. The
development team is composed by the students of

the software engineering course. Choosing the pro-

duct is the key for the rest of the process. Depending

on the product, the lead user has to be set. The ideal

case involves a real user from a different field. In the

work presented, the lead user was a veterinary

professor teaching surgery. The software engineer-

ing teacher assumes the ScrumMaster role and one
of the students is assigned the Build Master role.

This role is extremely important due to the tools that

will be used to support the continuous integration

and continuous delivery process linked to the pro-

duct development. The rest of the students will be

part of the development team and they will have

different tasks assigned for every Sprint.

In the rest of the section the product development

will be shown in detail. The first phase of the

process, the product backlog, and one Spring will
be described. For each phase, there is a subsection

explaining what SHULE provides, another one

detailing what the development team has to code,

and the last one describing a real example of use.

The section ends detailing the tools used to support

the development process using continuous integra-

tion and delivery.

3.1 Product backlog

The goal of the starting meeting is somehow to
establish the equivalent to the initial user require-

ments, the product backlog, in terms of user stories.

The only condition that SHULE demands is that

there should be a sequence of steps to be performed

in a specific order inside the simulator, although

inside each step there is not a preset order. For

instance, in a cataract surgery procedure, the exam-

ple that will be used all through this section, an
incision has to be made in the anterior capsule

before the cataract can be removed, but the actions

to be performed in order to make that incision can

vary widely. Each one of these steps will be assigned

to one Sprint and the development order does not

need to be a particular one. The Scrum team can

decide which step to implement first, taking into

account the opinion of the lead user.

3.1.1 What does SHULE provide?

� The overall framework architecture for the devel-

opment of the haptic simulator.

The first meeting of the development team is a very

important one. During this meeting everyone has to

understand how the framework that they are going

to use works. That means that both profiles, lead

user and software engineering students, have to see

it clear. The teacher is an important part of that

meeting because, as Scrum Master, has to assure
that the process is being developed properly.

For the lead user, the artifacts used to explain it

will be user stories. These same user stories will be

used to establish the product backlog.

For the students, the artifacts used will be the

class diagrams of the framework architecture show-

ing the design patterns involved. Among these

patterns, the state machine, implemented with the
state machine design pattern, is the simulator’s key

component. Its mission consists of controlling the

simulation flow by having a set of states and

transitions. Its implementation has been slightly

modified with respect to the original pattern:

Design Patterns Combination for Agile Development of Teaching/Learning Haptic Simulators 1039



� Executing a simulation implies having a large

number of transitions between states. To avoid

creating and destroying states whenever a change

of state occurs, a StateFactory class has been
created to act as a ‘‘pool of states’’. This class

stores all the states contained in the statemachine
of a particular step, so they can be provided on

request.

� To define the list of transitions between states, a

new initmethod for the StateMachine class

has been implemented.Thismethod initializes the

list of transitions from a properties file.

� To uniquely identify each step and state, a new

attribute has been added to the StepContext
and IState classes.

More detailed information about the state
machine design can be found in [9].

3.1.2 What is left?

� Defining the specific steps, choosing the first one

to start with, and detailing it.

Once the whole team understands how SHULE

works, the steps for the new product have to be

determined. In that moment, the lead user can

propose which step could be the first one to develop,

although it will be up to the team. For that step, a

detailed user story will be produced.

3.1.3 Example: cataract surgery

For our example, our lead user chose a cataract

surgery simulator. The steps to perform this surgery

were established and they are summarized in

Table 1.
Once the product is chosen and its steps settled,

the framework can be explained to the whole team

using that specific product. For the lead user, a

diagram like the one showed in Fig. 1 was used.

This diagram serves two purposes. The first one is to

be the artifact for sharing a common language

among the different types of stakeholders, in this

case, software engineers and surgeons. The second
one is that the whole team understood the frame-

work architecture for the simulator development.

What Fig. 1 tries to transmit is that the surgery is

divided into six steps that are sequential (first row).

Inside each step, a non-sequential set of actions can

take place, depending on the tool chosen by the user

Camino Fernández et al.1040

Table 1. Steps defined by the lead user

Step Name-ID Description

1 preparation Small prick in the cornea and viscoelastic filling of the anterior chamber
2 capsulorhexis Tear apart a circular section of the anterior lens capsule
3 phacoemulsification Remove the nucleus of the clouded lens
4 insert lens Inject the lens implant and position it correctly
5 final rinse Remove viscoelastic
6 close Remove aux route and close aperture

Fig. 1. Relationship between the state machine and the visitor pattern for the capsulorhexis step.



(second row). When one step is finished, the perfor-

mance for that step is evaluated and a grade is

obtained (third row). These grades will be used to

obtain the final one (Total score). In the last row, a

closer look to one particular step is taken. In the first

part it can be seen how the changes in the states are
driven by the change in the tool. It is also shown

that, for every state, there is someone, a visitor, in

charge of placing observers (magnifiers) on every

element of the anatomy. These observers will collect

all the information needed fromevery element of the

anatomy depending on the active state. For

instance, if active state is capsulorhexis or

remove corners (states 3 or 4), the lens nucleus
(element 8) can be touched, but the lens posterior

capsule (element 9) cannot (see Table 6).

For the software engineering students, a class

diagram of the state machine pattern, also applied

to the final product, was used. The lead user

proposed to start with the step number 2 and that

decision was accepted by the team, so detailed

information had to be obtained for that step.

SHULE establishes which is the information

needed to build the system following the design

architecture of the framework. The information
includes: the states of the step for the state machine

(see Table 2), the tools available for the task (see

Table 3), the state transitions depending on the tool

chosen (see Table 4), the elements of the anatomy

involved in the step (see Table 5) and the feedback to

be provided for the student and the teacher (see

Table 6).

This information is the basis for detailing the step
number 2 in the first Sprint. Besides, this informa-

tion was also used to develop the class diagram

showed in Fig. 2. The diagram shows the classes and

relations involved in the state machine pattern. In

this figure, the states for the second step are shown.
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Table 2. States for the capsulorhexis step

State Name-ID Description

1 start state Initial state for this step
2 lens incision Small prick in the anterior capsule
3 capsulorhexis Tear a circular opening in the sac that holds the cataractous nucleus
4 remove corners Check & remove any corners from the circular opening
5 next step Continue to next step
6 wrong state User did something wrong

Table 3. Tools for the capsulorhexis step

Tool Name-ID Description

1 forceps capsulorhexis forceps
2 cystotome small knife with a tiny curved or hooked blade
3 small scissors scissors to remove corners left in the opening of the anterior capsule
4 slit knife scalpel to enlarge precision incision

Table 4. State transitions depending on tools

State/Tool 1 (forceps) 2 (cystotome) 3 (scissors) 4 (slit knife)

1 (start_state) 2 2 X X
2 (lens_incision) 3 3 X X
3 (capsulorhexis) 3 3 4 3
4 (remove_corners) 3 3 4 3

Table 5. Elements of the anatomy involved in the surgery

Element Name-ID Description

1 cornea Transparent front part of the eye
2 aqueous humour Clear fluid filling the anterior part of the eye
3 anterior chamber Space inside the eye between the iris and the cornea
4 iris Diaphragm located in front of the lens
5 posterior chamber Space between the iris and the lens
6 lens The lens of the eye divided into anterior capsule, nucleus and posterior capsule
7 lens anterior capsule Anterior layer of the lens
8 lens nucleus Central part of the lens
9 lens posterior capsule Posterior layer of the lens
10 vitreous humour Clear gel that fills the space between the lens and the retina
11 retina Posterior layer containing photo receptors



Although in Table 2 there are six states, only three

are represented here. The other three are the start
state, the next step and the wrong state.
These three states are common for all the state

machines, so they are not included in the diagram.

The start state is an initial state for waiting for
the user to choose one tool. The user manually
chooses the next step state whenever she

thinks she is done with the step, and the wrong
state is not really a state.When the user chooses a

wrong tool from any of the other states, the state

machine swaps to the wrong state. Once there,
the information about the initial state and the tool

selected is stored for grading and feedback pur-

poses, and then the state is swapped again into the

initial one.

3.2 Sprint N

The goal of every Sprint is to implement, test and

deliver one step of the simulator. Depending on the
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Table 6. Feedback for capsulorhexis step

States Elements Feedback Outcome Performance ( – / = / + )

1 all Just one tool has to be chosen Error message if the right tool
was not chosen

Negative if wrong tool chosen

2 7 Tool used: Position, angle and
depth of the incision

Information about the quality of
the incision

Position, angle and depth are
ranked and graded accordingly

2 not 7 Should not be touched Error message if touched Negative if touched

3 7 Tools used: Shape of the opening
and space trajectory of the tools
used

Comments on the opening Different shapes are ranked and
negatives are assigned to each
swap of the tools used

3, 4 6 Can be touched but not pushed
hard

Error message if pushed hard Negative if pushed and fatal if
pushed hard

3, 4 8 Can be touched No outcome No grade influence

3, 4 9 Should not be touched Fatal error if broken Negative if touched and fatal if
broken

3, 4 not 6, 7, 8, 9 Should not be touched Error message if touched Negative if touched

4 7 Time spent cutting the corners,
number of cuts and shape of cuts

Messages about the performance
with the scissors

Negative as more time is spent,
negative for each new cut, and
ranked shapes of cuts

5 all Summarize information
compiled during the step

Resume of the information
compiled

Combined grade for this step

6 all Wrong tool selected: which and
when

When which tool was selected Negative for every wrong tool
selected

Fig. 2. State machine design pattern with states for step 2.



complexity of the specific step, the Sprint length

should be adjusted. Provided the fact that design

patterns allow dividing coding tasks very clearly

and quite efficiently, the size of the development

team will also affect the length of each Sprint.

At the end of each Sprint, a retrospective meeting
takes place during one of the regular practice

sessions of the course. That meeting is conducted

as a start-stop-continuemeeting where the team has

to identify specific things that they should start

doing, stop doing and continue doing. During this

meeting, the goal and the tasks for the next Sprint

are defined and also assigned.

3.2.1 What does SHULE provide?

� The state machine esqueleton plus the combina-

tion between visitor and observer patterns, and

information design.

Themain core of the statemachine has already been

explained in the first meeting, so we are going to

focus on the three remaining parts: visitor pattern,

observer pattern and information design.

3.2.1.1 Visitor pattern

The role of the Visitor design pattern is to go over

the different elements of the scene implicated in a

concrete state. This is done in order to set the

different observers that will later gather the infor-
mation resulting from the user’s interaction within

the simulator.

The implementation of this design pattern

requires defining the IStateVisitor interface

including a specific method for visiting each of the

elements of the scene. One class will implement this

interface for each one of the states of the present

step. Moreover, in order to ‘‘accept’’ the Visitor in
an element of the scene, the class IElement has to

include the accept (IStateVisitor)method.

Each time a concrete ‘‘visitor’’ visits a concrete

element, the visitor substitutes the current observer

with another one that collects the information

required for that new state. This action takes place

each time the user chooses a different tool, which in

turn generates a change in the active state of the
statemachine.However, during the implementation

of this pattern, a new issue arose about collecting the

information captured from the observers during a

simulation session. To solve this need, the class

InformationVisitor was added. As a result,

each time a visitor ‘‘visits’’ a concrete element of the

scene for changing its observer, the visitor starts to

process the information generated by the old obser-
ver from that element before removing it. Thewhole

process corresponds to the starTool()and
endTool() methods of each IState (see Fig. 3

and Fig. 4).

3.2.1.2 Observer pattern

The Observer design pattern is the link between the
framework and the information resulting from the

user’s interaction.For its implementation, the IOb-
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Fig. 3. Sequence diagram—startTool process.

Fig. 4. Sequence diagram—endTool process.



server interface has been defined. One class

will implement this interface for each one of the

states of the present step. Besides those ones, the

NoActionObserver is provided. This observer

handles the case in which the user should

not interact with an element of the scene in a
particular state. In addition, the methods atta-
ch(IObserver) anddetach(IObserver) are
located in theIElement interface for it to act as the
subject of the observer pattern.

For the part of the observer that offers the service

of collecting information, the method proces-
sInfo() was added to the IObserver interface.

This method is called from the Information-
Visitor and is responsible for creating the infor-

mation that assesses the user’s performance within

the simulator (see Fig. 4). More details of this

method will be described in the next subsection.

3.2.1.3 Information

One of the most important aspects of SHULE is
information modeling. Information obtained from

user interaction with scene elements has to be

modeled. In order to evaluate the user, the first

step is to have detailed and structured information

about that user interaction. This information is

obtained from the data collected during simulation

operation. Both info and data are described in the

next subsections.

Info

In the design explained by now, observers are in

charge of getting information, but it has not been

detailed yet; how is this info defined? How is it

stored? Who has the responsibility to control and

process it?
First of all, different info is obtained for each

particular scene element in each state. During the

interaction process with the element, basic data is

generated for later producing the info. This is raw

data, that is, it has not yet been classified and it is

related to atomic operations, for instance, take or

leave a tool, move a tool through a region, touch a

specific part of an element of the scene, etc. Those
data, once processed,will be the basis for the info. In

thenext subsection, the data involved is detailed and

it is shown how it is processed.

In order to evaluate a student, a final mark is

obtained from the partial ones obtained for every

step of the procedure. In turn, in order to obtain the

mark for one step, all its states are involved. This

means that there must be information units for each
state. Each step will store its own information unit

that composes from the individual units of each

state.

Once the info is defined, the framework has to

store and manage it from somewhere. Taking into

account the overall structure of the architecture,

that information should be kept inside every step

because that is the placewhere each state is included.
In the end, the simulator will manage the whole

information because it is aware of the active step in

each particular moment.

Figure 5 shows the class diagram modeling the

information. The actors involved are:

� Info. Represented by the container Infos that
aggregates Info objects. The Info class repre-

sents the information unit obtained from a parti-

cular element of the scene during a specific state

and includes the set of processed data. The

Infos class is only in charge of storing and

managing Info objects for an individual step.

� Simulator. Represented by theSimulator class.
This class controls the simulation and stores a
reference to the active step all the time.

� Step. Represented by the StepContext class.
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This class represents one step of the procedure. It

is in charge of storing all the information

obtained during its execution. It also maintains

a reference to the active state.

The process by which the visitor gets the informa-

tion by means of the observer is detailed in Fig. 6.
When the InformationVisitor invokes the

processInfo() method of an IObserver, it is
the moment for it to process all the information

stored by calling the methods compute(),
reason() and record(). As a result, the IOb-
serverwill be able to create a new instance of Info.

Next thing to do is to store that new information in

the correct place. For doing that, the IObserver has
to know which one is the active state. The active

state has to be included in the information itself

before it is stored in the active step infos.

Data

Prior to generating a user evaluation, the informa-

tion itself has to be built. During the simulation, the

interaction process generates a lot of raw data that
has to be classified in order to obtain an information

unit useful for both the framework and also the final

users.

In the definition of the model [9], it is stated that

each training session with the simulator includes

three main elements:

1. On the one hand, amark to evaluate the student

performance has to be obtained. This mark

comes of a series of calculations comparing

initial determined parameters with the data

obtained during the interaction (incision
angle, length or shape of cut, depth of cut,

etc.). This type of element is named Compu-
table meaning that this data has to be com-

puted.

2. On the other hand, the expert obtains informa-

tion about the student’s performance during a

training session. This way, the expert can verify

or reconsider the design of the surgical proce-
dure. This information is obtained by proces-

sing technical data to make it meaningful to the

user.Data processed include information about

actions as the following ones: time to complete

one step, number of times that a particular part

of the anatomy has been touched, type of tools

used, etc. This element is named Recordable
referring to the fact of recording the user
interactions.

3. Finally, together with the mark, the student

receives detailed information about her training

session. This feedback can be useful for future

sessions. The information, in a similar way that

the last one, is obtained by processing technical

data, but this time, the rationale behind the

mark is explained to the user. Data processed
includes references to technical data such as:

number of errors, appropriate time to complete

a step, degree of precision during the procedure,

etc. An element of this type is named Reason-
able because, unlike Recordable, this one is
enriched with some logic for adding a meaning

to the data obtained.

Each of these elements works with different data.

The combination of all of them is an information

unit.Nevertheless, before that information becomes
useful, data has to be processed. Taking into

account that each data is different, the way they

are processed should also differ.

The modeling of the requirements described

above is shown in the class diagram of Fig. 7. The

actors are:

� Data. Represented by the Data interface. There
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are three abstract classes that implement it

(RecordableData, ReasonableData and

ComputableData), one for each type that

forms an information unit. Sometimes data has

to be expressed as a combination of several ones

of the same type. For that season, every concrete

class includes a method named combine to repre-
sent that possibility. Besides, each type of data

can be specialized in order to offer amore detailed

version, as for instance the NumericComputa-
bleData class.

� Observer. Represented by the IObserver inter-

face. All through this work it has been stated that

the observer is the one in charge of getting the

interaction information. For that information to
be used during the evaluation phase, the interface

includes a method named processInfo that

allows processing data to be transformed into

instances of the Info class, as it has been

shown earlier.

� Info. Represented by the Info class. This class

represents the information unit once the IOb-
server has processed data. Its task consists in

storing all the processed data obtained from an

element of the anatomy in a specific state of one

step of the surgical procedure.

� Strategy. Represented by the Computable-
Strategy interface. This interface and its con-

crete class, DefaultComputableStrategy,
correspond to the Strategy design pattern [1].

This pattern allows maintaining a set of algo-

rithms encapsulated in order to make them inter-

changeable. For the data, the pattern allows

defining different calculation strategies.

Figure 8 shows the sequence diagram for comput-

ing a Computable data using a Strategy design

pattern. Data obtained by the IObserver is raw

data that has to be processed. To achieve this goal,

the instance of the IObserver makes a call to its
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computemethod as part of the processInfo()
method (see Fig. 6). That method delegates into a

concrete strategy the task of obtaining and calculat-

ing the specific data. The instance of the strategy,

ComputableStrategy, is in charge of obtaining
the parameters needed from the element that the
IObserver is observing, IElement. From this

IElement, the strategy is able to create a new

instance of the ComputableData class containing
the data just obtained. At the end, this instance is

returned to the IObserver, whowill use it to build
an information unit.

3.2.2 What is left?

� Define specific states, visitors, observers and data

from user stories.

Specific tasks have to be established for the team to
estimate effort and assign them. Depending on the

size of the development team, the size of those tasks

can vary. For instance, one task can involve the

development of one of the states of the state

machine, or it can comprise the development and

integration of all of them in the state machine

structure. The list of tasks will include but not be

limited to the following ones:

� State machine states: One state class for each new
state defined for this step.

� Concrete visitors: One visitor class for each new

state defined for this step.

� Concrete observers: One observer class for each

new state defined for this step.

� Info: Specific classes that inherit from Compu-
tableData, ReasonableData and Recor-
dableData and represent the information to be
obtained.

� Concrete strategies: One ComputableStrat-
egy, ReasonableStrategy and Recorda-

bleStrategy class for each way defined to

compute, reason and record the information

obtained.

Each task, of course, includes coding, unit testing

and documenting. It is important to keep in mind

the need for the build master role in charge of
building and deploying each version of the final

application.

Besideswhat canbe considered pure coding, there

is also another important task for the final product,

which are the anatomy and the tools that the user

can choose. A graphical representation has to be

developed using some 3D tool. The tools will be

shown as the haptic cursor each time the user
chooses a different one andwill also cause a different

behavior for the haptic cursor.

3.2.3 Example: Cataract surgery

Thewhole design of the statemachine for the second
step of the cataract surgery was already presented in

Fig. 2. The main three states included in this step:

SmallPrick, Capsulorhexis and Remove-
Corners, are the basis for what is left of the visitor
and observer patterns.

Figure 9 shows the class diagram for the visitor

pattern of the step 2. The visitor interface includes

onemethod for visiting each element of the anatomy
involved in the surgery procedure. In this case, only

four elements can be affected by this step, so the

visit method is overloaded for visiting the ante-

rior chamber, the cornea, the lens and the sclera. In

Fig. 10, the sequence diagramof theSmallPrick-
Visitor is shown. When the active state is

SmallPrick, a small incision in the cornea has

to be done, but the sclera should not be touched. For
this reason, a SmallPrickObserver is attached

to the cornea element and a NoActionObserver
is attached to the sclera element.
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Figure 11 shows the design of the observer

pattern for the step 2. One observer is needed for
every state, so that they can be placed in some

elements of the anatomy. The visitor is the one

that knows which observers have to be placed in

which elements. The role of each observer is shown

in Fig. 12. Whenever the cornea is touched, the

observer is notified so it can update the information

related, for instance, to the cut position. This

information will later be collected in order to
create objects of the Info class.

Currently, there are issues to define suitable

metrics for assessing the surgical skills of a medical

trainee. Regardless of the metrics used, the frame-

work needs to be able to automatically collect and

process the information resulting from a training

session with the simulator. The evaluation of stu-

dents’ performance in a surgical environment is not
new [16, 17]. Traditionally, this was based in the

review of a sequence of actions and in the observa-

tion of how users carry them out [18–20]. With the

popularization of the use of simulators and virtual

worlds in surgical environments, the landscape has

changed. Simulators facilitate the evaluation of

several issues that are not easy to assess in real

experiences. The ‘‘information’’ gathered through
the simulation can be used to carry out different

kind of tests [17, 21, 22]. Some examples of the

‘‘information’’ to study can be: the force employed

with a surgical tool, the angle used tomake a cut, the

skill in the use of the instrument (movements/time),

how the users deal with the tissue, etc. [22, 23].

Therefore, by using the information gathered

through the simulation, it is possible to enrich
student’s assessment. However, objective metric

definition is a very complex process [24, 25], because

it may depend on the type of surgery to be per-

formed and on experts’ expertise [17]. For the

specific case of a haptic simulator, three types of

information should be stored:

1. Information about user’s action in each step.

That is, useful information about student per-
formance in a specific step. This information

could include: the time used to complete the

step; issues related to the surgical technique

(pressure applied, tissue damage, depth,

number of cuts, surgery accuracy, proper use

of tools); procedural issues (if the actions were

carried out in the right order); and issues related

to success of the surgery (if the final outcome is
successful, in what percentage, degree of

improvement, etc.).

2. Feedback information to show to the users

depending on how they carry out the step. The

expert provides them with several possible

workflows for each surgery. Depending on

how the students complete the steps, the simu-

lator will send them a different feedback. The
feedback could change depending on user’s

gathered information. The framework aims to

use this to increase student success.

3. Information about the students’ performance

or success in the activities that they carry out.

The expert sets up criteria and depending on the

information about how the users progress in the

step, they achieve a grade.

All the information has been encapsulated into the
Info class, which is composed by Computable-
Data, ReasonableData and Recordable-
Data. The format of each of them has to be

defined, but both ReasonableData and Recorda-

bleData will mainly be just strings provided by the

expert. Their combinemethodwould be in charge of

removing the replicate messages and reorganize the

other ones following the order established by the
lead user. The case of the ComputableData is

different because is information that has to be

computed. A strategy pattern has been used to

allow the computation algorithm to be the one
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needed for every situation. A DefaultComputa-
bleStrategy is provided for this case. This

strategy uses NumericComputableData to

represent the negative and positive information

assigned to every action by the lead user (see

Table 6).

The information provided about users progress

provided by the simulator may be used in other

performance assessment systems used with surgery
students, such as: OSATS [26] andHMA [27]. This

guarantees the simulator portability, so they could

be used in other contexts and for other surgery

activities.

The only part that is left is the surgery anatomy

and the graphical tools. Table 7 shows some of the

tools developed for this simulator and a screenshot

of the eye anatomy development. The models were
developed by some students that had previous

experience with 3ds Max1 software. This task is

only performed once for all the steps.

3.3 Tools

This section includes the tools used for students to
work with the haptic devices and for teachers to

evaluate students’ performance.

3.3.1 HBOgre

HBOgre is a software library developed by our

research group. It uses an open source 3D engine,

Ogre2, for graphics, and a real-time physics library,

Bullet3. The haptic part of the library abstracts the

haptic device and all the other parts are synchro-

nized. The result is a library that offers a simplified
interface for creating new haptic simulators by

abstracting low level details.

This is one of the key parts of the development of

haptic simulators using SHULE.Without HBOgre,

the rapid development needed for accomplishing

this project in one semester would not be possible.

3.3.2 Support and evaluation tools

One important part of the process is how to evaluate

the students that take part in the development.

These are the tools used for both supporting the

process and also for evaluating the students’ work.

� PivotalTracker4—This toolwas used for support-

ing the Scrum methodology. This web applica-

tion includes as its functionalities creating a

project, including stories, estimating points and

velocity, modifying the story workflow, receiving

notifications and obtaining monitor charts.

Tracker is free for public projects, non-profits
and academic institutions.

� GitHub5—Code host for both git and subversion

repositories. Using a history statistics generator

such as GitStats6, the activity of each student

working in the project can be traced.

� Jenkins7—This open source continuous integra-

tion server was used combined with GitHub and

Sonar for the project development.
� Sonar8—For code inspection, Sonar offers plu-

gins toworkwith several programming languages

and also for checking individual contributions to

a project using Developer Cockpit9.
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1 http://www.autodesk.com/products/3ds-max

2 http://www.ogre3d.org
3 http://bulletphysics.org
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5 https://github.com/
6 http://gitstats.sourceforge.net/
7 http://jenkins-ci.org/
8 http://www.sonarqube.org/
9 http://www.sonarsource.com/products/plugins/developer-
tools/developer-cockpit/



4. Conclusions

The paper presents an approach for using the

SHULE framework in a software engineering

course to develop a haptic simulator as a teaching/

learning tool using anAgile development approach.

Themain advantage of this proposal is that students

do not start a project from scratch, nor in its design,

nor in its implementation, so that valuable results

can be achieved in a semester. The core of this
framework combines several design patterns that

students have to complete during the development.

A Scrummethodology has been used to accomplish

this project because it fits perfectly with the tasks

separation that the design patterns included in the

framework provided. Besides, including a lead user

has provided an environmentmuch closer to the real

world than most traditional projects accomplished
in software engineering courses. This final product

can be used as a teaching/learning tool in another

environment. Although it has been applied to build-

ing a surgical simulator, SHULE can be used for

any application where expertise related to the sense

of touch and also spatial sense are involved. If a real

leaduser canbe involved, the experience turns out to

bemuchmore enriching because students have to be
able to communicate ideas to a person from outside

their field, and also have to be able to understand a

lead user, which rarely happens during college

education.

SHULE is shown as a valuable tool that comple-

ments lecture classes about design patterns. The

Scrum process has been supported by the use of

several tools that help the teacher evaluate both

individual contributions to the project and also the
final product quality. These tools have played an

important role in the whole development. First, the

web environment that supports the Scrum process

has allowed students to have up to date information

about the work of the rest of the team, and the

teacher has been able to monitor the whole process.

Second, using tools to analyze the data obtained

from the repository has helped the teacher to know
the code contribution of each particular student.

Last, the use of a continuous integration server

together with code quality analysis provides many

important metrics to measure the final product in

terms of lines of code, unit test coverage, documen-

tation, duplications, complexity, violated rules, etc.

Although no formal questionnaire has been used,

the experience has showed mixed results for stu-
dents and for the teacher. For students, teamwork

has shown to be a pending task once more.

Although the use of tools to support the agile

development has helped, they are not used to have

individual assessments when working in teams.

Particularly, they were quite surprised about all

the information that can be obtained from their

repository user, as graphics showing the periods and
times of more activity, usually at the end of the

semester, or their specific contribution to the sys-

tem’s code. For the teacher, the experience has

shown very promising results, especially concerning

assessment process. The use of a continuous inte-
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gration server has proved to be essential to know the

state of the projects in any particular time. The

combination of this server with the tools that per-

formquality analysis releases the teacher from some

tedious tasks about code conventions, for instance,

while ensuring code quality and offering objective
measures about it.
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Universidad de León for its support. This work has also been
partially funded by the Spanish Ministerio de Economı́a y
Competitividad under grant DPI2013-40534-R.

References

1. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
patterns: elements of reusable object-oriented software, Addi-
son-Wesley Professional, Boston, MA, USA, 1994.

2. I. Jacobson, G. Booch and J. Rumbaugh, The Unified Soft-
ware Development Process, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

3. K. Schwaber and M. Beedle, Agile Software Development
with Scrum, Pearson Education, Limited, 2008.
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