
Fine-Grained Recording of Student Programming Sessions

to Improve Teaching and Time Estimations*

DANIEL TOLL and TOBIAS OLSSON
Linnaeus University, Nygatan 18 B, 392 34 Kalmar, Sweden. E-mail: daniel.toll@lnu.se, tobias.ohlsson@lnu.se

MORGAN ERICSSON and ANNAWINGKVIST
Linnaeus University, Universitetsplatsen 1, 351 95 Växjö, Sweden. E-mail: morgan.ericsson@lnu.se, anna.wingkvist@lnu.se

It is not possible to directly observe how students work in an online programming course. Thismakes it harder for teachers

to help struggling students. By using an online programming environment, we have the opportunity to record what the

students actually do to solve an assignment. These recordings can be analyzed to provide teachers with valuable

information. We developed such an online programming tool with fine-grained event logging and used it to observe

how our students solve problems. Our tool provides descriptive statistics and accurate replays of a student’s programming

sessions, including mouse movements. We used the tool in a course and collected 1028 detailed recordings. In this article,

we compare fine-grained logging to existing coarse-grained logging solutions to estimate assignment-solving time.We find

that time aggregations are improved by including time for active reading and navigation, both enabled by the increased

granularity.We also divide the time users spent into editing (on average 14.8%), active use (on average 37.8%), passive use

(on average 29.0%), and estimate time used for breaks (on average 18.2%). There is a correlation between assignment

solving time for students who pass assignments early and students that pass later but also a case where the times differ

significantly. Our tool can help improve computer engineering education by providing insights into how students solve

programming assignments and thus enable teachers to target their teaching and/or improve instructions and assignments.

Keywords: computer science education; learning analytics; educational data mining; computer engineering education

1. Introduction

In the past, programming assignments often

demanded access to hardware (computers) and soft-
ware (compilers and tools) that was not easily

available outside campus. Students were scheduled

to computer laboratory rooms, where participation

was oftenmandatory. This allowed teachers to get a

sense for what problems students experienced.

Teaching was agile; the class could be gathered

during the laboratory session for impromptu lec-

tures that provided more information on a certain
topic or a quirk in the development environment.

Computers and development tools are now widely

available and it is common for students to have a

fullyworking development environment at home; as

courses move off-campus and online it is almost

mandatory. The scheduled laboratory work is more

and more used for examinations or to assist with

specific questions handled by teaching assistants.
The opportunity for teachers to observe students

while programming has almost disappeared.

Based on experience from mixed mode (online

and campus students) programming courses, we feel

that we do not understand the problems our stu-

dents face. This feeling is confirmedby for example a

survey on student programming behavior [1, page

296]: ‘‘This disparity between student and faculty
perceptions is an indication of the profound lack of

understanding of student software development

practices.’’ To understand students, teachers of

programming courses have recorded student pro-

gramming sessions on different granularity levels,
from the coarsest level of student assignment sub-

missions to fine level logging of each keystroke [2–

7].

We make the following contributions: we imple-

mented an even more fine-grained logging of stu-

dent programming sessions that includes mouse

movements, text selections, and text cursor posi-

tions and places an upper limit on time students
spend in the editor. We compare these finer-grained

logs with previous more coarse-grained in activity

aggregations and find that the time for editing is

only a fraction of the total amount of time students

spend on an assignment. We divide the time spent

into activities and use the fine-grained time mea-

surements to determine how the sessions (e.g.,

problems experienced) of students that finish early
compare to students that finishes later.

� RQ1. How much of total tool usage time can be

estimated using coarse-grained models?

� RQ2. What is the fraction of assignment solving
time spent on editing, reading and browsing

assignment code and how much time do student

spend outside of the tool?

� RQ3. Can time measurements of students who

* Accepted 12 February 2016. 1069

International Journal of Engineering Education Vol. 32, No. 3(A), pp. 1069–1077, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.

complete assignments early predict what assign-

ments the main group of students is going to

struggle with?

2. Background

In off-campus courses, for example MOOCs, an

online programming environment is attractive in

part because it provides the opportunity to record

eventswhen the studentswork on their assignments.

Most current studies collect data at a coarse-grained

level (e.g. submission times, code-changes, or com-
piler errors) to allow a quantitative data analysis to

understand students. BlueJ1 is a popular free Java

development environment aimed at beginners.

Jadud [2] used BlueJ to record and investigate the

Edit-Compile cycle of novice Java programmers by

taking snapshots of the code at each compilation.

His findings are in line with other research [1, 5]: a

majority of errors are cause by a small subset of
compiler errors—most students make the same

mistakes. Jadud [2] also studied compilation pat-

terns of students and found that a large portion of

students recompile without making any changes to

the code. He used the collected compilation error

data to define the Error Quotient (EQ), a model to

help identify students that struggle. Utting et al. [8]

plan to instrument BlueJ to allow for large-scale
anonymous data collection and make the collected

data available to other researchers. The goal is to

allow for more power in quantitative analysis and

also to study situations that do not occur very often

and thus smaller samples may miss entirely. Helmi-

nen et al. [5] include an interactive Python console in

their online programming tool. They collect testing

behavior statistics on howmany students write their
own tests or use the assignment’s provided tests.

Execution error statistics that indicate students’

lack of API or language knowledge are also col-

lected. Their granularity level is on recording code

submissions, code edits, console interactions and

alsowhen the student started their tool and closed it.

Vihavainen et al. [7] instrumented NetBeans to

collect fine-grained recordings of keystrokes and
events, and compare different sampling granulari-

ties and report compilation success rates for begin-

ner programmers. Helminen et al. [5] provide an

overview of how recordings on various abstraction

levels can be used to analyze student behavior. In a

number of studies time is estimated using aggrega-

tion of coarse-grained events [3, 6, 9]. We have

observed students on campus that spend a lot of
their programming time thinking and reading

before acting. Time measurements that do not

include reading time would not do them justice.

2.1 Computer science quiz

We developed the Computer Science Quiz tool

(CSQUIZ) to bridge the gap between the students’

and the teachers’ perception of programming

assignments. CSQUIZ is a complete programming

and learning environment that presents instruc-

tions and theory relevant to an assignment. It

includes a multi-file code-editor that can execute
code, provide feedback from the interpreter, and

run automated tests. CSQUIZ is implemented as a

web application.

CSQUIZ automatically assesses and records stu-

dentswhen theywork on their programming assign-

ments. The overall goal is to support teachers with

visualizations and descriptive statistics to help find

and address shortcomings in the course during its
delivery and to perform a detailed analysis and

suggest improvements for the next iteration.

CSQUIZ provides an exact replay of the students’

interaction with the programming environment.

The detailed recordings can be played back at

different speeds and paused; mouse pointer, text

selections, and file changes are all replayed accu-

rately. This allows the teachers to build a deep and
detailed knowledge about how students solved a

problem.

CSQUIZ records student activities on a fine-

grained level. A recorded programming session is

a collection of time stamped events. Each session is

stored on the server and is identified by a unique

hash sum for the student and the name of the

assignment. CSQUIZ records the following events:

� CSQUIZ is started, closed or reloaded.

� CSQUIZ becomes active or inactive, for example

the browser becomes in focus or out of focus.

� A source file is changed, for example code is

written or deleted.
� The text cursor moves.

� Text in editor is selected or deselected.

� A source code file is reset (all changes dropped).

� The produced code is executed (output and errors

are logged).

� Switching between source code files or instruc-

tions.

� The mouse moves over the editor, recorded at 11
samples per second.

� The mouse buttons are clicked (added in 2015).

We designed and implemented CSQUIZ to

record detailed time measurements, for example

how long a student spends reading instructions

before starting to work on an assignment. There-
fore, the instructions and programming area fades if

a student is inactive for more than fifteen seconds.

This effectively allows us to put an upper limit on the

amount of time spent in the tool.

Daniel Toll et al.1070

1 http://www.bluej.org/

3. Empirical study

We use data collected by CSQUIZ to answer our

research questions. Other studies [3, 6, 9] present

time aggregated on a coarser granularity, e.g., using

compilations or key events. When we base time

estimations on coarser granularities we might over-

estimate the time it takes to complete an assignment
by including time that students spend on other

activities, or underestimate the time by considering

breaks as inactivity and not pauses. Some of our

assignments contain around 800 lines of text, and

include several files and classes.Reading and brows-

ing has been shown by [10] to be a large part of a

programming effort. CQUIZ measures the time

spent browsing and reading to capture a larger
proportion of the entire student effort. It is thus

interesting to compare coarse measurements with

fine-grained (RQ1) to determine if there is a differ-

ence. To find the fraction of programming time

spent on different activities we do temporal aggre-

gation from a sequence of discrete events, where a

stream of key press events closely related in time is

aggregated into a single measurement of editing
time, for example.

To extract several different types of activities, we

aggregate on four granularity levels similar to those

found in other studies, from the coarsest (G1),

reacting on application start up, saves, and com-

piles, to the finest (G4) based on text visibility. Each

granularity level includes the events from coarser

levels, e.g., G2 includes all events in G1. This
enables us to derive the time for an activity by

subtracting one granularity from another. We use

an event threshold to determine whether events are

connected and should be time aggregated or not. An

event that is followed by another event within the

threshold is counted as the time between the events.

For example, if we use a threshold of ten seconds,

two text changes that happen with nine seconds
apart would count as one period of nine seconds.

With a threshold of three seconds these events

would be considered separate. In our aggregation

model, a separate event that is not followed by

another event within the threshold is counted as

0.5 seconds.

We use CSQUIZ recordings from 66 second-year

university students completing 17 different pro-
gramming assignments. All students did not finish

all assignments before the deadline, sowe collected a

total of 1028 programming sessions. The assign-

ments were divided into two blocks. A first block of

ten assignments was introduced on September 1,

2014. During this block, the tool and assignments

were updated on two occasions. A minor change in

the output visualization was introduced on Septem-
ber 3, 2014 to make it clear to the students if the

application did not produce any output. The second

update introduced seven new assignments in block

two on September 19, 2014. The data collection

ended on October 13, 2014.

We collected a second data set during autumn

2015with a larger groupof 83 students.Anumber of
differences exist between the recording conditions of

the first and second data sets: the 2015 course

material was in English while the 2014 material

was in Swedish and some of the programming

assignments were changed, replaced, and new

assignments were introduced. This second data set

consists of 1573 recorded programming sessions

that were recorded between August 8, 2015 and
October 2, 2015. The larger student group in 2015

consisted of amix of second and third year students.

3.1 RQ1, Comparing granularities

Each increased granularity level may introduce

additional issues. For example, to transition from

only recording submissions to also record compila-

tions requires some type of instrumentation of the

programming tool. CSQUIZ records events at high

frequencies (e.g., mouse and key events) which

results in a lot of network traffic and large log files.
It also introduces inconveniences for the students by

fading out text on inactivity. By increasing the event

threshold, events that appear further apart are then

regarded as connected. The total time used in the

tool could be estimated with a lower sampling

granularity level and a higher threshold. How

much of total tool usage time can be estimated

using coarse-grained models?

3.1.1 Method

Wemeasure on four granularity levels (G1–G4) and

use five different thresholds. We use the thresholds

three seconds, ten seconds, one minute, five min-

utes, and fifteen minutes to be able to compare to

related works and to reach overestimation for each

granularity. Each combination of granularity and

threshold forms an aggregation model and each of

the 1028 programming sessions from 2014 is aggre-
gated using the resulting 20 different aggregation

models. We compare the time aggregation values

with CSQUIZ finest granularity (G4) of time stu-

dents spend in the tool. We compute the baseline

Time in Tool (TiT) with three-second threshold and

compute the error (percentage) for all other models.

The value presented is calculated as (TiT-GX(Y))/

TiT, where X is the granularity level and Y is the
threshold. We present the error percentage and

standard deviation to determine the precision of

the coarser granularities. A negative percentage

indicates an underestimation and a positive indi-

cates an overestimation.

Fine-Grained Recording of Student Programming Sessions to Improve Teaching and Time Estimations 1071

3.1.2 Results

Table 1 presents error averages in percent for total

activity Time in Tool depending on sampling

granularities and thresholds. The values should

be interpreted as follows: a measurement on

‘‘Compilations’’ granularity (G1) and with one

minute threshold results in an underestimation of

the Time in Tool and only captures on average
22% (–78% error) of the Time in Tool. If we

choose a coarser sampling granularity we get

either an average underestimation or an overesti-

mation, or get a large standard deviation. For

example, measuring text changes (G2) with a

threshold of five minutes results in quite accurate

readings on average (–2%) but a high standard

deviation. Using the ‘‘Active Use’’ granularity
(G3) improves the estimations, and we get quite

accurate readings with a threshold of one minute.

This is not surprising since the students use mouse

movement to keep the text visible. If application

start up is not included, the Compilation granu-

larity (G1) constantly underestimates the time

spent even with large thresholds. At a three-hour

threshold it creates acceptable average time but
large individual errors.

3.1.3 Discussion

The Active Use (G3) granularity estimations are

probably higher than they would be if CSQUIZ

did not fade text on inactivity. When looking at

playbacks of recordings we sometimes observe a

passive period followed by a jerky mouse move-
ment that is used to regain text visibility. The G1

granularity is perhaps unfairly represented here

due to the way we treat separate events (as 0.5

seconds), only compilations that are within a

threshold of each other are going to matter.

Using larger thresholds and finer granularities

quickly result in overestimations and capture

usage outside of the tool, which we use to answer
the next question. It is clear from the values in

Table 1 that in order to measure Time in Tool,

granularity and threshold matters. We consider

capturing mouse movements worth the effort to

get accurate readings. Fading text might be too

intrusive to the students.

3.2 RQ2, Time spent reading

It is difficult to estimate the reading time without

eye-tracking since reading does not necessarily

involve any other interaction. However, by fading

text on inactivity CSQUIZ provides a definite time

cap on tool usage, since students must stay active to

be able to continue. It also provides us with an

opportunity to measure the time when students
move the mouse over the application (active use)

and the amount of time the text is visible (passive

use). The true time for reading and navigation may

be as high as the sum of both but not higher. What

fraction of assignment solving time is spent on

editing, reading and browsing assignment code

and how much time do student spend outside of

the tool?

3.2.1 Method

Weuse the time aggregationmodel described earlier

and divide the time spent into activities. We start by

computing aTotal Time (TT) for all activities linked

to an assignment. We measure on G4 but with a

fifteen-minute threshold, so we will capture time

spent outside of the tool, for example online
searches or noise from other sources such as social

media.We consider fifteenminutes to be the longest

break one would take and still be considered work-

ing in one session.We alsomeasure theTime inTool

by measuring on G4 but with a threshold of three

seconds. The Editing Time (ET) is measured using

G2with a three second threshold and theActiveUse

Time (AUT) ismeasured onG3with a three seconds
threshold.

We compute the average fraction time for Editing

EF = ET / TT, Active Use AU = (AUT – ET)/ TT,

timeOut of ToolOT= (TT – TiT) / TT and Passive

Use PU = 1 – (EF + AU + OT). These values are

computed for each recorded programming session

and statistics are computed and presented. We

calculate these from the recordings from 2014 and
2015. The results are presented separately to deter-

mine if the changes to students, teaching and assign-

ment might affect the reading time.

3.2.2 Results

We estimate the time a student spent on reading and

Daniel Toll et al.1072

Table 1.Comparing combination of thresholds and time aggregation granularities using 1028 recorded programming sessions to estimate
how much of the ‘‘Time in Tool’’ a combination captures on average. A negative value is an underestimation and a positive value an
overestimation (*: Baseline Time in Tool)

3 seconds 10 seconds 1 minute 5 minutes 15 minutes

Error stdev Error stdev Error stdev Error stdev Error stdev

G1. Compilations –99% 0.8 –98% 3.4 –78% 22.3 –27% 38.0 +6% 35.7
G2. Text change –83% 9.3 –73% 13.6 –43% 23.0 –2% 24.5 +17% 31.1
G3. Active Use –37% 15.7 –21% 13.5 +2% 6.7 +19% 27.5 +32% 59.8
G4. Time in Tool 0% * 0 +1% 1.9 +7% 8.5 +21% 30.3 +35% 72.3

navigating, and present the results from 2014 in

Table 2. Compared to Table 1, we show results as

percentages of total assignment solving time,

including time spent outside the tool. We find that

students are actively using the mouse, doing text

selections or moving the text cursor 37.9% of the
time on average. This time can be further examined

using CSQUIZ’s replay functionality. The Passive

Use time represents time that we cannot account

for; we know that the text has not yet faded, but we

have no events from the user. When we watch the

recordings, the mouse is sometimes moved outside

the application, or just stops moving for a while.

The amount of such breaks varies a lot between
students, perhaps due to equipment. For example, a

touchpad may have less frequent input than a

mouse. We also find that 18.2% of the time is

spent outside the tool on average. These breaks

can be up to fifteen minutes long (since we used a

fifteen-minute threshold). Longer breaks are not

included, since we find it unlikely that students

would be actively searching for information on a

task and not stay in the tool for longer than fifteen

minutes. We have not found any evidence of stu-

dents trying to solve the tasks in other tools. For

short assignments, the time Out of Tool is smaller,

and for the longer assignments, students are taking
more short breaks, perhaps to search for informa-

tion or other things. The time Out of Tool median

was 11.7% for all assignments.

We present the values from 2015 in Table 3. The

fraction of time spent editing time is very close to

that of 2014, while Active Use has increased to

40.4% and Passive Use has decreased compared to

2014. The fractions vary depending on assignment
as can be seen in Fig. 1.

3.2.3 Discussion

The actual time for reading and navigation is a

combination of active (AU) and passive use (PU)

but not higher than their sum, on average 66.9% in

2014 and 66.3% in 2015. The reading time could be

Fine-Grained Recording of Student Programming Sessions to Improve Teaching and Time Estimations 1073

Table 2.Estimate time spent on activities basedon1028 recordings in 2014with 17 different programming assignments. Total time includes
breaks up to fifteen minutes

Activity Average Median Min Max stdev

Editing (EF) 14.8% 12.7% 0.2% 57.0% 9.8
Active Use (AU) 37.9% 36.5% 2.8% 96.8% 16.2
Passive Use (PU) 29.0% 28.2% 0.0% 75.0% 13.1
Out of Tool (OT) 18.2% 11.7% 0.0% 93.2% 19.3
Total Time (TT) 100%

Table 3. Estimate time spent on activities based on 1573 recordings in 2015 with a new student group. Programming assignments and
course content were changed from 2014

Activity Average Median Min Max stdev

Editing (EF) 14.7% 12.6% 0.2% 74.6% 10.0
Active Use (AU) 40.4% 39.5% 1.4% 95.5% 16.9
Passive Use (PU) 25.9% 24.1% 0.0% 74.1% 11.9
Out of Tool (OT) 19.0% 11.3% 0.0% 93.5% 20.9
Total Time (TT) 100%

Fig. 1.Fractions of assignment solving time from 1573 recorded programming sessions
in 2015. Each column is a programming assignment. The reading time (Active Use +
Passive Use) is on average 66.3% but varies among the different assignments.

lower since the student could be moving the mouse

over the application but not actually reading. If

more control could be added to the measurement

situation, for example by tracking eye movements

or capturing the entire screen we could improve

these values. Such recordings would explainmore of
what the students do during their short breaks, and

provide clues on what happens during the passive

time in our tool. Ifwe compare the values inTables 2

and 3, we find that the students in 2015 on average

spends almost the same fraction of time editing and

out of tool, but are a bit more active. This might be

due to some of the changes done to the course or to

the assignments. As shown in Fig. 1, the fraction
spent on different activities varies depending on

assignment, but reading time is always a large part

of the programming effort as can be seen in Fig. 1.

The first assignment requires only a small change

and thus the editing time was only 5.6%.

3.2.4 RQ3, Predictions

During the autumn of 2014 we used CSQUIZ to

focus our teaching resources on problematic assign-

ments. Based on the gathered statistics, we tried to

predict which assignments students got most

frustrated with. After the course ended, we com-

pared the times to solve from the students that

completed the assignments during the first day to

those from students that completed the assignments
later. We expected three types of effects: (1) moti-

vated students have been reported to start early and

this has been seen to correlate with better grades [1],

(2) we know from experience that students help each

other, and (3) lecture content and more time to

studymay also effects the results. A good prediction

model would allow us to identify what assignments

we should spend teaching resources on. For exam-
ple, we could use lecture time to address issues in a

problematic assignment. Can timemeasurements of

students who complete assignments early predict

what assignments the main group of students is

going to struggle with?

3.2.5 Method

We compare the group of students who completed
assignments before September 2, 8AM 2014 (the

morning of day two, block one), with students that

started and completed the assignments later. We

remove recordings of students that started before

but did not complete the assignment until after

8AM. We measure the Time in Tool (G4), the

number of forum questions, and the number of

students that had completed the assignment on the
first block of ten assignments. The students had to

complete an assignment before they were able to

continue to the next one. Two assignments (number

six and nine), has two versions, each part of an

experiment, which were randomly assigned to stu-

dents. We determine correlation using Pearson’s R

anduse Student’s T to check for statistical difference

between the two samples of students on each assign-
ment. If there is a significant difference between

these two groups, the time for students who start

early cannot be used as predictor of time for

students that start late.

3.2.6 Results

We compare the early students with those who
complete the assignments after the first day. The

average timemeasurements are presented in Table 4

as ‘‘early’’ and ‘‘late’’. There is a strong correlation

(PearsonR = 0.90,R2 = 0.81) between the early and

late time averages. We also compare the early and

late group using a two-tailed Students T-test to test

for significant differences. We note that the first

three assignments took longer for the students that
started immediately to solve. Assignment 3 takes

significantly longer time at P < 0.05. For the assign-

ments after Assignment 5 we see that the students

that started early do these assignments on average

faster. A10 shows significantly different at P < 0.01.

3.2.7 Discussion

From Table 4 it seems reasonable that the eight
students that completed all assignments early are

also more skilled or motivated. Excluding Assign-

ment 10 from the predictionmodel gives a very good

fit (PearsonR= 0.985,R2 = 0.97), but the significant

difference in this assignment shows that judgments

on how difficult an assignment is based on too few

early measurements are unreliable.

The T-test results should be taken with a bit of
skepticism since the later tasks are measured on a

much smaller group of students. Both the normality

Daniel Toll et al.1074

Table 4.The average times to solve assignments between early students and the students that completed the assignments after the first day
(late). P is Student’s-T p-values for two-tailed tests between early and late. * Significant at P < 0.05. ** Significant at P < 0.01

Assignment 1 2 3 4 5 6.1 6.2 7 8 9.1 9.2 10

Early (s) 239 245 1138 4078 4552 388 401 189 286 219 276 1775
Late (s) 190 153 737 5082 5188 530 926 520 685 648 699 5149
Forum posts 0 0 0 4 4 1 0 0 0 0 1 2
Early N 38 37 36 33 25 8 3 8 8 3 5 8
P 0.23 0.17 *0.016 0.31 0.47 0.45 0.39 0.25 0.11 0.18 *0.032 **0.008

and the equal variance requirements on T-tests are

violated and the measurements are not completely

independent. When we do multiple T-tests, we

might find significant P-values by pure chance.

Two assignments (4 and 5) stood out in terms of

average time, number of compilations, and number
of forum questions asked by the students.We based

our conclusions on the faster students and missed

the frustration of the struggling students in a third

assignment (Assignment 10).Wemisunderstood the

problems students faced onAssignment 4 and based

our added lecture content on what we thought was

the challenging part of the assignment. Inspections

of Assignment 4 recordings would have revealed
that students spent much time trying to understand

the assignment and CSQUIZ itself. Helminen et al.

[5] points out the problem of understanding a (new)

tool. We used a group of six colleagues and two

students to test CSQUIZ before the course started.

While this group experienced some problems with

interpreting CSQUIZ, most of the problems faced

during the course were specific for the student
group.

4. Limitations

The level of control of the programming situation is

low; students most likely helped each other. We

have seen at least one example of an unlikely API-
method choice in several student solutions.We have

not seen any indications that students have directly

copied a solution into our tool, but cannot rule out

that a student copied bywriting. CSQUIZ fades text

on inactivity; this most probably affected the

‘‘Active Use’’ granularity (G3) since students must

stay active to continue reading. The data presented

in this work is the result of a two classes of 66 and 83
undergraduate students. In the group of students,

there is a subgroup of skilled programmers with

years of experience, while others have little experi-

ence. This may have an effect on our prediction

where a group of fast students completed the assign-

ments early. We also present a limited sample of

short PHP assignments, many of which included

files ranging from a couple of lines to around 800
lines. The assignments are designed to be solved

quickly (minutes to an hour) so our result may not

be valid for longer sessions.

5. Related work

There are a number of tools that compute and use

development time to support teaching and learning.
ClockIt calculates and presents time to both stu-

dents and teachers [3]. ClockIt capture start, exit,

compile, save, error, and file change events using

instrumentation in BlueJ. This is similar to our

granularity level G2. Extrapolating from our

results, assuming similar exercises and students,

having a threshold of five minutes could give them

acceptable time estimations (see Table 1). Rodrigo

andBaker [4] also instruments on compilation level,

and estimates student frustration. They intend to try
more fine-grained approach with a full replay of

keystrokes,mousemovements and other events.We

think that having access to fine-grained recordings

like ours would benefit their work.

Retina is another tool that collects compile and

runtime errors [9]. Retina approximates time spent

from the number of programming sessions (e.g.,

compilations that are more than thirty minutes
apart). These approximations are used to present

time predictions to students. This is an interesting

approach and we intend to use our data to see if

student solving time can be accurately predicted.

Matsuzawa et al. [6] used detailed logging of key

strokes in a tool to enable students to observe,

analyze and improve their own programming pro-

cess. They aggregate data on five minute thresholds
and would thus (using our result) get a quite good

estimate on average but get a high standard devia-

tion.Ko et al. [10] let a group of ten developers solve

five maintenance tasks during 70 minutes and cap-

tured their work using full screen recordings. They

divided their activities to be even finer grained than

ours. Using their results and aggregating similar

activities show a combined reading and navigation
time around 45% compared our ‘‘Active Use’’ of

37.9%. Their editing time was around 20% com-

pared to our 14.8%. The main difference is that we

compute these values automatically.

Marmoset2 and Web-Cat3 are popular assign-

ment submission systems. Data from these systems

(and modifications of them) have been used to find

patterns in basic student behavior and high-level
strategies used to solve the assignments. The major

pattern found is that students that start early on an

assignment typically perform better and students

that submit late tend to continue to do so. Submit-

ting late also correlates positively with lower grades

[1]. More advanced analyses and model building

have also been performed to find patterns in how

students solve their assignments. For example,
Hidden Markov Models was used to find pro-

blem-solving strategies used by students, where

some strategies in the model correlate with higher

student performance [11, 12]. This is in line with our

results that early students may be faster on assign-

ments (A4–A10). But we also see that for (A1 toA3)

this group is actually slower in completing the

assignments than the latter group.

Fine-Grained Recording of Student Programming Sessions to Improve Teaching and Time Estimations 1075

2 http://marmoset.cs.umd.edu
3 http://web-cat.org

6. Conclusions and future work

We present an online tool, CSQUIZ, to help tea-

chers understand how students solve programming

assignments. Compared to similar tools we

improved the granularity level of the recordings to

include mouse movements, text-selections and text

cursor positions. Increasing the granularity level
requires more invasive instrumentation and a

bigger effort. In this context we ask:

RQ1. How much of total tool usage time can be

estimated using coarse-grained models? We com-

pare different granularity levels andfind that thresh-

olds can be used on coarse grained models to get

good estimations on average, but with large errors

on individual measurements. Including mouse
movement events reduces much of the error when

estimating time spent in tool. The reason for the

high errors on lower granularity levels is explained

by the small relative proportion of editing time

compared to reading time shown in Fig. 1.

RQ2. What is the fraction of assignment solving

time spent on editing, reading and browsing assign-

ment code and how much time do student spend
outside of the tool? We are able to divide the time

spent into editing, active use, passive use, and time

out of tool. The amount of time for active use such

as reading and navigating the tool is estimated to

37.9% on average. We calculate the maximum

amount of time spent in the tool, but not actively

interacting with it (on average 29.0%), thus provid-

ing a measurement of the time that cannot be
accounted for but could be used to read code or

instructions. We repeated the calculations for data

from 2015 and found that on average the new group

of students spends the same fractions of time on

editing, reading, or out of tool.

RQ3. Can time measurements of students who

complete assignments early predict what assign-

ments the main group of students is going to
struggle with? Descriptive statistics derived from

fine-grained recordings further helped us identify

which assignments were the most problematic for

the students. To focus our teaching resources we

compare students who submit early to students who

submit late to find out if early submissions predict

which assignments are going to be hard for the latter

group. We see a correlation between early student
submission assignment solving time and students

that hand in later but also see an example where the

times differ significantly, seeAssignment 10 inTable

3. The eight early students that complete all ten

assignments on the first day are also much faster

than the latter students are. This group of fast

students does not represent the main group of

students.
We plan to use the fine-grained logging to exam-

ine how different assignments affect student beha-

vior. We are aware that fine-grained logging (timed

key strokes and mouse movements, etc.) is used in a

different but related context; to understand the

cognitive writing process [13], e.g., differences

between novice and expert writers, and burst ana-
lysis (how much is written before pausing). In this

context, logs have been complemented by eye-

tracking and thinking-aloud protocols to help

determine what the writer was looking at and

thinking. Analysis using social network and data

mining techniques has also been used to provide

information about writing strategies using multiple

electronic sources. It seems highly relevant to
explore how students use online sources as part of

their assignment solving process.Weplan to explore

these techniques in the future.

References

1. J. B. Fenwick Jr., C. Norris, F. E. Barry, J. Rountree, C. J.
Spicer and S. D. Cheek, Another Look at the Behaviors of
Novice Programmers. Proceedings of the 40th ACM Techni-
cal Symposium on Computer Science Education, 2009, pp.
296–300.

2. M. C. Jadud, Methods and Tools for Exploring Novice
Compilation Behaviour, Proceedings of the 2nd Int. Work-
shop on Computing Education Research (Canterbury, United
Kingdom), 2006, pp. 73–84.

3. C. Norris, F. Barry, J. B. Fenwick Jr., K. Reid and J.
Rountree, ClockIt: Collecting Quantitative Data on How
Beginning SoftwareDevelopers ReallyWork,Proceedings of
the 13th Annual Conference on Innovation and Technology in
Computer Science Education (ACM, New York, NY, USA),
2008, pp. 37–41.

4. M. M. T. Rodrigo and R. S. Baker, Coarse-grained Detec-
tion of StudentFrustration in an Introductory Programming
Course, Proceedings of the 5th Int. Workshop on Computing
Education Research, 2009, pp. 75–80.

5. J. Helminen, P. Ihantola, and V. Karavirta, Recording and
Analyzing In-browser Programming Sessions, Proceedings
of the 13th Koli Calling Int. Conf. on Computing Education
Research, 2013, pp. 13–22.

6. Y. Matsuzawa, K. Okada and S. Sakai, Programming
Process Visualizer: A Proposal of the Tool for Students to
Observe Their Programming Process,Proc. of the 18th ACM
Conf. on Innovation and Technology in Computer Science
Education, 2013, pp. 46–51.

7. A. Vihavainen, J. Helminen and P. Ihantola, How Novices
Tackle Their First Lines of Code in an IDE: Analysis of
Programming Session Traces, Proceedings of the 14th Koli
Calling International Conference on Computing Education
Research (ACM, New York, NY, USA), 2014, pp. 109–116.

8. I. Utting, N. Brown, M. Kölling, D. McCall and P. Stevens,
Web-scale DataGatheringwith BlueJ,Proceedings of the 9th
Int. Conf. on Computing Education Research, 2012, pp. 1–4.

9. C. Murphy, G. Kaiser, K. Loveland and S. Hasan, Helping
Students and Instructors Based on Observed Programming
Activities, Proceedings of the 40th ACM Technical Sympo-
sium onComputer Science Education (ACM,NewYork,NY,
USA), 2009, pp. 178–182.

10. A. J. Ko, B. A. Myers, M. J. Coblenz and H. H. Aung, An
Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during SoftwareMaintenance
Tasks, IEEE Trans. Softw. Eng., 32, 2006, pp. 971–987.

11. C. Piech, M. Sahami, D. Koller, S. Cooper and P. Blikstein,
Modeling How Students Learn to Program, Proceedings of
the 43rd ACM Technical Symposium on Computer Science
Education, 2012, pp. 153–160.

Daniel Toll et al.1076

12. U. Kiesmueller, S. Sossalla, T. Brinda and K. Riedhammer,
Online Identification of Learner Problem Solving Strategies
Using Pattern RecognitionMethods, Proceedings of the 15th
Conf. on Innovation and Technology in Computer Science
Education, 2010, pp. 274–278.

13. M. Leijten and L. Van Waes, Keystroke Logging in
Writing Research, Written Communication, 30, 2013, pp.
358–392.

Daniel Toll received a M.A. degree in Computer Science in 2004 from Växjö University. He is a lecturer in Computer

Science atLinnaeusUniversity.Daniel is also a Ph.D. studentwith primary research in learning analytics, educational data

mining, and computer science education.

Tobias Olsson received a B.Sc. degree in Software Engineering in 2000 from Blekinge Institute of Technology. He is a

lecturer in Computer Science at Linnaeus University. Tobias is also a Ph.D. student with primary research in software

quality and software architecture conformance checking.

Morgan Ericsson received a B.Sc. degree in Computer Science in 2001 and a Ph.D. degree in Computer Science in 2008,

both fromVäxjö University (Växjö, Sweden).He is currently a senior lecturer in Computer Science at LinnaeusUniversity

(Växjö and Kalmar, Sweden). Dr. Ericsson’s primary research interest is software and information quality assessment,

network analysis, data mining, and software analytics.

Anna Wingkvist received her Ph.D. degree in Computer Science with specialization in Information Systems in 2009 from

Växjö University (Växjö, Sweden). She is currently a senior lecturer and a research advisor at Linnaeus University (Växjö

andKalmar, Sweden).Dr.Wingkvist’s current research interest ismethodology,methods, and tool reasoning for software

and information quality assessment.

Fine-Grained Recording of Student Programming Sessions to Improve Teaching and Time Estimations 1077

