
GreedEx and OptimEx: Two Tools to Experiment with

Optimization Algorithms*

J. ÁNGEL VELÁZQUEZ-ITURBIDE
Universidad Rey Juan Carlos, Escuela Técnica Superior de Ingenierı́a Informática, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.

E-mail: angel.velazquez@urjc.es

Experimentation is an important part of the education of computer engineers. In particular, it is a common educational

practice to check algorithms correctness or efficiency. However, experimentation has seldom been used to check the

optimality of (optimization) algorithms. The article presents two tools aimed at experimenting with this property. They

have some common features, but differ in their degree of generality and scaffolding. GreedEx is a tool for novices, being

aimed at the active learning of the foundations of greedy algorithms. It currently supports six optimization problems.

OptimEx is a more advanced, general experimentation tool that can be used with any kind of optimization algorithms. If

both systems are used in an algorithm course, they should be used at different stages. The paper presents two contributions.

Firstly, we present the novel system OptimEx. Secondly, we give recommendations of use for both tools, based on the

author’s experience using and evaluating them. Of particular interest is a list of incorrect outcomes that may be produced

by OptimEx, which are symptoms of students’ misconceptions, as well as how to fix them.

Keywords: computer engineering education; optimization algorithms, experimentation, scaffolding, instructional recommendations

1. Introduction

Practicing concepts andmethods is an essential part

of education inmanydisciplines. Some terms coined
for this approach to instruction are ‘‘learning

through practice’’, ‘‘learning by doing’’ or ‘‘learning

through experience’’ [1]. Computing is not an excep-

tion to the need of these activities.

TheDenning report [2] identified three paradigms

or cultures that permeate computing: mathematics,

science, and engineering. These cultures each have

different goals. Consequently, practice activities
aimed at computing instruction have different fea-

tures depending on the culture they are based on.

Mathematics aims at proving theorems, science

aims at experimenting with phenomena, and engi-

neering aims at testing systems. The three cultures

influence the instruction of any subfield of comput-

ing, but we focus in this article on algorithms.

Depending on the inspiring culture, different prac-
tice activities may be conceived to learn algorith-

mics: properties of algorithms can be stated and

proved, performance of algorithms can be mea-

sured, and the algorithms developed can be tested.

They are not exclusive but complementary cultures.

For instance, we may design and test an algorithm,

analyze its properties and gathermeasures to obtain

empirical evidence on them.
Algorithms can be analyzed with respect to

several properties, correctness and efficiency being

the most important. For an important class of

algorithms, namely combinatorial optimization

algorithms (optimization algorithms for short) [3],

a third property can be characterized, namely

optimality. We find in the computing education

literature many contributions regarding activities

to practice with correctness or efficiency, but we
hardly find contributions regarding optimality [4,

5].

In this article, we present two tools designed to

assist at experimenting with optimality. Themateri-

als for any experiment are a set of alternative

algorithms for a given optimization problem. Both

tools share some features whilst they differ in their

degree of generality and scaffolding. GreedEx is a
tool aimed at the active learning of the foundations

of greedy algorithms. It is intended to assist novice

students, thus they include explanations and visua-

lizations, and is currently limited to six problems.

OptimEx is a general experimentation tool that can

beusedwith advantage by students knowing a range

of design techniques for optimization problems

(dynamic programming, branch and bound, etc.).
Both systems can be used at different stages in

algorithm courses.

The article presents two contributions. Firstly, we

present the novel system OptimEx. Secondly, we

give recommendations of use for both tools in

algorithm courses. They are based on the author’s

experience using and evaluating both systems,

although (for brevity) we do not describe the
evaluations in the article. Of particular interest is a

list of incorrect outcomes that may be produced by

OptimEx, which are symptoms of students’ mis-

conceptions, as well as how to fix them.

The structure of the article follows. In the follow-

* Accepted 12 February 2016. 1097

International Journal of Engineering Education Vol. 32, No. 3(A), pp. 1097–1106, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.



ing section, we introduce experimentation with

different properties of algorithms, in particular

with optimality. In the third section, we describe

GreedEx and OptimEx, and in the fourth section,

we present some recommendations for their use in

algorithm courses. Finally, we include our conclu-
sions and outline lines of future research.

2. Experimenting with optimization
algorithms

In this section, we first overview themain features of
experimentation with algorithms (see [6] for a

comprehensive review). Then, we characterize the

main features of optimality and describe ways of

experimenting with it.

2.1 Experimenting with algorithms

Within computing education, most experiments
have been conducted over algorithms. This is prob-

ably due to algorithms have a clear definition

(amenable to formal specification), have well-

defined properties, and are small-scale artifacts.

The underlying principles of experimentation

with algorithms are in common with the natural

sciences [7], but they are implemented differently

because programming laboratories are virtual by
definition. Therefore, we may speak of virtual or

interactive experimentation. This kind of experi-

ments is also related to scientific discovery [8].

TheDenning Report [2] identified four steps in the

experimental scientific method. Baldwin [9] further

refined the elements in a scientific experiment:

� Ahypothesis that the experimentmust confirmor

refute.
� An experimental system that will be observed to

confirm or refute the effects predicted by the

hypothesis.

� Aquantitativemeasure of the results produced by

the experimental system.

� The use of controls to assure that the experiment

really proves the hypothesis.

� An analysis of data gathered to determine if they
are consistent with the hypothesis.

� A report describing all the elements given above

so that other researchers or practitioners can

replicate the experiment.

Experiments on algorithms are not usually stated

with the same terminology or even structure as

scientific experiments, but this can be easily accom-

plished. For instance, consider that we want to
check experimentally the performance of a given

algorithm. The hypothesis is the expected behavior

of the algorithm, as described by its order of

complexity. The experimental system is the algo-

rithm under execution, which must sometimes be

modified to gather performance measures. We may

use a number of quantitative measures, for instance

the number of either relevant or atomic statements

executed ([10], chapter 2). The controls depend on

the monitoring software available, but it must be

able to gather the quantitative measure for different
input sizes. Finally, the data gathered will be ana-

lyzed to check whether they are compatible with the

algorithm order of complexity.

It is important to be aware of the limitations of

experimentation. Nomatter howmany experiments

are performed, there is no guarantee that a given

property of an algorithm has been proved.Wemust

be aware that a given property is only established by
means of its corresponding proof. Experimental

methods only allow refuting a property or, at the

best, accumulating evidence about the property.

Consequently, experiments play a humble but

important role, especially when the proof is difficult

to build.

2.2 Characterizing optimality

An algorithmic problem is specified bymeans of the

following elements:

� Input and output data, with their corresponding
data types.

� A predicate to be satisfied by input data, i.e. its

precondition.

� A predicate to be satisfied by input and output

data, i.e. its postcondition.

Any valid solution must satisfy the pre- and the

post-conditions. The pair formed by both predi-

cates is often known as the problem restrictions.

A combinatorial problem aims at finding an

object within a finite set (or, at least, a countable
set) of potential solutions satisfying the problem

restrictions. An optimization problem is a combi-

natorial problem with an additional element in its

specification: an optimal solution is a valid solution

that optimizes the measure stated by a target func-

tion, either a benefit to maximize or a cost to

minimize. If there are several optimal solutions,

any of them is acceptable. Without loss of general-
ity, we assume in the rest of the article that the target

function specifies a maximization goal.

It is not obvious how to find a valid or an optimal

solution for any instantiation of most combinator-

ial or optimization problems. For this reason, text-

books often include immediately after the problem

statement one or several examples of valid, optimal

and even invalid or suboptimal solutions.
Combinatorial and optimization problems can

always be solved using an algorithm that exhaus-

tively traverse the set of potential solutions [3].

However, this naı̈ve algorithm is extremely ineffi-

cient, with unpractical orders of complexity for

J. Ángel Velázquez-Iturbide1098



most problems. Well-known design techniques [10]

are aimed at designing efficient algorithms: the

greedy technique, dynamic programming, etc.

2.3 Experimenting with algorithms and optimality

Experimentation has traditionally been used in

algorithm courses tomeasure efficiency (correctness
is more typically addressed in courses on program-

ming methodology). We can find a number of

publications reporting experiments with algorithm

efficiency [4, 5, 9, 11, 12]. Common experiments are:

� To instrument execution time for different input

data sizes. The goal consists in showing that

actual measures of execution time are consistent

with the theoretical order of complexity. Plotting

is often used as a means to compare results.

An alternative goal of this kind of instrumenta-

tion is to compare the efficiency of different

algorithms that solve the same problem, or even
to compare recursive and iterative versions of the

same algorithm. Finally, comparison of execu-

tion times can be used for more subtle analyses,

e.g. to determine a threshold in the problem size

below which an iterative algorithm performs

better than a divide-and-conquer one.

� To instrument execution time for cases or algo-

rithms which are very difficult or impossible to
derive analytically, and to try to infer the corre-

sponding order of complexity.

Performance experiments need not be restricted

to execution time, but they may encompass any

measure that can be gathered in run-time [9, 11–
13], for instance: number of nodes generated by an

algorithm that traverses a search space, space saving

in a compression algorithm, etc.

Experimenting with optimality implies dealing

with the actual outcomes of optimization algo-

rithms. One form of experimentation consists in

inferring (or checking), given several algorithms

for a given optimization problem, which ones are

optimal or suboptimal [14] based on the results of a

number of algorithm runs.

For instance, consider the 0/1 knapsack problem

([10] chapter 20, [15] chapter 8, [16] chapter 6) and

four algorithms that compute valid solutions: one
greedy algorithm, one backtracking algorithm, one

dynamic programming algorithm, and one approx-

imation algorithm. Assume the greedy algorithm

selects objects in non-increasing order of profit/

weight (denoted P/W# for short) and the approx-

imation algorithm is an enhancement of the greedy

algorithm ([15] chapter 13).

Let us summarize an actual, short experiment
carried out using OptimEx. We generated input

data randomly, obtaining the values {5, 7, 10, 8, 7,

6, 2, 7} as weights, {5, 10, 5, 16, 16, 7, 19, 3} as

profits, and a knapsack capacity equal to 6.The four

algorithms computed a solution with associated

profit 19. Therefore, we could not deduce which

algorithms are optimal or suboptimal based on this

single run. Randomly generating successive test
cases, the four algorithms kept generating the

same outcome for the two following test cases, but

they computed different results for the fourth test

case. For this run, the dynamic programming and

the backtracking algorithms yielded 49 whereas the

greedy and the approximate algorithms yielded 48.

Therefore, we may claim that the two latter algo-

rithms are not optimal, but we cannot claim any-
thing conclusive about the two former algorithms.

The data and results of the executions comprising

an experiment must be displayed in a structured

way, being tables a convenient format. Fig. 1 shows

a part of the historic table of OptimEx, where the

results of successive executions are displayed. Each

row corresponds to a different test case. Each

column corresponds to an algorithm. A cell is
shadowed in grey when its associated algorithm

(in its column) yields an optimal value for its

GreedEx and OptimEx: Two Tools to Experiment with Optimization Algorithms 1099

Fig. 1. A subset of runs of algorithms for the 0/1 knapsack problem, as displayed in the historic table.



corresponding test case (its row).Values in a column

are written in blue font when the corresponding

algorithm computed an optimal result for all the test

cases (first and third algorithms from the left).

3. The GreedEx and OptimEx tools

We successively describe the simplest tool and the

most complex tool, i.e. first GreedEx and then

OptimEx.

3.1 The GreedEx tool

The GreedEx tool [17] was designed to support the
active learning of greedy algorithms. Given an

optimization problem, GreedEx offers a number

of alternative selection functions to the student,

who must experiment in a trial to determine which

selection functions are optimal or suboptimal.

GreedEx is a restricted but extendible system.

Currently, it supports six problems: the activity

selection problem ([16] chapter 4, [18] chapter 16),
the knapsack problem ([15] chapter 6), the 0/1

knapsack problem and three additional knapsack

problems (maximizing the number of objects intro-

ducedintotheknapsack,maximizingtheweight,and

maximizing the weight introduced into two knap-

sacks). Problemsnumberone, twoand four (inorder

of their above citation), can be solved optimally

using greedy algorithms while, for the other three
problems, any greedy algorithm is suboptimal.

Fig. 2 shows a screen capture of GreedEx in a

session working with the 0/1 knapsack problem.

The user interface of GreedEx consists of the main

menu, the icon bar and three panels. The higher

panel visualizes input and output data. Typically,

input data are shown at the left (in this problem, the

objects) and the results are displayed at the right

(here, the knapsack with the objects introduced).

Both the weight and the profit of each object are
encoded as graphical attributes, i.e. weight and

height of the object, respectively. Initially all the

objects are colored in blue but their color is changed

to grey as they are selected during the current

execution. In addition, the objects are colored in

different tones tosuggest theirordering,accordingto

the active selection function. Fig. 2 shows an inter-

mediate state of execution (after inserting four
objects) of the greedy algorithm based on the selec-

tion function P/W# using the first of the test cases.
The lower left area of the screen is the theory

panel. It consists of two tabs: the problem tab, that

hosts the problem statement (visible in the figure),

and the algorithm tab, that contains a greedy

algorithm that solves the problem, written in Java-

based pseudocode. Finally, the lower right area is
the table panel, with four tabs, each one containing

one table: the data table, the result table, the history

table (visible in the figure) and the summary table.

When a student launches GreedEx, nothing can

be done but selecting a problem. Immediately, the

theory panel becomes active so that the studentmay

read the problem statement and a greedy algorith-

mic solution. Afterwards, the student may generate
input data from one of three sources: the keyboard,

a random generator or a file; current input datamay

also be modified interactively. Input data are dis-

J. Ángel Velázquez-Iturbide1100

Fig. 2.A snapshot of the user interface of GreedEx, showing the visualization of an algorithm run, a part of the problem statement and a
part of the history table.



played in the data table and in the visualization

panel, and the student may select any of the selec-

tion functions supported by GreedEx to solve the

problem.

When the student chooses a selection function,

she may run it flexibly using four execution/anima-
tion controls: one step forward, one step backward,

forward, and rewind. As animation controls are

pressed, the visualization panel is consistently

updated. The effect of each execution step can be

analyzed to understand the selection function beha-

vior.When a run is complete, its results are stored in

the tables.

The four tables allow storing data of an experi-
ment at different levels of abstraction:

� Data table: It contains the value of theparameters

used as the current test case.

� Result table: It contains the value yielded by each

selection functionusing the active test case, aswell
as information about the greedy decisions taken.

� History table: It contains the value yielded by

each selection function in past runs (see Fig. 2).

� Summary table: It contains the global perfor-

mance of each selection function, expressed as

the percentage of runs that yielded an optimal

value.

GreedEx provides some additional facilities for

faster experimentation: executing all the selection

functions of a problem for the current test case,

executing a subset of them, and executing all the

selection functions on a very high number of test

cases randomly generated.

Finally, GreedEx provides some functions to

support instruction: exporting tables and visualiza-

tions into graphical files, and changing the user

interface language (currently, it supports English

and Spanish).

3.2 The OptimEx tool

OptimEx is a more general system than GreedEx,

intended to support experimentation with any opti-

mization algorithm coded in Java. Those parts of

the GreedEx user interface specific to a particular

algorithm, namely visualizations and explanations,

were removed. On the other hand, some functions

were incorporated to support generality:

� Code editor. The algorithms to compare must be

coded as public methods in a single Java class.

� Compilation and run support.

� Preparation of the experiment. The user must

identify the Java algorithms to compare. As

these algorithms are intended to solve the same
problem, OptimEx requires that their corre-

sponding methods have the same signature (i.e.

data types of the parameters and of the result). In

addition, the user must specify whether it is a

maximization or a minimization problem.

Finally, the user may select the specific methods

to compare (among those sharing the signature

selected) andmay optionally mark one of them to
note that she guesses it will be optimal.

Fig. 3 shows the structure of the OptimEx user

interface. The left panel hosts the code editor, whist

the right panel host the table panel. Themainmenu,

GreedEx and OptimEx: Two Tools to Experiment with Optimization Algorithms 1101

Fig. 3. A snapshot of the user interface of OptimEx, showing the editor and the history table.



the icons bar and the table panel were designed to

assure the highest resemblancewithGreedEx (in the

figure, the history table is visible).

The history and summary tables were slightly

modified to shed more meaningful information

about the results of the experimentation. The sum-
mary table displays the percentage of test cases for

which each algorithm yielded optimal or subopti-

mal results, as well as the mean and maximum

deviation of suboptimal results with respect to the

optimal outcomes. In case the user marked a sub-

optimal method as optimal, the history table high-

lights those cells where the results of other

algorithms are higher than the results of the
marked algorithm. The percentages and deviations

of these incorrect cases also are shown in the

summary table. (More on these problematic situa-

tions is explained in Section 4.2.3.)

4. Educational use

The goal of this section is to give instructional

advice on the use of GreedEx and OptimEx in a
more clear and comprehensive way than in publica-

tions reporting evaluations. Our recommendations

are based on 5 years of experience using GreedEx

and 2 years using OptimEx in algorithm courses.

GreedEx has been extensively evaluated with

respect to its usability [17] and, more importantly,

with respect to its educational efficiency [19], detect-

ing statistically significant enhancements in stu-
dents’ comprehension of greedy algorithms. We

have also analyzed the reports elaborated by stu-

dents using GreedEx or OptimEx for assignments,

having detected a number of students’ difficulties

and misunderstandings [14].

We first deal with GreedEx, which is intended for

novices, and then with OptimEx, which should be

used in later stages of algorithm courses. For each
tool, we identify the most adequate algorithm

design techniques (including algorithm examples)

and we give instructional recommendations. We

also give a list of incorrect outcomes that may be

produced by OptimEx, which are symptoms of

students’misconceptions, aswell as how to fix them.

4.1 Use of GreedEx

GreedEx provides students with scaffolding regard-

ing several issues: design of alternative selection

functions, tracing greedy algorithms in detail, and

experimenting with the optimality of alternative

selection functions (i.e. greedy algorithms).

4.1.1 Design techniques supported

GreedEx was designed to enhance the learning of

the foundations of greedy algorithms. It supports

three problems that can optimally be solved using

the greedy technique, namely two knapsack pro-

blems and the activity selection problem. Students

become familiarized with proposing alternative

selection functions for a given problem and with

experimenting with them to determine their optim-

ality.
Inquiring about the optimality of different selec-

tion functions for a given problem allows students

to find out results that are unknown in advance. An

interesting issue that is not addressed in textbooks is

the existence of several kinds of selection functions

[20]:

� Equivalent selection functions. Textbooks iden-

tify non-decreasing order of finish time as an

optimal selection function for the activity selec-

tion problem ([16] chapter 4, [18] chapter 16).

However, it is not unique as it can be symmetri-
cally restated as non-increasing order of start

time. The same applies to the knapsack problem,

where P/W# (non-increasing order of profit/

weight) can be restated as W/P".
� Nearly optimal selection functions. An intuitive

selection function for the activity selection pro-

blem consisting in selecting activities in non-

decreasing order of duration. Although it is not
optimal, it yields the optimal result in about 95%

of the cases.

GreedEx supports three additional knapsack

problems that cannot be solved optimally with the

greedy technique, remarkably the 0/1 knapsack

problem. These problems can be used to motivate

the need of applying other design techniques. Here,

GreedEx can be used to show or to find counter-

examples of the optimality of these algorithms.

Suboptimal algorithms also provide opportu-
nities for interesting inquiries, such as determining

the percentage of cases where a given suboptimal

algorithm yields an optimal solution. For instance,

selecting objects in non-increasing order of profit/

weight (P/W#) for the 0/1 knapsack problem yields

an optimal solution in about 81% of the cases. Even

more surprising is that this selection function has

worse performance for this problem than selecting
objects in non-increasing order of profit (P#), since
the latter yields an optimal solution in about 85% of

the cases.

4.1.2 Recommended use

GreedEx can be used by the instructor in the class-

room to illustrate the basic structure of greedy

algorithms and to check the optimality of a
number of selection functions. Furthermore, Gree-

dEx can be used for inquiry-based assignments on

any of the supported problems.

After using GreedEx for several years, we refined

its use as a complete instructional method [14]. It is

J. Ángel Velázquez-Iturbide1102



important not to useGreedEx isolated from the rest

of the course, but to integrate it with the schedule of

classroom and lab sessions, and to provide students

with instructional materials. In brief, we suggest

paying attention to the following issues:

� Educational materials. The basic concepts and

skills for reasoning about optimality may seem
trivial. However, this is not the case and this

background must be given to students. As algo-

rithm textbooks hardly contain background on

optimality, it is useful to elaborate and make

them available to students.

� Syllabus contents. Selection functions must not

be given for granted but students must be aware

that they are a design product and that they must
be verified for optimality. Consequently, an

emphasis must be placed in the first classes on

proposing alternative selection functions for any

problem.

� Organization of labs. A single lab session is not

the most adequate organization. A preliminary,

short session should be devoted to let students

become familiarized with GreedEx (e.g. by
experimenting with the knapsack problem). In a

second lab session, students are given an assign-

ment statement based on amore difficult problem

(e.g. the activity selection problem). The goal of

the assignment is to identify which selection

functions offered by GreedEx are optimal (if

any). Optionally, a third, short session may be

scheduled for students who underperformed the
assignment.A statementmay identify the optimal

selection functions of the second session and urge

students to investigate why either they did not

identify them or they proposed other (subopti-

mal) selection functions.

4.2 Use of OptimEx

OptimEx was designed by removing the scaffolding

and problem-specific features of GreedEx, resulting

in a general-purpose experimentation tool. There-

fore, it should be used after students are familiar

with GreedEx.

4.2.1 Design techniques supported

OptimEx can be used to conduct different experi-

ments with optimization algorithms not supported

by GreedEx. An interesting experience with greedy

algorithms consists in showing the suboptimality of
some promising selection functions. Two problems

where intuition often fails are:

� The scheduling problem with fixed deadline ([15]

chapter 6) has an optimal selection function,

namely selecting tasks in non-decreasing order

of deadline. However, we may wonder whether

tasks could be selected in non-increasing order of

benefit.

� The single-source shortest-paths problem ([10]

chapter 18, [15] chapter 6, [16] chapter 4, [18]

chapter 24) has an optimal selection function

consisting in selecting nodes in non-decreasing
order of path length (i.e. Dijkstra’s algorithm),

but we may wonder whether nodes could be

selected in non-decreasing order of arch length.

Another formative use of OptimEx is to illustrate

that some optimal selection functions become sub-

optimal if the problem statement is slightly mod-

ified. For instance, this effect happens if we modify

the statement of the fractional knapsack problem to
give place to the 0/1 knapsack problem. Minor

changes in the statements of the coin change pro-

blem ([15] chapter 6) and of the single-source short-

est-paths problem also produce this effect. These

problems can be used to motivate the need, for

many optimization problems, of design techniques

different from the greedy technique.

Finally,OptimEx is especially adequate to experi-
ment with heuristic or approximation algorithms.

Wemay compare these suboptimal algorithms with

algorithms developed using exact design techniques

(e.g. dynamic programming or branch and bound).

Experimental results should reinforce the concepts

taught in the classroom. These experiments also

allow making students’ misconceptions emerge

when unexpected results are obtained (see Section
4.2.3 below).

4.2.2 Recommended use

OptimEx is a generic tool for experimentation with

optimality. The user may develop alternative algo-
rithms for a given problem and compare their out-

comes. However, the instructor must be careful on

using OptimEx, because the mere comparison of

outcomes is not always exciting to students. In

addition, developing several algorithms to solve a

given problem demands an effort that the student

must perceive as useful.

We have successfully used OptimEx with a
particular organization of assignments. As a part

of the first assignment, students develop one greedy

algorithm for the activity selection problem. For

other algorithm design techniques (backtracking,

branch and bound, and dynamic programming), an

assignment is proposed where students must

develop a new algorithm for a related problem,

namely the weighted activity selection problem
([16] chapter 4). In a final assignment on approx-

imation algorithms, students are urged to put

together the different algorithms in a single,

shared class and compare their outcomes. (The

greedy algorithm must be adapted to the new

GreedEx and OptimEx: Two Tools to Experiment with Optimization Algorithms 1103



problem, but this is an easy task.) If they notice any

unexpected outcome of any algorithm, they also

must discover the cause and fix it.

A problem with the previous organization of

assignments is the short period of time devoted to

compare algorithms. A longer period allows stu-
dents to internalize the different situations (and

their consequences) that can be found on experi-

menting with optimality, as well as fixing erroneous

situations. OptimEx can be used differently without

a need to change much the organization of assign-

ments. Every new algorithm developed in an assign-

ment (but the first one) must be put together in a

shared class and compared with the previously
constructed algorithms. If any unexpected result is

obtained, the student must discover the cause and

fix it. This Java class plays in the course a role similar

to a ‘‘portfolio’’.

The same considerations given for GreedEx on

the use of tool in the classroom and on the impor-

tance of integrating it with the course also are

critical for OptimEx.

4.2.3 Difficulties and incorrect results

Experimenting with algorithms is an activity that

often makes surprise. Experimentation is a human

activity and the algorithms themselves are the
result of human activity, therefore they are subject

to errors. This is especially probable when students

are their main actors. For instance, an algorithm

may trigger a runtime error for some test cases, or

test cases can be generated without taking into

account all the constraints stated in the problem

specification. The first case is easy to detect with

OptimEx because runtime errors are captured in

the history table. The second case is potentially

more difficult to note because it may lead to a
number of behaviors, depending on the algorithms

and the test cases: runtime errors, unexpected out-

comes, etc.

Let us illustrate unexpected results with an exam-

ple. Fig. 4(a) shows the results of an experiment

conducted under correct conditions. The experi-

ment compares the outcomes of the four algorithms

for the 0/1 knapsack problem referred in Fig. 1 by
using one thousand test cases. The algorithms

designed using the backtracking and the dynamic

programming techniques are exact, therefore they

yield maximal results in 100% of the cases. Fig. 4(b)

displays a summary of the same results when the

user has wrongly marked the greedy algorithm as

optimal. This choice would be correct for the

fractional knapsack problem, but not for the 0/1
knapsack problem. Consequently, the other three

algorithms produce (in different percentages) prof-

its that are greater than the ‘‘optimal’’ ones! This

contradictory situation can be identified in the

summary table by noticing the presence of non-

zero percentages for (non-sense) ‘‘superoptimal’’

results.

Some additional, unexpected results that can be
obtained in experiments follow:

J. Ángel Velázquez-Iturbide1104

Fig. 4.Asummary table obtained for the 0/1 knapsackproblemwhen (a) no algorithm ismarkedas optimal, and (b) the greedyalgorithm is
marked.



� No algorithm gives optimal outcomes in 100% of

the test cases. This result may be correct if all the

algorithms under experimentation are subopti-

mal, but it is wrong if any of them is optimal. In

this case, the algorithms must be revised to find

out the cause of these results and fix the corre-
sponding algorithms: either exact algorithms give

lower outcomes than expected or any suboptimal

algorithm gives high, wrong outcomes.

� Analgorithmyields outcomes that are better than

the outcomes of some ‘‘optimal’’ algorithm.

There are several plausible explanations for this

phenomenon. Firstly, it could be that the user

marked a suboptimal algorithm as optimal, as
Fig. 4 illustrated. In this case, the experiment

must be replicated under different conditions:

either no marking that algorithm or marking an

exact algorithm. Secondly, it could be that the

user marked an exact algorithm (e.g. a dynamic

programming or a backtracking algorithm) as

optimal, but the results do not confirm this

choice. This case is similar to the case in the
previous paragraph, where the cause may be

that the ‘‘optimal’’ algorithm yields suboptimal

results for some test cases or that a ‘‘suboptimal’’

algorithm computes higher values than it should.

These problems are in common with discovery

learning activities in any discipline. Students have

problems with explaining phenomena and with

interpretation of data, among others [8]. The

instructor must be aware of them and address

them explicitly in the lectures, educationalmaterials

and assignments.

5. Conclusions

We have presented GreedEx and OptimEx, two

tools aimed at experimenting with the optimality

property of optimization algorithms. GreedEx is a

friendlier but more limited tool than OptimEx.

GreedEx supports six optimization problems and

is aimed at the active learning of the foundations of

greedy algorithms. OptimEx is a more general

experimentation tool that can be used by students
knowing other design techniques to solve optimiza-

tion problems. Both tools have some common

features so that the transition from the former to

the latter is relatively easy. Consequently, both

systems can be used at different stages of algorithm

courses. We have also included in the article some

recommendations of use, based on the author’s

experience using and evaluating both systems.
Finally, we have included a list of problematic

outcomes, common on experimenting with Opti-

mEx, and an explanation of their causes and how to

fix them.

We have plans to carry out immediately or in the

near future. First, in the current academic year we

have distributed the use of OptimEx in several

assignments, as explained in section 4.2.2. Although

experiences experimenting in a final assignment

were positive, students did not always perform as
expected. When they obtained unexpected results,

they often neither revised the experiments condi-

tions nor corrected the potentially wrong algo-

rithms. In addition, students did not have much

time to exercise their analysis skills experimenting

with optimality. We hope to obtain more encoura-

ging results by spacing the use ofOptimEx along the

course. Second, we found in these years that opti-
mization concepts are not as simple for students as

we expected. Therefore, we would like to develop a

catalog of optimality concepts to avoid students’

difficulties and misconceptions. We argue that

optimality concepts should be incorporated into

the background of mathematical concepts of algo-

rithm courses.

Acknowledgments—This work was supported by the Ministry of
Economy and Competitiveness under research grants TIN2011-
29542-C02-01 and TIN2015-66731-C2-1-R, the Region of
Madrid under research grant S2013/ICE-2715, and the Universi-
dad Rey Juan Carlos under research grant 30VCPIGI05.

References

1. D. Laurillard,Teaching as aDesign Science, Routledge,New
York, NY, 2012.

2. P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A.
Tucker, A. J. Turner and P. R. Young, Computing as a
discipline, Communications of the ACM, 32(1), 1989, pp. 9–
23.

3. C. H. Papadimitriou and K. Steiglitz, Combinatorial Opti-
mization, Dover Publications, Mineola, NY, 1982.

4. M.-Y. Chen, J.-D. Wei, J.-H. Huang and D. T. Lee, Design
and applications of an algorithm benchmark system in a
computational problem solving environment, Proceedings of
the 11th Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2006), ACM, 2006,
pp. 123–127.

5. J.W. Coffey, Integrating theoretical and empirical computer
science in a data structures course, Proceedings of the 44th
SIGCSE Technical Symposium on Computer Science Educa-
tion (SIGCSE 2013), ACM, 2013, pp. 23–27.

6. J. Á. Velázquez-Iturbide, C. Pareja-Flores, O. Debdi andM.
Paredes-Velasco. Interactive experimentation with algo-
rithms,Computers in Education—Volume 2, Sergei Abramo-
vich (ed.). Nova Science Publishers, 2012, pp. 47–70.

7. C. G. Hempel, Philosophy of Natural Science, Prentice-Hall,
Englewood Cliffs, NJ, 1966.

8. T. de Jong and W. R. van Joolingen, Scientific discovery
learning with computer simulations of conceptual domains,
Review of Educational Research, 68(2), 1998, pp. 179–201.

9. D. Baldwin, Using scientific experiments in early computer
science laboratories, Proceedings of the 23rd SIGCSE Tech-
nical Symposium on Computer Science Education (SIGCSE
1992), ACM, 1992, pp. 102–106.

10. S. Sahni, Data Structures, Algorithms and Applications in
Java, 2nd ed. Silicon Press, Summit, NJ, 2005.

11. J. Matocha, Laboratory experiments in an algorithms
course: technical writing and the scientific method, Proceed-
ings of the 22nd ASEE/IEEE Frontiers in Education Con-
ference (FIE 1992), Stipes Publishing, 1992, pp-T1G 9-13.

GreedEx and OptimEx: Two Tools to Experiment with Optimization Algorithms 1105



12. D. McCraken, Three ‘‘lab assignments’’ for an algorithms
course, ACM SIGCSE Bulletin, 2(2), 1989, pp. 61–64.

13. T. K. Moore, A. G. Rich and M. R. Vich, Scientific
investigation in a breadth-first approach to introductory
computer science,Proceedings of the 24th SIGCSETechnical
SymposiumonComputer Science Education (SIGCSE1993),
ACM, 1993, pp. 63–67.

14. J. Á. Velázquez-Iturbide, An experimental method for the
active learning of greedy algorithms, ACM Transactions on
Computing Education, 13(4), 2013, article 18.

15. G. Brassard and P. Bratley, Fundamentals of Algorithmics,
Prentice-Hall, 1996.

16. J. Kleinberg and É. Tardos, Algorithm Design, Pearson
Addison-Wesley, 2006.

17. J. Á. Velázquez-Iturbide, O.Debdi,N. Esteban-Sánchez and

C. Pizarro, GreedEx: A visualization tool for experimenta-
tion and discovery learning of greedy algorithms, IEEE
Transactions on Learning Technologies, 6(2), 2013, pp. 130–
143.

18. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,
Introduction to Algorithms, 3rd ed. The MIT Press, Cam-
bridge, MA, 2009.

19. N. Esteban-Sánchez, C. Pizarro and J. Á. Velázquez-
Iturbide, Evaluation of a didactic method for the active
learning of greedy algorithms, IEEE Transactions on Educa-
tion, 57(2), 2014, pp. 83–91.

20. J. Á. Velázquez-Iturbide and O. Debdi, Experimentation
with optimization problems in algorithm courses. Proceed-
ings of the International Conference on Computer as a Tool
(EUROCON’11), IEEE, 2011, pp. 1–4.

J. Ángel Velázquez-Iturbide received the Computer Science degree and the Ph.D. degree in Computer Science from the

Universidad Politécnica deMadrid, Spain, in 1985 and 1990, respectively. In 1985 he joined the Facultad de Informática,

Universidad Politécnica deMadrid. In 1997 he joined the UniversidadRey Juan Carlos, where he is currently a Professor,

as well as the leader of the Laboratory of Information Technologies in Education (LITE) research group. His research

areas are software and educational innovation for programming education, and software visualization. Prof. Velázquez is

an affiliate member of IEEEComputer Society and IEEEEducation Society, and a member of ACMandACMSIGCSE.

He is the Chair of the Spanish Association for the Advancement of Computers in Education (ADIE).

J. Ángel Velázquez-Iturbide1106


