
Exploration of Computational Thinking of Software

Engineering Novice Students Based on Solving Computer

Science Tasks*

VLADIMIRAS DOLGOPOLOVAS
VilniusUniversity InstituteofMathematics and Informatics, 4AkademijosStreet,VilniusLT-08663,LithuaniaandUniversityofApplied

Sciences, Faculty of Electronics and Informatics, 15 J. Jasinskio Street, LT-01111, Vilnius, Lithuania.

E-mail: vladimiras.dolgopolovas@mii.vu.lt

TATJANA JEVSIKOVA and VALENTINA DAGIENĖ
Vilnius University Institute of Mathematics and Informatics, 4 Akademijos Street, Vilnius LT-08663, Lithuania.

E-mail: tatjana.jevsikova@mii.vu.lt, valentina.dagiene@mii.vu.lt

LORETA SAVULIONIENĖ
University of Applied Sciences, Faculty of Electronics and Informatics, 15 J. Jasinskio Street, LT-01111, Vilnius, Lithuania.

E-mail: l.savulioniene@eif.viko.lt

During the recent years computational thinking has been actively promoted through the K-12 curriculum, higher

education, contests, and many other initiatives. Computational thinking skills are important for a further students’

educational and professional career. Our focus is on computational thinking for software engineering novice students, a

term meant to encompass a set of concepts and thought processes that are helpful in formulating problems and their

solutions. Annually organized international challenge on Informatics and Computational Thinking ‘‘Bebras’’ has

developed many tasks to promote deep thinking skills in this area. It is important to motivate students to solve various

informatics or computer science tasks and evaluate their computational thinking abilities. The paper presents a study

conducted among first-year students of software engineering, studying the structured programming course. As an

instrument to measure computational thinking, a test of internationally approved and well-preselected tasks from the

‘‘Bebras’’ challenge has been suggested and validated. The correlation between the students’ test results and the structured

programming course results has been investigated. We conclude with a discussion and future directions to enhance

computational thinking skills of novice software engineering students.

Keywords: computational thinking; Bebras challenge; computer science concepts; computer engineering education; contest; novice
programming students; novice software engineering students

1. Introduction

During the past years, computational thinking (CT)

has been actively promoted through the K-12 curri-

culum as a part of computer science (CS) subject or
in an integrated way, paying more and more atten-

tion to programming and fundamental computer

science concepts (e.g. [1, 2]).

Since programming is fundamental to computer

science education, computer scientists tend to think

like programmers. They look for algorithmic solu-

tions to problems, in terms of data manipulation

and process control. Computer scientists have a
toolbox of methods for matching problem situa-

tions to the standard types of solution, drawn from

various parts of the computer science curriculum,

and, perhaps just as important, a standard termi-

nology to describe these abstract problem solution

patterns [3]. Unless originated from computer

science, CT is a term encompassing a set of CS

concepts and thought processes that aid in formu-
lating problems and their solutions in different fields

of life. As Jeannette Wing has defined, ‘‘computa-

tional thinking represents a universally applicable

attitude and skill set everyone, not just computer

scientists, would be eager to learn and use’’ [4, p. 33].

So, CT should be educated not only through the
school curriculum, higher education, but also

through the initiatives, accessible for a wide area

of participants.

One of increasingly popular activities in promot-

ing CS and CT is an international challenge on

Informatics and Computational Thinking called

Bebras (Lithuanian word for beaver), originated

in Lithuania [5]. The main goals of the challenge
are to raise students’ awareness of CS and CT and

evoke interest in the field through a set of inspiring

tasks.

This paper presents a study conducted among the

first-year students of software engineering, studying

the structured programming course at the applied

science university. The study is based on authors’

experience in developing teaching methods
and practical teaching SP for novice software

* Accepted 12 February 2016. 1107

International Journal of Engineering Education Vol. 32, No. 3(A), pp. 1107–1116, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.

engineering students, as well as in authors’ experi-

ence in developing CS contests and related educa-

tional methods [5–8]. As we have already

mentioned, CT is essential for all, but it is obviously

one of the fundamental skills for software engineers

and programmers.
The structured programming course is problem

solving-oriented and based mainly on the Python

programming language. Python as a language is

widely promoted as an alternative to other lan-

guages and as a first language to study program-

ming. The reason is that Python is positioned as a

tool for a rapid application development and, at the

same time, as an educational tool enabling problem
solving programming courses to be developed [9,

10]. During such a course, software engineering

students develop their knowledge of CS basics and

concepts and study the language syntax in parallel.

In addition, the use of game-like tasks or studying

how computer games work increases students’

motivation and is one of the promising ways to

learn new CS concepts [11].
The aim of this paper is to investigate how CT

skills of software engineering novice students can be

evaluated and how the evaluation results correlate

with the programming course results.

As an instrument to evaluate computational

thinking, a test of internationally approved and

well-preselected tasks of the Bebras challenge has

been suggested and validated. The research is based
on the authors’ practical experience in teaching

structured programming for the first semester soft-

ware engineering students and as well as their solid

practical and theoretical experience in developing

contest-related educational methods, based on the

authors’ research.

The structure of the paper is as follows. First, we

analyse the existing resources on computational
thinking and the Bebras challenge, the specifics and

deepness of its tasks for computer science. Next, we

present the methodology of the research: we rise

research questions, discuss task selection and test

preparation issues, and describe the participants of

thestudy.Thenwediscuss theresults (thecorrelation

between the test results and the structured program-

ming course results has been investigated and test
validity has been studied, using Item Response

Theory). We conclude with a discussion and future

directions how to enhance computational thinking

skills of novice software engineering students.

2. Background of the research

Oneof the drivers of this researchwas high drop-out

rates of software engineering students. This pro-

blem is addressed in many studies (e.g. [12] and

suggestions are made, e.g. introducing new solu-

tions for e-learning courses [13], using and analysing

students’ profiles [14], introducing educational

games to raise students’ motivation [15], using

short educational videos [16], electronic interactive

tests [17], and other decisions). CT skills as well as

the programming course and methodology are
essential in this problem.

2.1 Computational thinking

Later on, J. Wing gave a more concrete definition,

stating that CT can be understood as ‘‘the thought

processes involved in formulating problems and

their solutions so that the solutions are represented

in a form that can be carried out by an information-
processing agent’’ [18]. The latter definition is based

on the idea that there are layers of abstraction of

both data and processes involved in CT. Wing also

distinguishes between what CT means for everyone

and what it means for scientists, engineers, and

professionals.

A study of the existing research on computational

thinking [19] uses two main definitions of CT as a
starting point: operational definition of Computer

Science Teachers Association [20] and Google’s

characteristics of CT [21].

The operational definition of CT [20] suggests

that CT is a problem-solving process that includes

(but is not limited to) the following characteristics:

� Formulating problems in a way that enables us to

use a computer andother tools to help solve them.

� Logically organizing and analyzing data.

� Representing data through abstractions such as

models and simulations.
� Automating solutions through algorithmic think-

ing (a series of ordered steps).

� Identifying, analyzing, and implementing possi-

ble solutions with the goal of achieving the most

efficient and effective combination of steps and

resources.

� Generalizing and transferring this problem sol-

ving process to a wide variety of problems.

CSTA goes on to add that these skills are sup-

ported by a set of broader attitudes: ability to deal
withcomplexityandopenendedproblems, tolerance

for ambiguity, and ability to work with others to

achieve a common goal. This definition underwent a

review process that included a survey of over 700

experts including computer science teachers,

researchers, and practitioners. The vast majority of

respondents (n = 697, about 82%) indicated their

agreement or strong agreement when asked if
CSTA’s definition captured the fundamental ele-

ments of computational thinking, and a further 9%

indicated that the definition was sufficient to reach

a consensus in the computer science education

community [19].

Vladimiras Dolgopolovas et al.1108

The definition, offered by the Google’s Exploring

Computational Thinking initiative (the first large

scale program to provide an operational definition,

disseminate resources, and promote discussions

among K-12 educators about computational think-

ing), describes CT as a process that includes four
techniques: decomposition, pattern recognition,

pattern generalization and abstraction, and algo-

rithm design [21].

In order to measure computational thinking of

the students, there should be defined core concepts,

operations or skills, encompassed by CT. Such

operations are reflected in the CSTA and Google

definitions cited above. The CSTA’s operational
definition of CT includes the initial step that

describes formulating problems so that the technol-

ogy can be used to help solve them is similar to the

Google’s concept of decomposition, which involves

taking a large, complex problem and breaking it

into smaller and easier/more manageable ones.

Next, CSTA describes the logical organization and

analysis of data, which have parallels to Google’s
pattern recognition, or the ability to find similarities

or differences that help ‘‘make predictions or lead to

shortcuts’’. Representing data through abstractions

is similar to pattern generalization and abstraction,

or the ability to remove the details of a problem in

order to find a solution that is able to solve similar

problems. This involves filtering out unnecessary

details and designing a solution that can be used to
solve similar problems. The CSTA’s next two steps

of using algorithmic thinking to automate solutions

and analyze possibilities in order to find an efficient

and effective solution are similar to the Google’s

algorithm design, which is described as develop-

ment of a step-by-step strategy or a set of instruc-

tions for completing or solving a similar problem.

The CSTA definition extends that one step beyond
to include the idea of generalizing and transferring

this process to diverse problems [19].

Other initiatives and resources define their own

concepts or skills that are varying from author to

author, but anyway have core commonalities. For

example, Computing at School initiative in the UK

has included computational thinking concepts into

the K-12 curriculum. These concepts include
Abstraction (AB), Decomposition (DE), Algorith-

mic thinking (AL), Evaluation (EV), and General-

isation (GE) [22] that can be easily mapped to the

previously cited operations.

A systematic review for CT literature, conducted

in 2011 and including 3465 articles in the initial

phase [19], has shown that 46% of articles address

undergraduate students, 2% address postgraduate
students, 42% address K-12 students, and 19%

computing education community.

Most students today feel comfortable using com-

puters as they begin their studies, but few are

comfortable applying them to solve engineering

problems. To close this gap, computational think-

ing and the development of associated skills must be

integrated throughout the engineering curriculum

[23]. There are some examples of classes and pro-
jects aimed at enabling engineering students to

develop and increase CT through systematic intro-

duction of computational tools, e.g. the creative use

of MATLAB and LEGO Mindstorms integration

[24]. Some articles concern the curriculum develop-

ment in higher engineering and computer science

education [25]. In his paper, Hu [26] presents a deep

analysis of the computational thinking notion
related to mathematical and other ways of thinking

and one of the parts of the suggested extensive

definition of CT states that CT is ‘‘engineering-

oriented: to design the models and representations

against known constraints and practical concerns,

and to plan, execute, manage and evaluate the

process of computation in order to improve our

capability and maturity level’’.
To encourage and stimulate student’s computa-

tional thinking abilities, we should focus on evalua-

tion tools and methods. Our starting point is the

observation that solving tasks can be one of the

most useful tools for evaluating student’s ability to

think ‘‘computationally’’. We have a long-time

experience in developing various tasks in computer

science, as well as producing thousands of tasks for
national, regional (Baltic countries) and interna-

tional olympiads in informatics, contests, and

other quizzes for secondary schools. One of the

most popular outreach activities is a Bebras chal-

lenge on Informatics and Computational Thinking

[27].

2.2 International challenge on informatics and

computational thinking

The Bebras challenge is arranged annually in local

languages over the world [28]. Actually, it is a

contest but not only, because it focuses on more

activities beyond the contest. The main contest

consists of a set of tasks in a form of short questions

(problems) or interactive tasks. Each task can both
demonstrate the aspect of CS and test the aspects of

CT of the participant. These tasks can be solved

without prior knowledge about CS or computing,

but are clearly related to fundamental CS concepts

and aimed to develop CT of students. The tasks are

developed collaboratively during an annual work-

shop, afterwhich each country selects their own task

set to translate and use in the local contest (all tasks
for the Bebras challenge have been developed under

the Creative Common BY-NC-SA licence). The

focus is put on problem-solving activities that do

not require any previous knowledge, and each task

Exploration of Computational Thinking of Software Engineering Novice Students 1109

is categorized as belonging to one or several of the

age and topic groups [28].All tasks are accompanied

with an explanation for how a given task was to be

solved and a part called ‘‘It’s informatics’’, which

provides both teachers and students with some

additional information on how a given task is
related to CS or CT. The requirements for quality

of the tasks have been already discussed [6, 29].

The tasks of theBebras challenge involve students

into CT operations. As we can see in the next

sections of this paper, each task we have analysed

has at least some components of CT: Abstraction

(AB), Decomposition (DE), Algorithmic thinking

(AL), Evaluation (EV), and Generalisation (GE)
(CAS [22] concepts of CT have been used here). To

solve these tasks, students are required to think in

and about computer science, discrete structures,

computation, data processing, data visualisation,

but they also must use algorithmic as well as

programming concepts.

The prior related research has studied the differ-

ences in task solving results of boys and girls and
classification of the contest tasks using the Bloom

taxonomy [30].Within the scope of this research, we

would like to study the CS concepts behind the CT

tasks of the Bebras contest and the ability of novice

programmer students to use them in the real-life

context, modelled by the task.

3. Research methodology

In this research, we would like to bring up a

hypothesis: ‘‘Well developed structured program-

ming course, focused on the problem solving, devel-

ops computational thinking skills as well’’. A

relevant measurement tool is needed, taking into

account that CT is a latent trait and could be
implemented in the problem solving process. To

test the hypothesis, the programming language

independent test has been used. The aim of the test

is to evaluate students’ CT skills and to compare the

test results with the structured programming course

results. The test process had several steps and

actually used a combination of quantitative and

qualitative testing approaches. The first step of the
test process has been developed as a homogenous

dichotomous test using the tasks of the Bebras

contest as the test questions. When solving the

presented tasks, students should employ CT skills,

which we intend to measure as a latent trait. The

next steps of the test process include questions

requiring that students identify the CS concepts

presented in the first step test tasks; solving CT
problems by finding coding solutions to the pre-

sented tasks. The last two steps of the test process

still need to be evaluated and are positioned as

further work.

So the mainResearch Questions of this paper are:

� RQ1: How can the computational thinking skills
of novice software engineering students be eval-

uated in the way independent of programming

language?

� RQ2: What is the relation between novice soft-

ware engineering students’ computational think-

ing skills and programming course results?

Why these questions are of primary importance

for us?We consider computational thinking skills as

very important for further students’ educational

and professional career. Such skills form a basis

for students’ better understanding of further com-

puter science knowledge and could sufficiently

reduce the students’ failure and drop-out rate. In
order to answer the above research questions, we

conducted a case study where the novice software

engineering students, who studied structured pro-

gramming, had to solve the test of preselected tasks.

The preparation phase of the research consisted

of several steps. First, the appropriate tasks from

theBebras contest were selected. Themain selection

criteria were:

� Computational thinking concepts. Each task

should have at least one well-expressed CT con-

cept.

� Focus on algorithmical thinking. The test is aimed

at software engineering students, therefore all the
tasks are related to data structures, algorithms

and their methods.

� Difficulty level of problem solving. Since the

Bebras contest is mainly addressed to school

pupils, and we are going to use them for the

first-year higher education students studying

software engineering, we selected the tasks that

were considered as difficult with regard to the
international experts’ evaluations and the contest

results.

The second phase included the analysis of the

selected tasks, marking the main CS concepts, used
in them. During the third step, an online quiz for

students has been designed. The quiz included 10

selected tasks with a deep focus on CT. We used

quantitative research methods to analyse the data.

Test validity has been studied using the Item

Response Theory.

4. Participants

Sixty-five first year (first semester) software engi-
neering students, studying the structured program-

ming course, took part in the experiment. The

experiment was done with four groups of students,

consisting of 16, 10, 20 and 19 students, respectively.

A more detailed structure, including percentage of

Vladimiras Dolgopolovas et al.1110

male and female students, scores in Maths and

Information Technologies (IT) maturity exams, is

presented in Table 1. We would like to notify that

the IT maturity exam in Lithuania includes pro-
gramming aswell (50%of exam tasks require coding

skills).

5. Results

The goal of the students participating in the study

was to choose the correct answer to the presented

task set. 10 tasks were selected with a deep focus on

CT and followed by a set of CS concepts inside them

prepared for the study.

The average overall result of the test was 54.2% of
correct solutions. A more detailed structure of the

correct answers per task is presented in Table 2.

5.1 Test structure

The main concepts, ‘‘encoded’’ inside the gamified

tasks, were identified. They include main concepts

of data structures, algorithms, methods, logical

operations, and control structures (Table 3). The

concept name is followed by the number that
corresponds to the computational thinking task

number, already referred to above in Table 2.

We present here an example of one of 10 tasks

selected for a detailed study (Table 4).

We can identify the main components of compu-

tational thinking in this example of the task, as it

was already mentioned in the Introduction and

Background of the research sections of this paper:

� Abstraction (AB): from real objects (lakes, rivers)

to abstract objects like a binary tree.

� Decomposition (DE): checking the rule, applica-

tion of the rule to the parts of the tree.

� Algorithmical thinking (AL): the task itself pro-

vides an algorithm that should be understood and

applied. This task, however, is not an example
where students should develop their own algo-

rithm to select the correct answer.

� Evaluation (EV): evaluation of all the correct

decisions, evaluation of a set of wrong answers.

� Generalisation (GE): applying the algorithm rule

to the whole tree, analysing the result in general.

The main CS concepts included in this task are

Exploration of Computational Thinking of Software Engineering Novice Students 1111

Table 1. Basic characteristics of the participants of the experiment

Maths maturity exam scores IT maturity exam scores

Total number Male Female Score Students Score Students

65 95% 5% 80–100 6.2% 80–100 10.8%
60–80 12.3% 60–80 16.9%
40–60 32.3% 40–60 27.7%
20–40 36.9% 20–40 33.8%
<20 9.2% <20 10.8%

Table 2. General results of the test per task

No. CT task name Correct answers

1 Beaverrail 38.5%
2 Beaver’s log factory 33.8%
3 Bob’s Best strategy 56.9%
4 0X 41.5%
5 Water supply 63.1%
6 Collecting candies 73.8%
7 Beaver in his canoe 86.2%
8 Constructive Beaver 21.5%
9 Sorting the Sticks 90.8%
10 Bebras-city streets 35.4%

Table 3. The main concepts inside the computational thinking tasks

Data structures Algorithms Methods Logics Control structures

Binary tree (3) Algorithm (1) Dynamic
programming (6)

Binary logical
operation (5)

Loop (1, 4)

Graph (6) Maximum element
search (9)

Binary tree
modelling (7)

Disjunction (5) Function (8)

Logical data (4) Modified sorting
algorithm (9)

Tree traversal (3) Equivalence (5) Conditional
sentence (1)

Array (6) Depth-first search (3, 7) Operation
abstraction (8)

Inversion (5) Conditional
loop (9)

List structure (4) Breadth-first search (7) Optimization (10) Conjunction (5)

Directed graph (2) Greedy algorithm (10) Parameterization (8)

Weighted graph (3) Automation (7)

binary tree modelling, depth-first search, and auto-

mation.

5.2 Test validity

Evaluating the test statistics we implement several

basic considerations. First, we consider the test as a
whole as a homogenous dichotomous test for eval-

uating students’ implicit ability of computational

thinking in the context of the process of solving

gamified tasks that implicitly involve cognitive

procedures of computational thinking. Next, we

should make a note on the design and implementa-

tion of the test. We use a dichotomous scale for

measuring the latent trait, scoring positively for the

right solution.

We implement the Rash model for the evaluation

and use environment R and eRm package to test
model [31–34]. The result of estimation of the

dichotomous model is presented in Figs. 2 and 3.

The Wald test plot is presented in Fig. 4.

Vladimiras Dolgopolovas et al.1112

Table 4. Task 7, ‘‘Beaver in his canoe’’

Beaver paddles in his canoe on a river. The river has a number of
little lakes (Fig. 1).

Beaver likes all lakes of the river and has thought of an algorithm
to make sure that he reaches every lake.

He knows that at each lake there is a maximum of two rivers that
he has not yet seen.

If beaver arrives at a lake he decides which river to take with the
following rules:

� If there are two rivers he has not yet seen, he takes the river on
his left hand side.

� If there is one river which beaver has not yet seen, beaver takes
this river.

� If beaver has seen all the rivers from a little lake, he paddles his
canoe one lake back towards the previous lake.

Beaver stops his day of canoeing if he has seen everything and has come back to the start point. In Fig. 1 you can see the river and the little
lakes where beaver paddles his canoe.

In each little lake beaver sees a different animal. Beaver writes down the animal name when he sees an animal for the first time.
In which order will beaver write down the animals?

Answer (the correct answer is written in bold)
a. fish, frog, crocodile, turtle, stork, snake, otter, duck
b. fish, crocodile, snake, stork, duck, otter, frog, turtle
c. fish, frog, turtle, crocodile, stork, otter, duck, snake
d. fish, frog, turtle

Fig. 1. Task ‘‘Beaver in his canoe’’

Fig. 2.Dichotomousmodel. Results of theRashmodel estimation,Andersen’s LikelihoodRation andMartin-Loef tests. Summary of the
Rash model estimation.

Figure 2 shows easiness of parameter estimation

of the Rash model item for 10 test items, standard

errors of items, and 95% confidence intervals of

items. For this study eight eta parameters are
significantly different from zero (p < 0.05) with

five negative (Q1, Q2, Q4, Q8, Q10) and three

positive (Q6, Q7, Q9) values. The confidence inter-

vals of the other two eta parameters (Q3, Q5)

include zero.

We check fitness of the Rash model according to

Andersen’s likelihood ratio test. The mean of raw

scores was chosen as the partitioning criterion. The
significance level we specify is equal to 0.05. The

computed p-value (p = 0.403) shows that the like-

lihood ratio test results are non-significant and,

therefore, the Rash model holds for the data.

Martin-Loef’s test evaluates unidimentionality of
two sets of items. The calculated p-value for the

Martin-Loef’s test is 0.791. As well as Andersen’s

test, Martin-Loef’s test confirms the Rash model

data. Wald’s test shows on non-significant differ-

ence for all the test items as seen from the plot (Fig.

4). Item characteristics curves show closeness to the

uniform distribution of test items (Fig. 3).

The test statistics confirms the general validity of
the test.

Exploration of Computational Thinking of Software Engineering Novice Students 1113

Fig. 3. Dichotomous model. Item characteristics curves. Curves of items and test information.

Fig. 4. Dichotomous model. The Wald test plot.

5.3 Correlation results

In order to answer our second research question we

measure and compare the measured latent abilities
with the results of the structured programming

course. The positive correlation would indicate a

success of the structured programming course. The

correlation plot of the test results and the structured

programming course examination results is pre-

sented in Fig. 5. The plot shows no correlations.

Oneof the reasons of correlation absence between

the test results and course results may be that the
exam of the course is still procedural, logical think-

ing oriented and should be re-developed to address

more problem solving skills.

6. Discussion and future work

The case study, presented in this paper, was aimed

to investigate how the problem solving oriented

structured programming course enhances computa-

tional thinking skills of novice software engineering

students. The type of students’ activity of the during

this study (game-like computer science task with the

concepts ‘‘encoded’’ into it) was not only to test
students, but also can be useful as a learning activity

for the computer science/engineering students. The

activity itself may be highly motivational to learn

new CS concepts and develop CT skills.

The case study has given some controversial

results. This case study may be considered as a

first step in a series of research activities. The next

steps of the research would be to analyse, how
novice software engineering students explicitly

identify the presence of CS concepts in computa-

tional thinking tasks, create game-like computer

programs, based on the computational thinking

tasks, and use the main concepts in their program-
ming activities. This fact would possibly bring more

light on the reasons of the problems and limitations

identified in this case study.

The results have also pointed out the problems of

the structured programming course itself that

should be improved. Using the programming lan-

guage-independent test, presented in this paper, the

influence of different didactic approaches on the
improvement of CT skills could be studied and

compared.

7. Conclusion

1. CT tasks used in this study are designed for

secondary school students. Unless the tasks
were designed to use in a contest setting, it

was quite surprising there were only 54.2% of

correct answers in general from the first year

software engineering students. Possibly, the

reason for that is a diverse and insufficient

preparation for computer science on a school

level, not enough addressing the problem sol-

ving and computational thinking skills.
2. The statistical evaluation of the test used in this

study, has shown the validity of the test as an

instrument to evaluate computational thinking.

3. In spite of our expectations, the test did not

present any correlation between CT skills and

the structured programming course. It means

that the course has to be improved.At this point

of our research, we cannot either confirm or
reject the hypothesis we have raised at the

beginning of this paper. The course improve-

ment strategy could be based on the analysis of

the structure of test tasks, studying CS concepts

Vladimiras Dolgopolovas et al.1114

Fig. 5. The plot of the CT test vs. the structured programming course exam.

and shifting the course and its exam structure to

the test shown most difficult to solve problems.

References

1. Royal Society, Shut down or restart: The way forward for
computing in UK schools, http://royalsociety.org, 2012.
[Retrieved September 22, 2015]

2. V.Barr andC. Stephenson,Bringing computational thinking
to k-12:What is involved andwhat is the role of the computer
science education community?ACM Inroads, 2(1), 2011, pp.
48–54.

3. S. Easterbrook, From Computational Thinking to Systems
Thinking:A conceptual toolkit for sustainability computing,
In: Proceedings of the 2nd international conference on infor-
mation and communication technologies for sustainability
(ICT4S’14), Stockholm, Sweden, 2014.

4. J.M.Wing, Computational thinking,Communications of the
ACM, 49(3), 2006, pp. 33–35.

5. V. Dagienė, Information technology contests—introduction
to computer science in an attractive way, Informatics in
Education, 5(1), 2006, pp 37–46.

6. V. Dagienė and G. Futschek, Bebras International Contest
on Informatics and Computer Literacy: Criteria for Good
Tasks, LNCS 5090, 2008, pp. 19–30.

7. V. Dolgopolovas, V. Dagienė, S. Minkevičius and L. Saka-
lauskas, Python for Scientific Computing Education: Mod-
eling of Queueing Systems, Scientific Programming, IOS
press, 22(1), 2014, pp. 37–51.

8. V. Dolgopolovas, V. Dagienė, S. Minkevičius and L. Saka-
lauskas, Teaching Scientific Computing: A Model-Centered
Approach to Pipeline and Parallel Programming with C,
Scientific Programming, Article ID 820803, 18 p., 2015.

9. C. Dierbach, Python as a first programming language,
Journal of Computing Sciences in Colleges, 29(6), 2014, pp.
153–154.

10. W. Xinxiu, Z. Yang, Z. Wang andM. Zhao, Exploration on
Cultivating Students’ Abilities Based on Python Teaching
Practice. In: 2nd International Conference on Teaching and
Computational Science (ICTCS 2014), Atlantis Press, 2014.

11. A. Theodoraki and S. Xinogalos, Studying Students’ Atti-
tudes onUsingExamples ofGameSourceCode forLearning
Programming, Informatics in Education, 13(2), 2014, pp.
265–277.

12. P. Kinnunen and L. Malmi, Why students drop out CS1
course? Proceedings of the second international workshop on
computing education research, September 9–10, 2006,Canter-
bury, United Kingdom.

13. L. De-La-Fuente-Valentı́n, A. Pardo and C. D. Kloos,
Addressing drop-out and sustained effort issues with large
practical groups using an automated delivery and assessment
system, Computers & Education, 61, 2013, pp. 33–42.

14. F. Araque, C. Roldán, A. Salguero, Factors influencing
university drop-out rates, Computers & Education, 53(3),
2009, pp. 563–574.

15. J. McKee-Scott and L. Patricia, Educational games for CS1:
raised questions, WCCCE ’11 Proceedings of the 16th Wes-
tern Canadian Conference on Computing Education, ACM,
2012, pp. 46–46.

16. H.Kinnari-Korpela,UsingShortVideoLectures toEnhance
Mathematics Learning—Experiences on Differential and
Integral Calculus Course for Engineering Students, Infor-
matics in Education, 14(1), 2015, pp. 69–83.

17. M. Magdin and M. Turčáni, A Few Observations and
Remarks on Time Effectiveness of Interactive Electronic
Testing, Informatics in Education, 14(1), 2015, pp. 85–104.

18. J. M. Wing, Computational Thinking: What and Why, 2011,
http://www.cs.cmu.edu/link/researchnotebook-computa-
tional-thinking-what-and-why, Accessed September 22,
2015.

19. A. E.Weingberg,Computational thinking: an investigation of
the existing scholarship and research, Dissertation, Colorado
State University, 2013.

20. ISTE&CSTA (International Society for Technology in Edu-
cation (ISTE) and the Computer Science Teachers Associa-
tion (CSTA)), Operational definition of computational
thinking for K-12 education, 2011.

21. Google, Exploring Computational Thinking, 2011. http://
www.google.com/edu/computational-thinking/ [Retrieved
September 4, 2015]

22. CAS (Computing at School), CAS computational thinking
guidance for teachers, 2015, http://community.computing
atschool.org.uk/resources/2324[RetrievedSeptember22,2015]

23. C. Mohtadi, M. Kim and J. Schlosser, Why integrate
computational thinking into a 21st century engineering
curriculum? Proceedings of SEFI Annual Conference,
article no 62, Leuven, Belgium, 2013, http://www.sefi.be/
conference-2013/authors.html [Retrieved April 17, 2016].

24. S. Gross,M.Kim, J. Schlosser,D. Lluch, C.Mohtadi andD.
Schneider, Fostering computational thinking in engineering
education: Challenges, examples, and best practices. In:
Global Engineering Education Conference (EDUCON),
IEEE, 2014, pp. 450–459.

25. C. E. Vergara, M. Urban-Lurain, C. Dresen, T. Coxen,
T. MacFarlane, K. Frazier, D. Briedis, N. Buch, A.-H.
Esfahanian, L. Paquette, J. Sticklen, J. LaPrad and T. F.
Wolff, Aligning Computing Education with engineering
workforce computational needs: New curricular directions
to improve computational thinking in engineering graduates,
In: 39th IEEE Conference on Frontiers in Education 2009,
2009, pp. 1–6.

26. C. Hu, Computational thinking: what it might mean and
what wemight do about it, In: Proceedings of the 16th annual
joint conference on Innovation and technology in computer
science education, ITiCSE’11, ACM, 2011, pp. 223–227.

27. Bebras.org, International Challenge on Informatics and Com-
putational Thinking, http://www.bebras.org/ [Retrieved Sep-
tember 22, 2015]

28. V. Dagiene andG. Stupuriene, Bebras—a Sustainable Com-
munity Building Model for the Concept based Learning of
Informatics and Computational Thinking, Informatics in
Education, 15(1), 2016, pp. 25–44.

29. J. Vanicek, Bebras Informatics Contest: Criteria for Good
Tasks Revised, In: Gülbahar, Yasemin, Karataş, Erinç
(Eds.) Informatics in schools: teaching and learning perspec-
tives: 7th international conference on informatics in schools:
situation, evolution, and perspectives, ISSEP 2014, Istanbul,
Turkey, September 22–25, 2014: proceedings, LNCS 8730,
2014, pp. 17–28.

30. V. Dagienė andG. Stupurienė, Informatics Education based
on Solving Attractive Tasks through a Contest, Conference
KEYCIT 2014, 2014, pp. 51–62.

31. R. Development Core Team (2008). R: A language and
environment for statistical computing. R Foundation for
StatisticalComputing,Vienna,Austria.ISBN3-900051-07-0.

32. R-forge, eRm Project, http://r-forge.r-project.org/projects/
erm/ [Retrieved September 22, 2015]

33. P. Mair, R. Hatzinger and J. M. Maier, Extended Rasch
Modeling: The R Package eRm, PDF-Dateianhang zum
Programmpaket eRm, 2009.

34. F. De Battisti, G. Nicolini and S. Salini, The Rasch Model,
Modern Analysis of Customer Surveys: with Applications
using R, 2012, pp. 259–281.

Vladimiras Dolgopolovas received a degree in civil engineering from the Vilnius Gediminas Technical University and a

second degree in mathematics and computer science teaching from Vilnius University. He has participated in research

projects on embedded systems, software defined radio and industrial networks. He is a lecturer of Computer Science at

Vilnius University of Applied Science and a member of research staff at Institute of Mathematics and Informatics of

Vilnius University. His research interests include numerical analysis, operational research, and applications to teaching

and learning.

Exploration of Computational Thinking of Software Engineering Novice Students 1115

Tatjana Jevsikova is a researcher at the VilniusUniversity Institute ofMathematics and Informatics as well as an associate

professor at the Vilnius University Faculty of Mathematics and Informatics. She received her PhD in computer science.

Hermain research interests include informatics education, e-learning, teacher training, software localization, and cultural

aspects of human-computer interaction. She is the author (or a co-author) of more than 20 scientific papers, several

methodological books anddictionaries of computer science terms. Sheparticipated in severalEU-fundedR&Dprojects, as

well as in a number of national research studies, connected with technology in education, as well as software localization.

ValentinaDagienė is a professor at VilniusUniversity, Lithuania (MS inAppliedMathematics, PhD inComputer Science,

Dr. Habil in Education). Her research interests focus on informatics and informatics engineering education, teaching

algorithms and programming, and localization of educational software. She has published over 200 scientific papers and

methodological works, has written more than 50 textbooks in the field of Informatics and Information Technology for

primary and secondary education. She works in various expert groups and work groups, organizing the olympiads and

contests. She is Editor of international journals ‘‘Informatics in Education’’ and ‘‘Olympiads in Informatics’’. She has

participated in several EU-funded R&D projects, as well as in a number of national research studies connected with

information technology and education.

Loreta Savulionienė received a master’s degree in mathematics and a PHD degree in informatics from Vilnius University.

She is a vice dean of the Faculty of Electronics and Informatics and a lecturer at Vilnius University of Applied Sciences. In

2013, shewas awarded a grant for bestLithuanianprogramming lecturers.Her research interests include computer science,

programming education research, educational planning and organization of an educational process.

Vladimiras Dolgopolovas et al.1116

