
Compile Error Collection Viewer: Visualization of Compile

Error Correction History for Self-assessment in

Programming Education*

YOSHIAKI MATSUZAWA, MOTOKI HIRAO and SANSHIRO SAKAI
Shizuoka University Graduate School of Informatics, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan.

E-mail: matsuzawa@inf.shizuoka.ac.jp, hirao@sakailab.info, sakai@inf.shizuoka.ac.jp

Wehave developedCocoViewer (Compile errorCollectionViewer) for learners in programming to enable them to conduct

self-assessment for compiling error records. CocoViewer generates charts that show a trajectory of reducing the correction

time of the compile error that is calculated by logs recorded in students’ computers during a programming course. Students

can see lists of charts formany kinds of compile errors, as well as a particular detailed circumstance of error that is selected

by a student.We hypothesized that the system promotes clear understanding regarding their compile error learning, which

leads to encourage more experiences of compilation error correction, as well as to reduce unarticulated anxiety for the

compile error. The systemwas tried in a self-assessment context at an undergraduate introductory programming course for

approximately 100 non-CS students. The results in the questionnaire showed that the students appreciated the system for a

reflection of their process, and we succeeded in reducing unarticulated anxiety for students. The results indicate that self-

assessment with CocoViewer enable to boost students’ motivation in programming education, which forms the basis of

computer engineering education.

Keywords: computer engineering education; programming education; compile error correction; self-assessment; learning analytics

1. Introduction

In introductory programming environments using

common text-based languages such as Java, C, or

Python, learning to correct compile errors has been
the first obstacle for novices. Seeing numerous

compile errors has caused ‘‘nightmares’’ for many

beginning programmers. In the classroom, teaching

assistants are always busy supporting learners to

correct errors. This results in both students and

assistants having an inability to focus on the most

important practice in the introductory level: think-

ing about workable algorithms. This had been
manageable for CS (Computer Science) students,

however, recent demands to develop higher level

problem-solving skills using the computer, Compu-

tational Thinking [1], has broadened the target to

non-CS students.

Non-CS students are feeling more negative

regarding compile errors than teachers think. Our

survey for students in our introductory program-
ming course for non-CS students showed that 62%

of students answered that they were feeling literal

‘‘fear’’ regarding compile errors. They also

answered the question ‘‘What was the percentage

of time you spent on compile error correction per

total programming process?’’. The result of the

students’ perception was 28.4% where as our

actual calculation was 15%.
In literature, researchers have discussed two

approaches to solve the problem. One is to avoid

compile error occurrences by using a visual pro-

gramming language such as Squeak [2] or Scratch

[3]. The visual programming approach enables

beginning learners to build their program by block
building as in a jigsaw puzzle style [4], which can

completely eliminate any compile errors, because it

is not possible to connect blocks unless those blocks

can connect grammatically.

Another approach is to develop an environment

which provides some scaffolding where the students

can easily learn how to correct compile errors.

Many students are worried about the number of
occurrences for compile errors, however it is not a

concern for professionals. The professionals can

correct errors quickly because compile error mes-

sages give them clear clues for correcting errors. An

advantage of this approach is that correcting error

experiences promotes understanding of grammati-

cal knowledge. This is a reasonable approach for

redesigning compile error messages for novices,
because the standard error messages that were

assumed for professional use in design include

many terminologies, therefore, it is hard to under-

stand for beginners who have little grammatical

knowledge. We can take the first approach

described above (visual language) in the early

stage of programming education.

However, it may be disappointing for highly
motivated students, because many popular lan-

* Accepted 12 February 2016. 1117

International Journal of Engineering Education Vol. 32, No. 3(A), pp. 1117–1127, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.

guages which provide attractive functions to solve

problems by a computational approach, such as

JavaScript in the browser, are still text-based. At

least in a migration phase from visual to text-based

language, they cannot avoid learning some gram-

matical knowledge. On the other hand, the second
approach (error correcting scaffolding) never suc-

ceeded in completely swiping beginners’ fear out.

Once a student faces stacking in a number of

compile errors, his/her motivation for learning pro-

gramming is going to drop and is unlikely to return

due to the negative experience.

In this paper, we tried to improve the situation in

the second approach (error correcting scaffolding),
by proposing a tool to encourage formative assess-

ment regarding compile error correction learning by

students themselves. Using the latest information

technology, we can easily collect information con-

cerning the learning procedure, and the tool provid-

ing visual information for students. Therefore, we

took an approach using the computer as a learning-

reflection tool [5]. Our hypothesis behind this is that
the students’ ‘‘fear’’ about compile errors came

from their lack of information and knowledge

regarding actual compile error learning status.

Thus, from this point on in this paper we refer to

‘‘fear’’ as ‘‘unarticulated anxiety’’.

We hypothesized that the system promotes clear

understanding regarding their compilation error

learning, and the following three effects were
expected:

(1) to encourage more experiences of compilation
error correcting;

(2) reducing unarticulated anxiety concerning

compilation errors;

(3) improvement of the procedure of correcting

errors.

The remainder of this paper is organized as

follows: We will discuss works related to this

research in Section 2. We will introduce our course

design, analysis tool in Section 3. Evaluation

method is in Section 4. The results of the qualitative
analyses are given in Section 5. Section 6 concludes

with a discussion of the results and limitations of the

study.

2. Related work

This study was built on research regarding indivi-

dual skill growth in software engineering. Specifi-

cally, we focus on the chronological changes of the
compile error correction time. PSP: Personal Soft-

wareProcess [6] is the classic theory and theonly one

which provides results of the chronological analysis

of compile error correction time. Although the data

was gathered in the professional development situa-

tion, PSP research results show the compile error

correction time gradually decreases by experience.

We can say it is an improvement of their skills and

that seeing the phenomena visually encourages

students toward further learning of programming.

However, the original PSPhas to be done bymanual
logging, which was unreasonable to conduct in the

introductory programming course.

Recent information technology allows us to

easily collect logs which record all operations in

the students’ computers. In this decade, many

recording environments in the educational field

have been proposed, resulting in a significantly

low cost for collecting logs even in real-time (e.g.
[7]). However, there are a few articles that try either

analysis or visualization of the records, as we review

in the following.

There are studies that attempted to discover

indicators which show learning status by analyzing

compile error correction logs. A number of reports

statistically analyzed an occurrence of a compile

error number in their programming education [8–
10]. They examined the difficulty of each compile

error kind by counting the occurrences. Jadud [8]

examined calculating average correction time for

each kind of detection of difficulty, and Thompson

[11] concurred. Although the research concluded

that the average time was useful to detect difficulties

of the compile error kind, their research omitted the

aspects of individual differences and temporal
aspects of learning. Jadud [12] also tested a similar

problem todetect the difficulty of each compile error

kind. They proposed EQ (Error Quotient), which is

calculated by how many times the students tried to

compile in order to correct an error. However, the

research omitted the aspects of correction time.

Recently, an approach in which manual qualita-

tive analysis was included in the quantitative col-
lected data was done in several studies. Marceau et

al. [13] attempted to detect compile error difficulty

for each kind by learners’ activities. They defined

activities which can be identified by learners’ error

correction processes, and their data in the actual

education process was manually analyzed by the

defined activities. Bringula et al. [14] proposed

taxonomyof compile errors fromahuman cognitive
aspect. The category was composed of six types

(Thought error, Sensorimotor error, Omission

Error, Memory error, Knowledge error, Habit

error), and their regression analysis revealed the

relationship between those types.

There is another approach for improving the

problem by proposing software tools which directly

support learners in solving their compile errors. In
this category, the most frequent approach is to

redesign compile error messages for novices [13,

15, 16]. Specifically, two reports show clear results

Yoshiaki Matsuzawa et al.1118

were achieved through certain levels of improve-

ment in the actual environment [13, 16]. Some

research proposed tools that provide hints for

learners to resolve their errors by using a database

where the cases accumulated [17, 18]. The approach

is similar to the expert system. A situation of
programming language might also be affected by a

language kind. In this view, some researchers

claimed advantages of the particular language

(e.g. Scheme [19]).

Our research does not take an approach which

directly facilitates learners solving the problems

they face, but takes the route which encourages

the learners’ learning process in the meta-cognitive
layer. In this view, some studies tried a similar

approach. For example, Chiken et al. [20] proposed

a toolwhich supports the learners’ reflection process

using failure knowledge. In another example,Kay et

al. [21] tried to let learners have self-assessment

experiences for the activity of evaluation of several

other’s programs. Belski [22] also claimed the

importance of the metacognitive process in pro-
gramming education, although their research con-

tinues to conduct self-assessment by questionnaire.

3. CocoViewer

3.1 Architecture

WeproposeCocoViewer (Compile ErrorCollection

Viewer) the name of which was from the system

function characteristics: collection of compile error
correction. The system visualizes compile error

correction history for each learner in order to

facilitate their analysis of their learning regarding

compile error corrections and grammatical form of

programming language. Knowing the accurate

number and time spend for compile error correction

removes learners’ unarticulated anxiety regarding

errors and correction.
We developed a system to support the learning of

Java programming language. The system’s whole

dataflow structure is shown in Fig. 1.

The sensor which collects all activities’ log includ-

ing compile error occurrences/corrections is

embedded in the Programming Development

Environment used by learners in our educational

situation. CocoViewer visualizes the logs which are

accumulated in theworking log database.Hence, all
procedures from logging to visualization are com-

pleted automatically for uses. Although the system

works on the standalone computer, the system is

workable for analyzing all learners’ logs in a class by

connecting theWorking Log Database via a server.

The server system is not described in this paper aswe

focus on the usage of the personal reflection system.

3.2 Correction time calculation and chart

CocoViewer calculates a compile error correction

time by activity logs for each compilation error

occurrence. The difference in time between the

error occurred and resolved, will be calculated in a

general case. However, sometimes multiple errors

occur or are resolved at the same time. For such a

case, the system calculates by the amount of time

spent in error collection BY the number of errors.
An assumption of the method is the difficulty of

corrections is equal in every case. Although it is not

always accurate, we had to take this method for the

sake of automatic calculation.

Using a correction time history, CocoViewer

generates a correction time chart. A chart is created

for each compile error kind.An example of the chart

is shown in Fig. 2. The figure is an example for the
compile error kind of ‘‘reached end of file while

parsing’’ in Java. X-axis of the chart shows the

compile error correction opportunity’s number

(unit: the sequence number). The number of 1

means the first opportunity to resolve this kind of

error, and the maximum number (19 in this exam-

ple) means the last opportunity for the error. Y-axis

of the chart shows the error correction time (unit:
seconds). For example, we can read inFig. 2 that the

learner spent a compile error correction time of 65

seconds the first time and 34 seconds the second

Compile Error Collection Viewer: Visualization of Compile Error Correction History for Self-assessment 1119

Fig. 1. Different approaches in assessment for programming assignments.

time. Hence, the learner can see the trajectory of
their error correction time history, which is expected

to be improved by additional experiences.

3.3 CocoViewer dashboard

CocoViewer has a dashboard window to provide at

a glance view of personal compile error correction

information. An example of a dashboard is shown

in Fig. 3.

A dashboard is comprised of twomajor compart-

ments. One is the upper compartment which pro-

vides summary information regarding the personal

compile error correction history. The summary

includes the following information:

� Total of compile error occurrence: (ex: 1092).

� Average time of compile error correction: (ex: 11

seconds).
� Total of compile error correction time: (ex:

3:27:10 hh:mm:ss).

� Total of working time: (ex: 14:11:00 hh:mm:ss).

� Rate of compile error correction time forworking

time: (ex: 24.3%).

Each example shown above is the actual student’s

data in our introductory programming course,

which was carried out over 15 weeks. As this
example indicates, there is important information

for learners to know the current status toward an

accurate analysis.

The bottom compartment of a dashboard shows

the tile representation of correction time charts for

all kinds of compile errors. There are 7 � 7 tiles,

which can show the maximum of 49 kinds of error

correction time charts. In default, each of 48 Java
compile error kind is assigned to one tile, ordered by

a frequency profile for each kind of error from top

left to bottom right. The frequency profile used for

this study was created by the statistics for all of

students’ logs collected in the introductory class

carried out the year before this study.

The dashboard is designed for promoting ‘‘col-

Yoshiaki Matsuzawa et al.1120

Fig. 2. An example of a correction time chart.

Fig. 3. The CocoViewer dashboard.

lection’’ of compile errors for learners. For each tile,

a thumbnail of a correction time chart will be shown

if there is at least one compile error correction

record for the kind of error assigned in the tile.

Otherwise the cell is colored in graywith the nameof

the kind of error. The design of fixed location for

each error is essential in order to give learners

accurate information for their experiences. All the
blank (in gray) tiles in the initial state, are expected

to be filled by experiences. From the aspect of

‘‘collection’’ in this view, an occurrence of compile

error is no longer a negative for novice learners. A

fluency of fixing compile error and understanding of

grammar has to be correlated with experiences.

Hence, the system encourages learners to enrich

experiences of any kinds of compile errors.

Moreover, there is one more designed factor for

letting learnersmotivate the ‘‘collection’’. RARITY

is assigned to every kind of compile error to guide

the difficulty level of the collection/correction of

each compile error. The range of 1 to 6 of

RARITY was assigned based on the frequency
profile. The background color of a tile shows the

RARITY of the error. For example, white for

RARITY 1, green for RARITY 2, or pink for

RARITY 3 is used for the background color of

tile respectively. RARITY guides not only the level

of difficulty for the compile error, but also

Compile Error Collection Viewer: Visualization of Compile Error Correction History for Self-assessment 1121

Fig. 4. Correction time chart window.

Fig. 5. Correction details window.

encourages the collection of rare items to fill the

collection case.

3.4 Correction time chart and details window

By clicking one tile of the CocoViewer dashboard,
users can open a correction time chart window. An

example of the window is shown in Fig. 4. This

example is regarding the kind of ‘‘incompatible

types’’. A correction time chart window includes a

correction time chart and a correction history table.

The table shows details of each record, such as the

date, the target program, and the correction time.

Users can explore further details of the situation
for the error correction opportunity, by clicking one

record of histories on the table. An example of a

correction details window is shown in Fig. 5. The

window visualizes the two source code compari-

sons: the left pane shows the source code when the

error happened, and the right pane shows the source

code when the error resolved. In addition, users can

use the time slider to move the time and check the
source code at the time, where the functionality is

implemented by the Programming Process Visuali-

zer [23].Hence, users can checkwhatwas happening

in the situation of the error and how to solve the

compile error.

3.5 Usecase: How learners analyze their charts

We designed CocoViewer for learners in order that

they explore their learning curve by analyzing the

shape of their correction time chart. From our

experiences, the shape can be classified by 3 kinds

of patterns: (a) Decreasing, (b) Jagged, and (c)

Increasing. Examples of these patterns are shown

in Fig. 6.

Fig. 5(a) shows an example of the decreasing type
of correction time chart. The type of chart clearly

shows that the learner is gradually coming to under-

stand through the experiences of compile error

correction. It is the ideal for a dashboard to be

filled with this type of a chart.

Fig. 5(b) shows an example of the jagged type of

correction time chart. Several factors are considered

for reasoning with this type. (1) Learners struggling

with the acquisition of the grammatical rules are

related to the compile error. It is not uncommon

that the same error has appeared by different causes.

Another reason could be that it is difficult to under-

stand the compile error message. (2) There is a
problem on the correction time calculation

method; explained in section 3. 2, there is a possibi-

lity resulting in a big difference in the calculated

correction time, depending on the situation of

whether single error correction or multiple errors

combined has occurred. (3) There is a problem in the

learners’ internal procedure to learn by experience.

In the actual classroom, teachers typically observe
students who are trying to fix compilation errors

without any thought for the reasoning behind the

errors. Otherwise, (4) it falls within the procedure of

understanding error correction. In this case, the

type of chart is expected to shift to the pattern (a).

A qualitative analysis using the correction details

window is necessary in order to detect either of one

or more reasons, in any case.
Fig. 5(c) shows an example of the increasing type

of the correction time chart. Although it should not

be expected to appear, it is not uncommon to see

some in an individual dashboard. The same reasons

for Jagged types are considered as the causes. In

typical instructional design for introductory pro-

gramming guides learners proceed from easier,

simpler tasks to more difficult, complex ones. This
means the situation of the task (difficulty of the

whole source code) might be a tough situation even

if the same type of the compile error has appeared.

Further qualitative analysis is necessary in this case,

as well as in case of the pattern (b).

4. Experimental study

4.1 Research question and hypotheses

We conducted an empirical study in our introduc-

tory programming class. The goal of the study was

to evaluate effectiveness of the proposed environ-

ment (CocoViewer). The research question was

Yoshiaki Matsuzawa et al.1122

Fig. 6. Patterns of correction time chart.

‘‘How CocoViewer can be used in the classroom for

learners as a self-assessment tool of their compile

error correction process’’.

Students were given the opportunity to use

CocoViewer, and analyze their own data for a self-

assessment of their learning procedure. The experi-
mental session was held at the 12th of 15 weeks of

the course; therefore they could use data that have

been recorded over 11 weeks during their course-

work for all assignments. We began with two

hypotheses:

Hypothesis I. Learners can reduce ‘‘unarticulated

anxiety’’ by the following processes

(1) View correction time charts, and analyze the

charts’ shape.

(2) Decrease the gap between their expectation and
actual for compile error correction profile.

(3) Recognize extent of learning for their compile

error correction.

Hypothesis II.The activity of self-assessmentwith

viewing the visualization of their own procedural

data, is interesting itself for many students. They

can enjoy the activity, start to explore their owndata

driven by intrinsic motivation, and find the way to

improve their learning process.

4.2 Educational environment descriptions

The introductory programming course was

designed for art students, rather than for computer

science students. Therefore, the objective of the

course was to develop an understanding of task-

oriented programming. The objective was indepen-

dent from any programming language, although
Java language was used for the actual environment.

Approximately 100 students participated in this

course; two lecturers and six teaching assistants

conducted the class.

4.3 Procedure

We performed our experiment in the 12th of 15
weeks of the class. Students participated in this

experiment in a semi-voluntary situation. Although

the experiment was conducted as a part of the class,

the task was not mandatory: if learners thought the

experience of CocoViewer was not useful, they

could decide not to join the experiment without

any penalties in the grading.

The experimental study was conducted using a
worksheet which includes the following contents.

1. Instructions how to operate and to launch and
use CocoViewer.

2. Instructions of how to analyze a correction time

chart, as it was explained in Section 3.5.

3. Activity1: analyzing my own dashboard, select

a few correction time charts and analyze them.

4. Activity2: Discussing with others the results of

activity1 with the comparison of others’ dash-

board.

5. Questionnaire: questions regarding the verifica-

tion of the Hypothesis I and II as described in

Section 5.

The total time the learners used in this task was

approximately 40 minutes. At first, 10 minute
instruction was done by a teacher using 1 and 2 of

the worksheet. After that, students could freely

proceed in the experiment using the worksheet. In

our observation, it took 10–20 minutes for Activity

1 and 2, and 10 minutes for marking the question-

naire.

We received 71 sheets of questionnaires out of 100

registered students in the class. This means 71% of
students selected to be a volunteer of this experi-

ment. However, as 10 sheets of the questionnaire

were not completed,we used 61 sheets for analysis in

this paper.

5. Results

5.1 Results for comparison between expected and

actual and reducing fear

The results of questionnaire are shown inFig. 7. The

responses for the question ‘‘What is the difference
between expected and actual for the compile error

profile?’’ are shown in Fig. 7(Q1). We asked for 3

factors: the total of error occurrences, the number of

kinds of errors, and the total of compile error

correction time. Students answered via four scales

of higher number/lower number for occurrences

and kinds, longer/shorter for times respectively.

Thefigure shows that 66%of students thought the
number of the total of error occurrences was higher

than expected. A similar result is shown for the

correction time: 64% of the students thought the

actual correction time was longer than they

expected. The percentage indicates approximately

twice of the students answered higher/longer side.

An opposite result can be observed for kinds: 58%

students thought that the number of kinds was
lower than they expected.

The responses for the question ‘‘WasCocoViewer

useful to reduce your fear against compile errors?’’

are shown in Fig. 7(Q2). The question was aimed at

acquiring direct responses regarding the effect of

reducing ‘‘unarticulated anxiety’’. As a result, 44%

of the students marked ‘‘agree’’ and ‘‘slightly

agree’’, and almost all others marked ‘‘neutral’’.
As our preliminary survey showed that 62% of

students answered that they were feeling ‘‘fear’’

regarding compile errors, the result canbe evaluated

as positive.

Compile Error Collection Viewer: Visualization of Compile Error Correction History for Self-assessment 1123

5.2 Results for general reaction, usefulness of

CocoViewer

The responses for the question ‘‘Was it an interest-

ing experience to see your own compile error correc-

tion history?’’ are shown in Fig. 7(Q3). 82% of the

students marked ‘‘interesting’’. The responses for

the question ‘‘Is CocoViewer useful to learn compile

error correction?’’ are shown in Fig. 7(Q4). 77% of

the students marked it was ‘‘useful’’. These results
indicate that students generally accepted the

CocoViewer experience, with understanding of the

value for their learning. In addition, as the Japanese

word for ‘‘interesting’’ includes a meaning of ‘‘I

enjoyed’’, the result also indicates that students

could enjoy the CocoViewer experience; as in
exploring their own learning history.

In order to illustrate advantages and disadvan-

tages of CocoViewer for users, there were two

questions in the questionnaire. The responses for

thequestion ‘‘Whatwas the interesting feature?’’ are

shown in Fig. 7(Q5). 77% of students marked

‘‘Could see correction time chart’’, which means

students were encouraged by checking their reduc-
tion of correction time. Nine percent of the students

marked the ‘‘Could be motivated collection of

compile errors’’, meaning some of the students

were motivated by the ‘‘collection’’ factor. Forty

one percent of the students marked ‘‘RARITY was

Yoshiaki Matsuzawa et al.1124

Fig. 7. Results of questionnaire.

expressed by colors’’, which indicates that the idea

of colored RARITY worked well for students to

know the levels of compile errors.

The responses for the question ‘‘What was the
frustrating feature?’’ are shown in Fig. 7(Q6). Fifty

two percent of the students marked ‘‘No guidance

how to improve correction time’’. Twenty four

percent of the students marked ‘‘No guidance how

to collect unexperienced errors’’. These results indi-

cate that the students were motivated for further

learning after understanding their current learning

status. The tool has to support the learners’ further
exploration for improving their learning process.

Thirteen percent of the students marked ‘‘Couldn’t

see rare errors in my dashboard’’. This reinforced

the results that some of the students are motivated

by the ‘‘collection’’ factor.

5.3 Comments

Typical comments written in the questionnaire were

chosen by the authors to complement the results of

the students’ reactions from using CocoViewer.

These are shown in Table 1.

The comment of S1 is a typical example of the

student describing the reduction of fear through the
experience. S2, S3, and S4 described the typical

positive reaction by seeing the reducing type of

correction time chart. The comments of S5 and S6

include some negative information regarding a

result of analysis for shapes of charts. However,

they could accurately understand their current

status, and we did not find comments expressing

emotionally negative feelings as a result. The com-
ment from S7 is also a typical one in that an

acceptable and an enjoyable feeling for the experi-

ment was described.

6. Discussion

6.1 Evaluation of H1. Reducing ‘‘unarticulated

anxiety’’ by closing the gap between expected and

actual

The primary method for reducing ‘‘unarticulated

anxiety’’ was that the learner can close the gap

between a vague image of compile error correction

and the actual method of compile error correction.

The result of exploring the gap between their

expectation and actual for the learning data

revealed the following:

� The actual number of error occurrences was
HIGHER

� The actual time they used for correction was

LONGER

� The actual number of error kind they experienced

wasLOWER than their expectation, respectively.

We can interpret the learners were encouraged by

this result, understanding they actually have richer

experiences than they thought. However, there is a
possibility that the learners were disappointed by

these results as they might not feel their learning

outcome reached their expected level, considering

their actual effort. We could not find any comments

which indicated that feeling. Additionally, the other

comments which supported the learners were

encouraged by seeing the shapes of correction time

charts.
In addition, it is especially important that learners

experienced few compile error kinds; the occurrence

of compile error kinds was minimal. This means

learners realized that they primarily had been cor-

recting similar compile errors. The effect of this is

considered that learners can be encouraged by

knowing they are producing sufficient effort,, as

well as they can know they only have to master a
tiny set of correction knowledge.

There were still some unexpected learners who

did not experience a decreasing type of chart. In

such a case, we could not conclude they succeeded in

reducing their ‘‘unarticulated anxiety’’. How to

support such a student should be considered at the

next step of this research.

6.2 Evaluation of H2. Acceptable as self-

assessment tool, used by intrinsic motivation

First of all, we evaluated the result that 71% of the

students decided to useCocoViewer, despite the fact
that they were not given a direct merit of grading.

The result shown at Section 5.2 indicates that the

majority of learners could enjoy the experiment

itself, and they appreciated the value of their learn-

ing compile error correction. The result shown at

Compile Error Collection Viewer: Visualization of Compile Error Correction History for Self-assessment 1125

Table 1. High quality surveys of automatic testing systems

Student ID Comments

S1 My fear against compile error was dramatically reduced after going through this worksheet using CocoViewer.
S2 I found in my chart that the correction time is reducing after the second opportunity.
S3 My chart clearly showed that the correction time was reducing, though it is obvious.
S4 I found that my correction abilities are different depending on the kind.
S5 There were few reducing type chart in my dashboard. I clearly understood that I have not got used to fixing errors.
S6 Most of my charts were jugging.
S7 I enjoyed the worksheet. It was a good opportunity to reflect my compile error correction.

Section 5.1 clearly indicates they succeeded to

engage in the quantitative inspections. In addition,

the results shown in section 5.3, students such as S2

to S6 described the results of their qualitative

analysis for their chart shapes. By seeing these

results, we can consider that the learners’ activity
was generally driven by intrinsic motivation.

Accordingly, we concluded that the contribution

of CocoViewer gave them opportunities to think

regarding their own learning, alongwith having fun.

What we revealed in this experimental study was

limited in giving the opportunity for learners to start

thinking about their learning process. As we can see

in the results in Section 5.2, students require the
tools for the next step for improving their learning.

Further research will be needed for both the tool

assists to help improvement of procedures; the

verification of the procedure for correcting errors

has certainly improved.

7. Conclusions

We developed a system that allows learners to

analyze their compile error correction records.

Our experiment took place in a novice program-

ming class with approximately 100 students. Using

the system increased learner interest in compile
error correction study, and, at the same time,

learners indicated an interest in using the system.

The system succeeded in helping reduce ‘‘unarticu-

lated anxiety’’ for compile error by learners by

closing the gap between the learner’s compile error

expectation and actual correction experience. We

believe that the results indicate that self-assessment

with CocoViewer succeeded to boost students’
motivation in programming education, which has

to form the robust basis of computer engineering

education.

References

1. J. M. Wing, Computational Thinking, Commun. ACM,
49(3), pp. 33–35.

2. D. Ingalls, T. Keahler, J. Maloney, C. Wallace and A. Key,
Back to the Future: The Story of Squeak. A Practical
Smalltalk Written in Itself, Proc. of ACM OOPSLA ’97,
32(10), 1997, pp. 318–326.

3. Scratch Team Lifelong Kindergarten Group MIT Media
Lab, (n.d.). Scratch—Imagine, Program, Share. Accessed
February 21, 2015 from http://scratch.mit.edu/

4. J.Maloney,L.Burd,Y.Kafai,N.Rusk,B. SilvermanandM.
Resnick, Scratch: a sneak preview. Proceedings Second
International Conference on Creating Connecting and Colla-
borating through Computing, 2004, pp. 104–109.

5. A. Collins and J. S. Brown, The computer as a tool for
learning through reflection, In: Mandl, H. and Lesgold, A.

(Eds.):Learning for IntelligentTutoringSystems, 1988, pp. 1–
18, Springer-Verlag, New York.

6. S. W. Humphrey, Introduction to the Personal Software
Process, SEI Series in Software Engineering, Addison-
Wesley, 1997.

7. A.Alammary,A. Carbone and J. Sheard, Implementation of
a Smart Lab for Teachers of Novice Programmers, Proceed-
ings of the Fourteenth Australasian Computing Education
Conference, 123, 2012, pp. 121–130.

8. M. C. Jadud, A first look at novice compilation behaviour
using BlueJ, Computer Science Education, 15, 2005, pp. 25–
40.

9. J. Jackson, M. Cobb and C. Carver, Identifying Top Java
Errors for Novice Programmers, Frontiers in Education,
2005. FIE ’05. Proceedings of the 35th Annual Conference,
T4C24-T4C27

10. C. T. I. Mow, Analyses of Student Programming Errors In
Java Programming Courses, Journal of Emerging Trends in
Computingand InformationSciences, 3(5), 2012, pp. 739–749.

11. S.M.Thompson,AnExploratoryStudyofNovice Program-
ming Experiences and Errors. Master’s thesis, University of
Victoria, 2006.

12. M. C. Jadud, Methods and tools for exploring novice
compilation behaviour. In: Proceedings of the second inter-
national workshop on Computing education research, 2006,
pp. 73–84.

13. G. Marceau, K. Fisler and S. Krishnamurthi, Mind your
language: on novices’ interactions with error messages. In:
Proceedings of the 10th SIGPLANSymposium on New Ideas,
New Paradigms, and Reflections on Programming and Soft-
ware, 2011, pp. 3–18.

14. R.Bringula,G.M.Manabat,M.A.Tolentino andE.Torres,
Predictors of Errors of Novice Java Programmers, World
Journal of Education, 2(1), 2012, p. 3.

15. M. Hristova, A. Misra, M. Rutter and R.Mercuri, Identify-
ing and correcting java programming errors for introductory
computer science students, ACM SIGCSE Bulletin, 35(1),
2003, pp. 153–156.

16. M. H. Nienaltowski, M. Pedroni and B. Meyer, Compiler
ErrorMessages:What CanHelpNovices? In: Proceedings of
the 39th SIGCSETechnical Symposium on Computer Science
Education, 40(1), 2008, pp. 168–172.

17. C.Watson,F.W.Li and J. L.Godwin, Bluefix:Using crowd-
sourced feedback to support programming students in error
diagnosis and repair. Advances in Web-Based Learning—
ICWL, 2012, pp. 228–239.

18. B.Hartmann,D.MacDougall, J. Brandt andS.R.Klemmer,
What Would Other Programmers Do: Suggesting Solutions
to Error Messages, In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, 2010, pp.
1019–1028.

19. M. Crestani and M. Sperber, Experience report: growing
programming languages for beginning students, In: Proc.
15th ICFP, 45(9), 2010, pp. 229–234.

20. K. Chiken, A. Hazeyama andY.Miyadera, A Programming
Learning Environment Focusing on Failure Knowledge, J.
IEICE in Japan, J88-D1 (1), 2005, pp. 66–75.

21. J. Kay, L. Li and A. Fekete, Leaner Reflection in Student
Self-assessment. ACE ’07 Proceedings of the Ninth Australa-
sian conference on Computing education, 66, 2007, pp. 89–95.

22. I. Belski, The Impact of Self-assessment and Reflection on
Student Learning Outcomes, In: Proceedings of the 21st
Annual Conference for the Australasian Association for Engi-
neering Education, 2010, pp. 216–221.

23. Y. Matsuzawa, K. Okada and S. Sakai, Programming
Process Visualizer: A Proposal of the Tool for Students to
Observe Their Programming Process. In: Innovation and
Technology in Computer Science Education (ITiCSE ’13),
2013, pp. 46–51.

YoshiakiMatsuzawa is an assistant professor atGraduate School of Informatics, ShizuokaUniversity, Japan.He received

his Ph.D. in Media and Governance in 2008 from Keio University, Japan. His research interests include software-

engineering education, educational software development, modeling and simulation of complex systems, and learning

sciences.

Yoshiaki Matsuzawa et al.1126

MotokiHirao is a graduate student atGraduate School of Informatics, ShizuokaUniversity, Japan.He received abachelor

degree in 2014 from Shizuoka University, Japan. His research interest includes educational software development.

Sanshiro Sakai is a professor at Graduate School of Informatics, Shizuoka University, Japan. He received his Ph.D. in

engineering in 1984 from Shizuoka University, Japan. He is. His research interests include computer supported

collaborative learning, software development environment and programming learning support system.

Compile Error Collection Viewer: Visualization of Compile Error Correction History for Self-assessment 1127

