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Historical data from multiple institutions show that students who achieve a first-semester grade point average (GPA)

below 2.0 are at substantially greater risk of leaving engineering programs before graduating with a degree than are those

who achieved above 2.0. Identifying these ‘‘at risk’’ students prior to the start of their first semester could enable improved

strategies to enhance their academic success and likelihood of graduation. This study used two distinct modeling

approaches to predict first-term GPA group (low-risk: GPA � 2.0; at-risk: GPA < 2.0) based upon data available prior

to the student’s first pre-enrollment advising session. In the case of one of the approaches—which allowed a differential

weighting of Type I to Type II errors—we explore how these weightings influences the prediction accuracy. The models

used academic and demographic data for first-year engineering students from 2010 to 2012 from a single large public

research-active institution. The two model types employed to build predictive models were (1) ordinary least squares

multiple linear regression (MLR), and (2) classification and regression trees (CART). For bothMLR and CARTmodels,

high schoolGPAandmathplacement examscoreswere found tobe significant predictors of first-termGPA. Increasing the

cost ofmissing at-risk students in theCARTmodels improves at-risk prediction accuracy but also increases the rate of false

positives (incorrectly identifying a low-risk student as at-risk). The relative simplicity of the CART models, as well as the

ease with which error-types can be weighted to reflect institutional values, encourages their use in this type of modeling

effort.
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1. Introduction

An increasingly-technological and expanding

global human population demands increasing num-

bers of engineers [1]. This makes the education of

engineers critical, andunderscores the societal losses

that occur when students who begin in engineering

do not persist to degree [2]. While there are numer-

ous reasons for students to leave engineering pro-
grams, academic success is one significant factor

[e.g., 3].Anumberof studies have shown that college

grade point average (GPA) is a significant factor in a

student’s persistence in engineering [e.g., 4, 5].

Zhang et al., for example, investigated the relation-

ship betweenGPAand retention at nine engineering

colleges over a fifteen-year period and found that,

within three semesters, most students with low
GPAs had switched out of engineering [6]. Numer-

ous investigators have identified a first-year GPA

breakpoint of 2.0, above which students are more

likely to persist, and below which they are less likely

to graduate in engineering or at all [e.g., 6]. Other

authors have indicated similar results for students

placed on academic probation in their first term

[e.g., 7], an action which at many universities
occurs for GPAs below 2.0.

Moller-Wong et al. noted that positive effects on
engineering student retention might result from

diagnostic tools capable of identifying at-risk stu-

dents, thus allowing customized interventions [8].

These targeted interventions might help students be

more successful and potentially stay in engineering,

or identify another major that is a better fit for their

aptitudes and interests.

Some interventions might begin even before a
student arrives for their first class, for example,

judicious advising for course enrollment that con-

siders their at-risk status, or enrollment in special

support or mentoring programs in their first seme-

ster. The most readily available data for such

at-risk identification at the time of pre-college

orientation and course scheduling include

materials in a student’s application for admission,
i.e.: high school grades, standardized exam scores,

demographic data, and in some cases local/regional

standardized exams used for course placement,

especially math.

Many studies have attempted to explain variation

in college GPA using these types of student data. In

studies using independent data (rather than surveys

and self-reports, which are more likely to capture
behavior and attitude variables), high school grade
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point average (HSGPA) has been repeatedly shown

to be predictive of college GPA, despite concerns

about its lack of reliability and standardization

[e.g., 9–11]. In one study of more than 80,000

students admitted to the University of California

system, Geiser and Santelices found HS GPA is
‘‘consistently the strongest predictor of four-year

college outcomes’’ [12].

There have been numerous studies that built

predictive models for college GPA based on such

data, and particularly for first-year or first-term

GPA [e.g., 11, 13–14], but relatively few to classify

students as at-risk or low-risk. This kind of binary

classification may be useful in settings where large
student numbers mean that a menu of interven-

tions will be offered to students who categorize as

‘‘at risk.’’ Scalise et al. used logistic regression to

build a classification model to predict students

who would be placed on academic probation,

but noted that this produced a large number of

false positives (students predicted to be placed on

academic probation, but who were not) [7]. They
assumed that given the complexities of such mod-

eling, a model that generated less than twice as

many false positives as true positives could be

considered ‘‘good.’’ We argue later that the ratio

of false-positives to missed students is a better

metric and that the appropriate value of this

ratio will vary by college depending on the costs

and values associated with enhanced student
retention.

The predictive accuracy of any model of a highly

complex process involving human behavior is

expected to be lower than in more deterministic

systems. Therefore, the uncertainty inherent in the

prediction of student success is high; this has impli-

cations for the design and implementation of any

intervention. Undoubtedly, some students who
could have benefited from intervention will be

missed (a Type II error), while others will be

erroneously identified as at-risk, thus receiving

unnecessary interventions (a Type I error). There

are costs and risks associated with both of these

types of errors. The implications of this uncertainty

have not, to our knowledge, been explored in the

literature on predicting engineering student success
or identifying at-risk students [3]. The notion of the

tradeoffs of over-treatment versus under-treatment

should be explored.

Furthermore, interventions would likely be dif-

ferent depending on the factors placing the student

at risk. Veenstra proposes a framework for categor-

izing the type of intervention action that might be

appropriate for students depending on the nature of
their pre-college characteristics regarding academic

performance, STEMpreparation, confidence, study

habits, motivational variables, and family, eco-

nomic and social circumstances [15]. For example,

students with strong high school performance but

low quantitative skills may have good academic

habits and can handle a higher course load but

perhaps a lower percentage of math-intensive

courses, while students with lower high school
performance may need study skills support.

Systemic changes in engineering education are

likely to improve persistence in engineering pro-

grams [e.g., 16–18]. Many of these approaches are

challenging to implement because they involve

changes across a wide range of classes, typically

overseen by multiple entities (e.g. colleges, curricu-

lum committees). However, individualized advising
and mentoring does not require systemic change,

and is possible within most programs in their

existing format, particularly those already using

support staff and associated student services. This

is supported by Moller-Wong et al. who note that

retention-relevant interventions are generally the

responsibility of the students’ academic units

(departments or colleges) rather than at the larger
university level [8].

Academic and demographic data are, of course,

not the only data that are important or useful in

understanding factors leading to a lack of retention

in engineering. Numerous studies point to the

importance of self-efficacy, motivation, study

skills, time management, perception of ‘‘fit’’ with

the major or career path, and other factors [e.g., 3,
17]. These data, however, are harder to get from all

students prior to the first advising contact, though

some institutions do require self-reporting through

student surveys.

2. Purpose and objectives

The overall goal of this study was to develop and

characterize a methodology to identify students,

prior to enrollment in the engineering college at a
large public university, whoare at risk of achieving a

GPA of less than 2.0 in their first semester. Specific

objectives were to:

� Identify a set of variables available prior to first-
year orientation and course scheduling that can

be successfully used to predict their first-semester

level of success, expressed either as a numerical

GPA prediction, or a risk status (low-risk or at-

risk).

� Examine how those variables differ between

engineering students and university students as

a whole.
� Evaluate tradeoffs in accuracy, recognizing that

increasing the fraction of at-risk students identi-

fied will likely simultaneously increase the false-

positive rate (type I vs. type II error tradeoffs).
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3. Methodology

Because the institution has been using multiple

linear regression (MLR) to predict first-semester

GPA for all first-term students [19] the approach

in this study begins by comparing the existing

university-wide MLR model to a MLR model

developed specifically for engineering students
only. The accuracy of the two models, as well as

the differences in the influential variables is consid-

ered. Then, for engineering students only, a classi-

fication and regression tree model is developed, and

the results are compared to the engineering-only

MLR.

Classification trees are a type ofmachine-learning

methodwhich builds a set of dichotomous rules that
give the best prediction of the output class [20];

classification trees have utility in data mining

within higher education [21]. Prediction error,

used in the model-building algorithm to determine

the optimal partitioning of the population into

output class (in this case low risk and at-risk), is

measured as a misclassification cost [20], as detailed

below.
There are several advantages to classification and

regression tree (CART) models over regression

models for this problem. For one, identification of

at-risk students is inherently a classification pro-

blem, in which any student is predicted to be either

at-risk or not. The CART approach is especially

suited to this categorization purpose, in contrast to

the linear regression approach, which is designed to
predict the students’ actual GPA (rather than GPA

category). For this reason, the linear regression

approach may include consideration of variables

that are influential in distinguishing, say, a student

predicted to get a 3.2 first-term GPA from one

predicted to get a 3.5 first-term GPA, but are less

useful for identifying students predicted to get less

than a 2.0. For identifying at-risk students, we
would prefer to consider only the variables that

are influential in distinguishing students on either

side of the 2.0 GPA threshold. There could be value

in partitioning students into more than two risk

categories, but such partitioning was beyond the

scope of this project. Logistic regression, which is a

special case of regression with a binary outcome,

can be used in classification problems; however, this
approach does not consider that some variables

may be highly influential for a subgroup of students

and not influential for others. In contrast, the

CART approach can use the variables to split the

students into smaller subgroups, with independent

sub-trees developed for subgroups.

Another advantage of the CART approach is its

ability to account for different costs or values of
Type I (false positive) and Type II (false negative)

errors. In the linear regression approach, the costs

associated with Type I and II errors are implicitly

equal. But in the context of generating a model for

at-risk students, the cost associated with a false

negative (failing to identify an at-risk student) is

likely much higher than that associated with a false
positive. The cost of not providing intervention to

students that might benefit from it is difficult to

quantify [15] and, to our knowledge, has not been

investigated. Classification tree algorithms can

include a user-specified ‘‘loss matrix’’ that accounts

for this asymmetric misclassification cost ratios

[e.g., 22, 23]. Similar asymmetric misclassification

costs exist in other ‘‘screening’’ type applications,
such as medical diagnostics and insurance fraud

detection; in these contexts, a false negative is a

worse error than a false positive. We believe that a

similar asymmetry exists for at-risk prediction:

namely that to miss an at-risk student is more

costly to the student (not completing degree, possi-

ble educational debt without the earning potential

of the completed degree), the institution (loss of
tuition revenue and lower retention and graduation

rates) as well as to society (loss of a qualified

engineering professional) than is incorrectly identi-

fying a student as being at-risk. Incorrectly identify-

ing and treating a student who would have earned

above a 2.0,may result in that student earning a 2.75

instead of a 2.50, but in this context is still classified

as classified as a type 2 error. For these reasons, the
cost ratios used in this work range from 1:1 (i.e.,

equal cost) to 10:1 (implying that the cost of missing

an at-risk student is 10 times greater than that of

providing intervention to a low-risk student for

whom treatment is unnecessary, though may still

be beneficial).

An additional advantage of CART approaches is

in the handling of nonlinearities (including catego-
rical variables), non-monotonic responses of the

independent variable to changes in dependent vari-

ables, and variable-to-variable interactions. In

linear regressions, these complexities must be expli-

citly modeled, meaning that these must be explored

and accounted for a priori. Classification tree

approaches, on the other hand, allow for these

nuances to be learned from the data and modeled
accordingly in development of the tree [e.g., 24]. The

CART is therefore robust to co-dependent vari-

ables, to variables that have one effect for some

subset of students but an opposite or no effect for

another subset of students, and to variables that are

nonlinear, including categorical variables and vari-

ables that include missing values. Furthermore,

some classification tree methods, including the one
we use here, can build comprehensive behind-the-

scenes trees or ‘‘hidden splits’’ that generate proxy

trees when key data are missing.
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3.1 Data used in this study

Our data came from students enrolled at a large,

four-year, primarily residential, land-grant public

university with very high research activity. The

Carnegie classification of the institution is Profes-
sions plusArts&Sciences, high graduate coexistence.

The governing body of the institution setsminimum

high school requirements for admission as follow:

four years of English/Language Arts, three years of

mathematics, three years of science, and two years

of social studies. In addition, the governing body

sets an ‘‘admissions index’’ score that is computed

for each student using percentile class rank, plus
ACT composite scoremultiplied by two, plus cumu-

lative high school GPA multiplied by twenty, plus

number of years of high school core courses multi-

plied by five. Various accommodations aremade for

students with high school equivalency diplomas,

home-schooled students, and other students who

may not have available data for any of the factors

used in the admissions decision. Any student with
an index score above a set minimum and who meet

the high school course requirements are guaranteed

admission to the institution. Students with admis-

sions index below the minimum but meeting the

high school course requirements may be admitted

on a case by case basis. Students applying for

admission to the College of Engineering must also

have two years of a single foreign language.
Approximately 80.5 percent of applicants were

admitted in 2010, markedly higher than the average

acceptance rate across public four-year institutions

which was 67.7 percent for Fall 2010 [25], the first

entry term considered in this study.

The data for this study came from combined

records of the offices of Admissions, Financial Aid

and theRegistrar. In addition to the routine student
records used in the processes of admission, registra-

tion, and administering aid, data from the ACT

student profile survey and the math placement test

Assessment and LEarning in Knowledge Spaces

(ALEKS; https//www.aleks.com), described in

more detail below, were used in the development

of the models and analysis.

For the engineering-only models, the population
included all new direct-from-high-school degree-

seeking students who enrolled into the College of

Engineering between the Fall semesters of 2010 and

2012, and who completed their first Fall semester

with a valid GPA (n = 4,689). The university model

used to predict first-term GPA was built using data

from the same time period, but included entering

domestic freshmen across the whole institution
(n=10,442).

Among the engineering students, 15 percent were

female and 9.1 percent underrepresented minority

students (URM). The current definition of the

underrepresented minority student population

within the College of Engineering includes African

American, Native American, Hispanic/Latino and

multi-ethnic students.

For international students, the department of
admissions uses a process to estimated high school

grade point average (HS GPA). There is also an

admissions procedure for estimating high school

rank, for graduates of U.S. high schools that do

not provide ranking. These estimates were included

in the dataset for those students.

Assessment and LEarning in Knowledge Spaces

(ALEKS) test scores are used to determine which
university math course a student should take first.

The use of the ALEKS placement test scores in

higher education is well documented [e.g., 26]. All

engineering students at this institution take the

ALEKS test prior to orientation and advising for

their first semester. The ALEKS exam comprises

several subtests in specific content areas, so that

each student has a set of subscores as well as a
composite score. The subscores and the composite

were both used in this study. In 2013, the institution

beganusing anupdated version of theALEKSmath

placement exam, wherein the subtests are a different

grouping of content compared to the previous

version. This work, which used the 2010-2012

student cohorts, is therefore built on data from the

older ALEKS test.
For the engineering-only models, the overall

population was split into two unequal, randomly

assigned samples stratified by entry year, where 70%

of the data were used in the building of the models,

and the remaining 30% were used in model valida-

tion. A number of t-tests were conducted to ensure

that the validation and the analysis samples were

representative and equivalent across the dimensions
of high school GPA, ACT scores, perceived need in

reading assistance (ACT profile data element),

number of math and science credits taken during

high school, as well as proportion of Iowa residents,

underrepresented minorities, and gender. Results

indicated that there were no statistically significant

differences between the samples.

3.2 Multiple Linear Regression (MLR) models

3.2.1 University-wide MLR model (MLR-U)

Since 2007, the institution has been using ordinary

least squares multiple linear regression modeling to

identify pre-enrollment students at risk of achieving
less than a 2.0GPA in their first semester [19]. In this

study, we tested the performance of the university-

wide model on the validation dataset of engineering

students.
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3.2.2 Engineering-specific MLR model (MLR-E)

Using the same procedure for developing theMLR-

U model, an engineering-specific multiple linear

regression (MLR-E) model was built based only

on the population of students in the College of

Engineering. In building the MLR-E model we

utilized data sources beyond those used in MLR-

U. These included ACTMath sub-score as well the
results of the ALEKS Math Placement test.

3.3 Engineering specific Classification And

Regression Tree (CART-E) model

To build the classification and regression tree we

used the rpart package in R (www.r-project.org).

Detailed information on rpart is presented in [27].

To prevent spurious tree branching, and recogniz-

ing the inherent year to year variability in the

student populations, we set a minimum node size
of 2% of the dataset size (that is, no terminal node

canbe apopulation smaller than 2%).Otherwise, we

used default settings for rpart.

Weused three different cost ratios in theCART-E

model development to account for the asymmetric

costs of Type I and Type II errors discussed pre-

viously. These cost ratios are taken into account

during tree development by weighting howmuch to
penalize each incorrect classification in a given

choiceof split. In rpartwespecify the ratioofpenalty

forType Ierror (falsenegative) toTypeII error (false

positive).A cost ratio of 1:1 applies the samepenalty

in model development to miss or under-identify an

at-risk student as to over-identify a low-risk student

(that is, Type I and Type II errors are equally

undesirable). A cost ratio of 10:1 penalizes the false
negative ten times more than the false positive, that

is, it is ten timesworse tomiss an at-risk student than

to over-identify a low-risk student.While a rigorous

accounting of associated costs might provide useful

data to inform the selection of loss ratios, here we

instead assumed loss ratios of 1:1, 5:1, and 10:1, and

evaluated the consequences to classification accu-

racy; we identified these models respectively as
CART-E1, CART-E5, and CART-E10.

3.4 Model evaluation

Coefficient of determination (R2) was used to eval-

uate the fitness of theMLR-U andMLR-E models,

and to enable discussion of bothMLRmodels in the

context of other such models in the literature, but

this metric is not appropriate for binary classifica-

tion models like CART. Instead, we employed a
classification matrix to compare the CART-E

models to one another and to the MLR-E model.

In the classification matrix, the number of false

negatives (students not identified as at-risk but

who achieved less than a 2.0 first-term GPA) and

false positives (students identified as at-risk butwho

achieved a 2.0 or greater first-term GPA) were

compared, as were the number of true negatives

and true positives.

3.5 Caveats of this modelling effort

There were differences in the number of students for

whom predictions could be made by each model.

This is because the MLR-U and MLR-E could not

generate GPA estimates for students with any

missing records. Specifically, the MLR-U scored

93.6 percent of the validation sample, while the
MLR-E scored 71.1 percent of the sample, reflecting

theMLR-E’s use of ACTMath, ALEKs score, and

ACT Profile. Both MLR models excluded virtually

all international students due to the typically large

number of missing data for these students. In

contrast, the CART-E models scored 100 percent

of the validation sample. We compared the models

directly to one another despite these differences in
population size.

Finally, we recognize that academic advisers are

already using student data—qualitatively and

quantitatively—to put students in first-semester

courses that are appropriate to their academic

abilities. We also recognize that advising may

change over time. Indeed, the university-wide

model has historically degraded slightly in predic-
tion accuracy over time; among other explanations,

this may suggest that the at-risk lists being provided

to the colleges are being constructively used in the

advising process. These important nuances are

beyond the scope of this work.

4. Results and discussion

The threemodels each identified different groupings

of variables. A complete listing of variables used by
any of the threemodels, alongwith a full description

of the variable, is provided for reference in Table 1.

4.1 University-wide MLR model (MLR-U)

The MLR-U model employed fourteen variables

and gave R2 = 0.40 on the validation data. Table 2
presents the variables in this model, with their mean

and standard deviation across the calibration data,

their regression coefficient in the MLR, and their �
value (standardized regression coefficient). The

standardized regression coefficient allows for com-

parison of strength of influence across regression

variables with differing magnitudes; accordingly

Table 2 is presented in descending order of �.
High school GPA was the single most influential

factor (Table 2), with � = 0.49. Having a declared or

intendedmajor in STEMwas the next most influen-

tial variable, with a negative effect on GPA (� =

–0.18). ACT score was also predictive (� = 0.17).
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Additional variables included whether or not a

student was enrolled in a particular college within
the university; engineering college enrollment was

not predictive, but all students in the engineering

college were enrolled in STEM majors so are

accounted for in that term (some colleges include

both STEM and non-stem majors). Additional

terms are shown in Table 2 The Variance Inflation

Factor (VIF, data not shown) indicate no problems
with multicollinearity among the independent vari-

ables used in the model.

4.2 Engineering-specific MLR (MLR-E) model

The MLR-E model employed sixteen variables and

Amy L. Kaleita et al.1652

Table 1. Explanation of variables occurring in the MLR-U and/or MLR-E model

Variable Description

ACT Score Composite ACT score or its equivalent on the SAT

African American Student self-identified as African American (1 = yes, 0 = no)

ALEKs Overall Score Overall score of the math placement exam (range 0-100)

AP Credit Indicator Credit received for advanced placement courses (1 = credit received, 0 = no credit)

App Days The number of days between the application for admission submission and the start of the semester

College 1 Students enrolled in one of the six undergraduate colleges

College 2 Students enrolled in one of the six undergraduate colleges

College 3 Students enrolled in one of the six undergraduate colleges

Female Student self-identified as female (1 = female, 0 = male)

Financial Need Cost of attendance minus expected family contribution based on FAFSA

High School GPA High school grade point average at the time of application (prior to enrollment)

High SchoolMath Credits Number of semesters of high school math

HS Science Credits Number of semesters of high school science

In-State Resident Student graduated from a High School in the state this institution is located in (1 = yes, 0 = no)

Interest in College
Instrumental Music

Student self-reported interest in instrumental music in college on ACT student profile (1 = yes, 0 = no)

Major Certainty Student self-reportedhis/her certainty in chosenmajorbasedonACTstudentprofile (range1–3with 3being
the least certain)

Major in Electrical
Engineering

Student’s intended major is Electrical Engineering (1 = yes, 0 = no)

Needs Reading Assistance Student self-reported needing reading assistance on ACT student profile (1 = yes, 0 = no)

Needs Study Skills
Assistance

Student self-reported needing study skills assistance on ACT student profile (1 = yes, 0 = no)

Pell Eligible Student is eligible for the federal Pell grant (1 = yes, 0 = no)

STEMMajor Student’s intended major is classified as a STEMmajor (1 = yes, 0 = no)

Top Ten PercentHSRank Indicator that student graduated in the top 10% of their high school class (1 = yes, 0 = no)

U.S. Ethnic Minority Student is domestic and self-identified as an ethnic minority

Under Achieve Student has above average ACT composite score and below average HS GPA (1 = yes, 0 = no)

Table 2. Variables occurring in the university-wide MLR model and their respective regression details, listed in descending order of
absolute values of �. Colleges other than the College of Engineering are listed only as College 1 through College 5

Variable Mean SD Coefficient Beta

HS GPA 3.55 0.424 1.05** 0.488
STEMMajor 0.581 0.493 –0.322** –0.175
ACT 25.0 3.980 0.0396** 0.173
College 3 0.116 0.321 0.257** 0.091
College 2 0.081 0.274 –0.200** –0.060
Under Achieve 0.144 0.351 –0.152** –0.059
App Days 300 72 0.00071** 0.056
Student Financial Need 8540 9297 –0.00001** –0.053
In-State Resident 0.645 0.478 –0.0823** –0.043
College 1 0.141 0.349 0.107** 0.041
U.S. Ethnic Minority 0.132 0.338 –0.0969** –0.036
HS Science Credits 8 2 0.01540** 0.029
Pell Eligible 0.232 0.422 –0.0515* –0.024
African American 0.029 0.168 –0.0961* –0.018
Constant –1.99

** p < 0.001, * p < 0.05.



gaveR2 = 0.44 on the validation data. Of the sixteen

variables included in the model, the eight strongest

predictors of first term GPA were academic vari-

ables. The analysis (Table 3) demonstrated that the

high school GPA remained the single most influen-

tial factor (� =0.42) followed by the overall ALEKS
score (� = 0.13). Following academic characteris-

tics, factors describing a student’s perceived need in

academic assistance were the next strongest predic-

tors: study skill assistance (� = –0.085) and need in

reading assistance (� = 0.083).

These results echo those of [14] who found that

both engineering and non-engineering students’

first term GPAs were influenced by high school
GPA, but beyond that the influential variables

were discipline-specific.

Perhaps unsurprisingly, there were several differ-

ences between the MLR-U and MLR-E variables.

The results showed that, counter to the original

findings for the MLR-U model, being a member

of the underrepresented minority group was not a

statistically significant predictor of engineering stu-
dent’s first termGPA.Additionally, unlikeMLR-U

model, gender became amildly important predictor:

in the MLR-E the regression coefficient for females

was negative and statistically significant (� =

–0.057, p<0.001), while the term is not significant

in the MLR-U, as shown in Table 3.

The MLR-E model’s predictive capability (R2 =

0.44) is somewhat higher than that reported in other

similar studies: for exampleR2= 0.29 [28], R2 = 0.21

[29], or R2 = 0.38 [14]. The MLR-E model included

more factors than most models reported in the

literature; this may play a role.
Although the MLR-E model gave an overall R2

of 0.44, for our objectives it is more useful to

quantify how accurately this model partitions stu-

dents into the at-risk and low-risk groups. This

model is effective at identifying the low-risk group

of students, accurately identifying 95%of them. The

low-risk students comprise a larger portion of the

overall sample (ca. 83%). The MLR-E model is not
as effective at identifying the smaller number of at-

risk students, accurately identifying only 35% of

students who achieve a first-termGPA less than 2.0.

4.3 Classification tree (CART-E) models

The CART-E models employed between three and

six variables, depending on the cost ratio. Because

the CART-E models are classification only, an R2

value cannot be computed. Instead, classification

accuracy is used as the figure of merit. We begin by

presenting the model evaluation metrics, and then

discuss the models in greater detail.

Table 4 gives the classification accuracy for each
of the CART models, along with the MLR-E.
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Table 3. Variables occurring in the engineering-only MLR model and their respective regression details, listed in descending order of
absolute values of �

Variable Mean SD Coefficient Beta

High School GPA 3.66 0.393 0.976** 0.422
ALEKs Overall Score 65.4 21.0 0.00536** 0.125
Needs Study Skills Assistance (ACT profile self-report) 0.269 0.444 –0.170** –0.085
Needs Reading Assistance (ACT profile self-report) 0.182 0.386 0.190** 0.083
AP Credit Indicator 0.345 0.475 0.150** 0.080
Top Ten Percent HS Rank 0.326 0.469 0.136* 0.071
High School Math Credits 9.535 1.38 0.0427** 0.064
ACT Score 27.12 3.61 0.0162* 0.063
Major Certainty 2.009 0.702 0.0781** 0.060
Female 0.148 0.356 –0.141** –0.057
Financial Need 7900 9020 –0.0000054* –0.054
Major in Electrical Engineering 0.048 0.213 0.200* 0.048
App Days 316 65 0.000634* 0.046
Interest in College Instrumental Music 0.177 0.382 –0.0982* –0.042
Constant –2.301935

Table 4.Validation:Errormatrices andpredicted accuracy (students predicted to be in their correct first-termGPAgroup) for themultiple
linear regression and each of the three decision trees on the validation dataset. Note that the number of students in the MLR dataset is
lower than that in the tree datasets due to the exclusion of students with missing data in the former

MLR-E CART-E1 CART-E5 CART-E10
Predicted Predicted Predicted Predicted

Actual
At-risk
< 2

Low-
risk 2 + Acc.

At-risk
< 2

Low-
risk 2 + Acc.

At-risk
< 2

Low-
risk 2 + Acc.

At-risk
< 2

Low-
risk 2 + Acc.

< 2 55 115 32% 87 173 33% 203 57 78% 235 25 90%
2 + 43 795 95% 68 1090 94% 326 832 72% 529 629 54%
% of
pop.

10% 90% 11% 89% 37% 63% 54% 46%



Perhaps unsurprisingly, the CART-E1 performs

similarly to the MLR-E. Because the at-risk < 2.0

group is a small fraction of the dataset (approxi-

mately 20% of the training and validation datasets),

the development of both theMLR-Emodel and the

CART-E1 are more heavily influenced by the low-
risk 2+ group. For this reason, both models prior-

itize the avoidance of Type I errors. The MLR-E

and the CART-E1, for instance, accurately place

94-95% of the students in the low-risk 2+ group;

only about 5% of the students who achieved greater

than a 2.0 GPA in their first term were incorrectly

predicted to achieve less than a 2.0. However, only a

third of the students who achieved less than a 2.0 in
reality were predicted in that at-risk category; the

remaining two-thirds of those students were incor-

rectly predicted to receive a GPA above 2.0. This

level of accuracymight be acceptable in a casewhere

the cost of intervention is high compared to the

consequences of under-treatment.Using thismodel,

there is a low probability of over-identification

(identifying students as at-risk who are actually
low-risk), but many students who need additional

intervention would not be identified.

As the relative cost of underserving increases

(that is, as the possibility of missing students who

are at-risk becomes more and more undesirable),

the accuracy of classification of the at-risk students

increases. In the CART-E5 model, 78% of the

students in the validation set who achieved less
than a 2.0 are correctly identified, compared to

33% in the CART-E1 model; in the CART-E10

model this classification accuracy increases to

90%. However, the flip side is that as the cost ratio

increases and the proportion of under-identified at-

risk students decreases, many more students who

achieved better than a 2.0 GPA are incorrectly

identified as at-risk; the rate of over-identification

increases. Figure 1 shows this relationship of under-

and over-identification by cost ratio. The cost ratio

option in developing the decision tree allows for

tuning of these over-identified/under-identified

fractions to reflect the local cost-benefit realities.

Scalise et al. used the ratio of false positives to true
as a measure of goodness of the model, suggesting

that 2.0 was a threshold [7]. All three CART-E

models meet this threshold. However, this metric

does not explicitly address the cost of the students

who were missed by the model. The approach of

assigning a cost to both Type I and Type II errors,

and using the ratio of these costs as a ‘‘value

statement’’ is thus amore explicit way of addressing
the costs and benefits of these type of modeling

efforts.

All three of the CART models share some

common characteristics. Students with a high HS

GPAare placed in the low-risk group as the first step

in all three CART models, though there are small

differences in the threshold HS GPA. From there,

the tree branches to provide different secondary
analyses for the low- and/or medium-HS GPA

students. In each of the CART models, these

secondary and tertiary splits primarily involve

ALEKS exam scores and/or ACT math subscores,

though again, the specific score thresholds are

different.

For the purpose of further discussion, we have

selected the CART-E5 model to explore here in
more detail (Fig. 2). For each node, represented by

the shaded boxes in Fig. 2, the first line indicates the

predicted risk category of students in that node

(low-risk or at-risk). The second line shows the

proportion of students in the at-risk and low-risk

group for that particular node—the degree of shad-

ing is related to the magnitude of the first number

for at-risk nodes, and the second number for low-
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Fig. 1.Alternate approach to the table view of illustrating the over/under on
the different CARTmodels. Black: Percentage of at-risk students incorrectly
placed in the low-risk group.Hashed column:Percentageof low-risk students
incorrectly placed in the at-risk group.



risk nodes. The third line indicates the percentage of

all students in the training dataset that are within

that node. The label below each node indicates the

branching criteria (sometimes referred to as split-
ting criteria) that separate the students in that node

into lower parts of the tree. The terminal nodes at

the bottom of the figure indicate the most refined

output from the model.

As indicated previously, HS GPA is the most

influential piece of data in this (and each) tree, and

is the criterion used for both the first and second

branches of the tree. Ninety-five percent of students
in the estimation subset with a HS GPA above 3.67

achieved a first-term GPA of 2.0 or better, while

forty-two percent of students with aHSGPA below

3.39 achieved a first-term GPA below a 2.0.

For students with a HS GPA between 3.39 and

3.67, the math placement test scores provide the

next most useful information for predicting risk

category. In this model (as well as in the other
regression trees), one particular ALEKS subscore

repeatedly appeared: the ‘‘Equations and Inequal-

ities’’ subtest (EI) which measured a student’s abil-

ity to solve linear equations. Thirty percent of the

medium-HS GPA students with low ALEKS EI

subscore (< 75) in the estimation dataset were at-

risk.
For medium-HS GPA students with ALEKS EI

subscores above 75, ACT math score provides

another useful metric. Within the medium-HS

GPA, high-ALEKS EI group, 27% of those with

ACT Math below 26 were at-risk, while 89% of

those with ACT Math above 26 were low-risk. In

this model, then, the ACT Math score serves as an

additional check on a student’s ALEKS EI sub-
scores, and if one or the other is low, they are placed

in the at-risk group. In our data, students placed in

the at-risk groupprimarily on the basis of theirACT

Math score are only 5% of the population.

Thus, in this model, three groups of students are

predicted as at-risk; in descending order of prob-

ability they are (1) students with high school GPA

below 3.39 (42%achieve less than a 2.0), (2) students
with high schoolGPAbetween 3.39 and 3.68 and an

ALEXEI subscore below 75 (30%), and (3) students

with high schoolGPAbetween 3.39 and 3.68 and an
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Fig. 2.The structure of the 5:1 CARTmodel. For each node, represented by the shaded boxes, the
first line indicates the predicted risk category of students in that node. The second line shows the
proportion of students in the at-risk and low-risk group for that particular node. The third line
indicates the percentage of all students in the training dataset that are within that node. Nodes are
shaded according to the accuracy of student placement within that node, with darker shades
indicating higher accuracy.



ALEX EI subscore above 75 but ACTMath below

26 (27%).

The CART-E10 (not shown) places all students

with HS GPA below 3.39 in the at-risk group, and

all students withHSGPA above 3.83 in the low-risk

group; this is similar to the CART-E5 but with a
higher HS GPA criterion for placing students

directly in the low-risk group. For students with

HS GPA between 3.39 and 3.83, the CART-E10

places those with an ALEKS EI subscore less than

92 in the at-risk group. For students with medium

HSGPA and high ALEKS EI, the CART-E10 then

considers financial need; students in certain need

categories are placed in the at-risk group, even
though only about 14% of students in the training

dataset matching those criteria actually were at-

risk.Ultimately, theCART-E10usesmore stringent

criteria to identify students as low-risk, thereby

casting a much wider net for at-risk students.

The CART-E1 (not shown) is similar to the two

other CARTmodels in the first several splits. In the

CART-E1, each of the terminal nodes identified as
the at-risk group were comprised of a higher per-

centage of students who actually achieved a first-

term GPA less than 2.0 than in the other two

CARTs, illustrating that in the CART-E1, most of

the students identified as at-risk actually were.

However, the terminal nodes for the low-risk

group includedmuchhigher percentages of students

who earned a first-term GPA below 2.0, illustrating
thatmany at-risk studentswere incorrectly placed in

the low-risk group.

The regression trees are similar to the MLR

models in that HS GPA is, in all cases, the most

informative metric. This echoes the findings of

numerous other studies thatHSGPA is a significant

predictor of a variety of forms of academic success

[e.g., 10, 30–32].
Gender appeared in the MLR-E model, having a

slight effect on first-termGPA, but did not appear in

the tree models. In exploring the data more closely,

we found that female gender tended to decrease

first-termGPA from high to slightly less high; over-

all, female students had a statistically significantly

higher average first-term GPA than did male stu-

dents. The relatively higher first-term GPA of
female students meant that the CART models,

which were all focused on the 2.0 GPA breakpoint,

did not flag gender as an important criterion.

Considering only students in the 2010 cohort of

entering engineering students, we gathered data on

student persistence toward degree four years later

(by Fall of 2014). Each student was placed into the

appropriate at-risk or low-risk category based upon
theCART-E5, and the percentages of all students in

each category (terminal node in the treemodel) who

had graduated from or were still in the College of

Engineering at the institution, and who had grad-

uated or were continuing at the institution in any

major, were tallied. These results are shown inTable

5.
Of the 2010 students with HSGPA less than 3.39,

only 39 percent persisted in engineering at the

institution, and only 63 percent persisted at the

institution in any major. At the other end of the

spectrum, students withHSGPA� 3.67, 67 percent

persisted in engineering at the institution and 86

percent had persisted at the institution in anymajor.

The importance of math skills, as reflected in
standardized exam scores, is also evident: for stu-

dents with moderate HS GPA, those with lower

ALEKS EI subscores were considerably less likely

to persist in engineering than those with stronger

ALEKS EI subscores (39% versus 45% or 69%

depending on ACT). However, these students per-

sisted at the institution overall at similar rates (74%

versus 73% or 83%). These results indicate that at-
risk students with lower math skills as suggested by

their standardized exam scores, but relatively good

academic preparation and skills as suggested by

their HS GPA, were more likely to find suitable

degree programs outside of engineering than were

at-risk students with low HS GPA.

The strong contrast between the outcomes for the

risk groups is evident: less than half of students
identified as at-risk persisted in engineering at the

institution, while more than half of those in the low-

risk category persisted in engineering at the institu-

tion. While numerous sources note that only 40–

60% of students who start in engineering as fresh-

men persist in engineering [e.g. 28, 33], our results

illustrate how persistence rates at this institution are

markedly stratified by predicted risk category.
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Table 5. Status of the 2010 cohort of first-year engineering
students at the institution as of Fall 2014, by risk group assigned
using the CART-E5 model

Student Group from
CART-E5

Graduated or
continuing at
institution in
engineering

Graduated or
continuing at
institution in
any major

At-risk:
HS GPA < 3.39

39% 63%

At-risk:
3.39 � HS GPA < 3.67,
ALEKS EI < 75

39% 74%

At-risk:
3.39 � HS GPA < 3.67,
ALEKS EI � 75,
ACT Math < 26

45% 73%

Low-risk:
3.39 � HS GPA < 3.67,
ALEKS EI � 75,
ACT Math � 26

69% 83%

Low-risk:
HS GPA � 3.67

67% 86%



4.4 Discussion

Unlike some highly-selective institutions that only

admit a small fraction of applicants, virtually all of

whom have extremely strong academic back-

grounds, many land-grant institutions like the one

in this study are access institutions that provide

educational opportunities to a broad range of

students with an extremely wide variety of educa-
tional backgrounds. Some land-grant institutions

institute college- or program-level academic

requirements far more stringent than the overall

institutional requirements to allow a de-facto

‘‘school within a school’’ to exist, and to effectively

manage student enrollment, which has generally

positive implications for the ranking of these insti-

tutions. Such an approach is arguably counter to the
access nature of land-grant institutions, and many

land-grant institutions continue to have a fairly

wide-open-door admissions policy.

The critical question with such policies is how to

ensure that the broad range of students admitted are

properly advised and supported academically so

that they have a high chance of successful gradua-

tion from a rigorous engineering degree program. It
is a disservice to students (and toother stakeholders,

including student families and the taxpayers of the

state) if access institutions simply let students in

only to have them accrue student debt and then fail

out of their programs.High-quality academic advis-

ing, delivered by professional staff or by faculty

members who are committed to student success

and who are sufficiently experienced to understand
how to select first-year courses that are appropriate

to a student’s abilities, are the first line of defense

against low retention. This work sought to supple-

ment an adviser’s intuition with a decision support

system based upon historical data from students at

this institution.

5. Conclusions

Key conclusions from this study include:

� Slightly more accurate predictions of first-term

GPA were possible using an engineering-specific
model (R2 = 0.44) than a university-wide model

(R2 = 0.40), and the engineering-specific model

drewmore heavily from standardized math exam

scores.

� A regression tree model designed to classify

students into risk category was as effective as

themultiple linear regressionmodel at identifying

at-risk students, but this effectiveness can be
increased in the tree model by incorporating a

cost ratio that reflects the relative cost of Type I

versus Type II errors. When the cost ratio is 1:1,

the predictions of the regression tree are almost

identical to those of theMLR-Emodel.However,

as the cost of under-identification of at-risk

students increases, so too does the pool of stu-

dents identified as at-risk.

� High school GPA is the strongest indicator of

first term GPA performance. Students entering
engineering degree programs directly from high

school with low HS GPA are more likely to

achieve a low first-term GPA, and are less likely

to persist not only in engineering, but at the

institution at all, than any other group.

� While the specific results in this study are limited

to the institution from which the data were

derived, this study echoes the findings of numer-
ous other studies: that engineering student suc-

cess likely has differentmarkers than that of other

students—notably, math aptitude; and that high

school GPA is highly relevant to post-secondary

performance.

� Perhaps more importantly, the regression tree

approach used in this study offers a viable

approach to analyze student achievement when
the costs of intervention differ from the costs

resulting from students failing to succeed. By

assigning different costs to Type I and Type II

errors, respectively, the costs and benefits of

interventions based on imprecise predictions can

be using in building a least-cost model.
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