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both students and educators. Since it is based onnumerical analysis andmodelling, our approach is particularlywell-suited
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1. Introduction

Online learning and technology-assisted learning

have been used increasingly over the last two dec-

ades, and have been extended more recently to

totally on-line courses. While it is often assumed

that student learning is improved using technology,

it has been difficult to demonstrate this assumption.
Some studies have found that technology can

decrease the cost of teaching without decreasing

quality [1]. The causal role of technology in any

improvements observed in learning has been ques-

tioned from the earliest days of multimedia educa-

tional technology [2]. A large study of learning in

middle school classes found no effect of the technol-

ogy on learning, and at the same time highlighted
the multiplicity of factors that can influence studies

that attempt to demonstrate a causal relationship

between technology and learning [3].

There remains a need for the educator to obtain

feedback about how students are using technology

in their learning. In some cases, students would also

benefit from immediate feedback from the software

about their learning. Real-time feedback would be
particularly useful in totally on-line courses.

Given that students engaged with educational

technology are already using a computer, relevant

data can be extracted, recorded electronically, and

used for feedback and information. While it can be

difficult to demonstrate learning outcomes, tracking

the process of student learning using educational

software is certainly possible. A particularly con-
venientmethod is to construct log files, which can be

analysed to yield data that are useful from an

educational point of view [4–6]. While ‘‘thinking

aloud’’ protocols have also been used for these

purposes, log files have the distinct advantage that

they can be collected without intruding on students’

thought processes as they are learning.

By observing the learning process directly, we can

discover patterns in student learning processes. This
knowledge can lead to worthwhile adjustments in

pedagogical practice. Real-time analysis of patterns

can even help identify appropriate points for active

intervention, as for example, in intelligent tutoring

systems [7].

Because of the significant amounts of data

involved, automation is required to economically

discover patterns in student learning. Educational
datamining has been used for some time to discover

patterns in student activities [8]. Educational Data

Mining uses machine learning techniques such as

classification, clustering, and text mining, as well as

statistical approaches such as regression and corre-

lation. Advantages of Educational Data Mining

include the fact that it is objective, automated, and

can handle a large amount of data. Additionally,
Educational Data Mining allows the discovery of

unexpected patterns, leading to new conceptions of

how learning is taking place. Disadvantages of

Educational Data Mining include the opaqueness

of traditional machine learning methods, which are

not generally intuitive for the non-computer science

educator, and the need for large amounts of input

data to achieve any significant degree of accuracy.
In parallel withEducationalDataMining, the use
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of analytics has emerged in higher education prac-

tice [9]. Analytics were first developed in the busi-

ness context, and Academic Analytics were initially

used solely in the business end of education. Aca-

demic Analytics has been employed to compile data

for administrative planning such as for trends in
enrolment, and to rationalize the use of facilities and

services [10]. Clow [11] has pointed out that it is

important that the economic framing characteristic

of Academic Analytics be complemented with a

concern for learning.

In the new field of Learning Analytics, ap-

proaches from other areas employing analytics

have been used to assess student learning, with the
ultimate goal of improving learning outcomes [12,

13]. Whereas Academic Analytics concentrates on

administrative data and benefits administrators and

funding bodies, Learning Analytics focuses on the

learning process and is aimed toward benefitting

students and academics [14]. Learning Analytics

extends Educational Data Mining techniques, and

is therefore congruent with that paradigm, but
concentrates more on the sense of the analysis and

its usefulness in motivating action [15].

To date, Learning Analytics has primarily been

concerned with extracting general features of learn-

ing, for example measuring participation in online

learning activities, or analysing group performance

ononline quizzes.Analytics tools often capture data

from general platforms such as Blackboard and
Moodle and present their output in easily digestible

reports that facilitate data-informed decision-

making. In contrast to Educational Data Mining,

the output from Learning Analytics analysis is

intuitive and relatively easy to understand, even

for the non-specialist. A disadvantage, however, is

that the results are general, and require significant

further manual processing to answer specific ques-
tions about the student learning process. In contrast

to Educational Data Mining, unexpected patterns

do not usually emerge from Learning Analytics

studies.

For the educator using technology to support

teaching and learning, there is a need for an acces-

sible way to analyse the data from student usage in

more depth, and preferably in real time. To be
generally useful, the analysis needs to be more

transparent and intuitive than Educational Data

Mining, and more pedagogically focussed than the

output from most Learning Analytics. Such peda-

gogically-focussed analytic data could be used by

the educator to better guide students in the use of the

software, while real-time feedback could help stu-

dents use the software to better advantage. This is
the need we have addressed in the current study.

We have used a simulation-based piece of educa-

tional software for mechanical engineering design

problems, which has been built to concentrate on

pedagogy, as a representative of the class of simula-

tion-based educational software tools. We have

taken a metric-based approach to analysing log

files. We have focussed on the process that students

use in solving a design problem using this software.
We show here howmetrics can be developed for the

purposes of this kind of analysis. We also show the

utility ofmetrics in flattening complexmulti-dimen-

sional numeric data, so that learning patterns can be

readily discovered

It has been shown that discovering patterns in

student learning processes can lead to worthwhile

adjustments in pedagogical practice, while real-time
analysis of patterns can help identify appropriate

points for active intervention, as for example in

intelligent tutoring systems [7]. We have set out to

address the question of how tracking student use of

the softwaremight be used to discover patterns, and

thus to investigate student learning. We hypothe-

sized that it would be possible to identify patterns of

student learning behaviour by interrogating log files
of software-based learning materials. We further

hypothesized that it could be possible to identify

these patterns in such a way that they could be

detected automatically, and possibly even in real

time.

In the course of pursuing this objective, we

developed a single metric from a complex, multi-

dimensional learning space. We have used this
metric to capture the data that are most relevant

to learning, and to detect different patterns of

student learning. We discuss how the metric can

support both manual and automated identification

of learning patterns, which can, in turn, supply

valuable information to the educator and to the

student. While the approach is general, the use of

numeric data makes this approach particularly well
suited to engineering education.

2. Simulation modules for learning in
engineering design (SiMLED)

In this study we have concentrated on simulation-

based educational software, using as our exemplar
the previously developed software Simulation

Modules for Learning in Engineering Design

(SiMLED) [16, 17]. SiMLED is a multi-variable

modelling tool for several types of mechanical

engineering artefacts. The tool accepts a range of

input variables and computes appropriate perfor-

mance (output) variables, based on established

mathematical relationships. A student working in
SiMLED can change the values of the input design

parameters, and observe the effect on the output

performance variables.

In the SiMLED Columnsmodule, used in solving

Metrics to Facilitate Automated Categorization of Student Learning Patterns 1889



the task in our study, the six input parameters

available to the learner are: cross sectional shape,

cross sectional dimensions, length, types of end

constraints in two planes, axial load, and material.

The student can change the values of these para-

meters, and can observe the effect of the change on
two performance variables, namely Cost, and

Factor of Safety (F of S) against buckling in two

planes. In the tasks used in SiMLED, as in most

tasks in the real world, certain input parameters are

fixed, while the student must adjust other para-

meters to obtain the requisite requirements. A log

file records each change in input value that the

student makes, along with the time of the change
and the new values for the output performance

variables. When the student changes the view to

look at the values of output variables or to see their

effect, this is also recorded in the log file.

SiMLED is described in further detail in the

Appendix.

3. Experimental design

Students were given a specific mechanical engineer-

ing design problem to solve. The problem was
closed, with a single best solution that students

were asked to determine.

The problem assigned to participants was speci-

fied as follows:

Using SiMLED to help you, attempt the follow-

ing design task, aiming for a Factor of Safety of

1.0.

What is the maximum axial force that can be
supported by a simply-supported brass column,

2000mm long,with a solid square cross-section of

50 mm width?

Students were expected to manipulate the input

variables within SiMLED so as to find the best
solution to this problem. As students manipulate

the values of the input variables (Appendix Fig. B),

SiMLED shows the values for the output variables

in graphical form (Appendix Fig. C), so students

can follow their progress towards the best solution.

Prior to commencing the experimental task, stu-

dents undertook a preliminary task to familiarise

themselves with the SiMLED interface. Over the

course of one week, 363 log files were generated by

200 students. We pre-filtered the log files to exclude

sessions that did not reflect student engagement,

such as empty files, where a student had simply

logged on and immediately logged off, and used

only the remaining log files in the rest of this study.
The log files contain values for both the independent

design variables and for the dependent performance

variables, in addition to other information about

the session.

3.1 Development of analysis metrics

In this sectionwediscuss the development of a single

overall performance metric that allowed us to

follow the students’ progress towards a solution

and categorize student approaches to the problem.
Because the experimental task in this case has a

single known best solution, it was possible to

measure the progress of students towards the

target solution. In each student session, we recorded

the values of input variables, output variables, and

which view was on the screen. The output variables

are shown in Table 1, along with the SiMLED

default values and the correct values when the
problem has been solved. The magnitudes of the

output variables changed as the students changed

the input variables (e.g. material, shape, size and

applied load). Values of the students’ performance

(output) parameters at each time stepwere recorded

for later comparison with the corresponding values

from the known single best solution.

At any given point in time, we can calculate an
error ratio X/X0 for each output variable X, which

shows how close a student’s value for that variable is

to the valueX0 in the known best solution. The ratio

is 1 when X has approached X0, giving a logarithm

of the ratio equal to 0 at the point of solution. We

can track the error ratios for each output variable in

the time series separately. The student’s progress

toward the best solution can be followed by con-
structing a time series for each dependent variable,

where the unit of time is one action that the student

takes, e.g. one mouse click or one typing step that

changes an independent variable or view. On aver-

age, each action took students 3 seconds, with a

large variance.

An example student session is shown in Fig. 1,

tracking the error ratio for each of the six output

Linda Stern et al.1890

Table 1. Output (performance) variables available for scrutiny within SiMLED

Output Variable Default value Solution value Initial Error ratio

Cost 20.69 281.6 0.0735
Factor of Safety 1.57 1.00 1.57
Mass 5.17 42.1 0.123
Slenderness (Transverse) 14.855 138.56 0.107
Slenderness (Frontal) 14.855 138.56 0.107
Applied Force / Cross Section Area 151.58 52.95 2.863



variables. In this particular session, the student

completed 223 actions, as shown on the x-axis.

The y-axis displays the logarithm of the error ratio

for each of the different variables, which all con-

verge to zero at around step 160, where the single

best solution for all of the output variables has been
achieved. The convergence is not smooth, and it is

apparent that in this session some variables con-

verged more quickly than others. After the student

reached the correct solution, the dependent variable

errors move away from zero. Our observations of

students working with SiMLED in the computer

laboratory suggest that the most likely explanation

for this later divergence away from the best solution
is that the student knew they had completed the task

and were now interested in exploring the relation-

ship between specific variables (see section 4).

While the tracking of all the independent vari-

ables over time does capture the log file information,

the multi-dimensional nature of the problem solu-

tion means that the data are a bit messy, and leaves

us without a unified overall measure of the student’s
underlying problem-solving strategy or efficacy.

Therefore, we were interested in developing a

single, combined metric that could be used to

follow the student’s progress more readily.

We developed an overall measure of a student’s

progress by adding the absolute values of the loga-

rithm of the six individual error ratios to form an

aggregate value which we named E (error). The
formula for calculating E is shown in Equation (1):

E ¼
X

i

log10
Xi

X0

� �����
���� ð1Þ

where Xi is the student’s value for a particular

parameter and X0 is the value for that parameter

in the known solution. E is a general measure and

includes all six output variables, even though for

some problems, subsets of the output measures

might be sufficient to track learner behaviour. At

the correct solution, the value forEwill be close to 0,
i.e. less than some small value �. For convenience,
in the rest of this paper we refer to E < � as E = 0.

The use of absolute values of the logarithm of the

ratios reflects the notion that a deviation from the

target value by a factor of 10 is equally as serious as a

deviation by an inverse factor of 0.10. We consid-

ered that a student has achieved ‘‘the correct solu-

tion’’, when the E value is within a nominated error
tolerance of the single best solution. We plotted a

second time series, based on the same student

session we used to show individual output variable

values in Fig. 1, but this time using the value for the

combined metric E. This time series is shown in Fig.

2, with the value of the aggregate measure E shown

against time, again measured in steps of input

variable change. As can be seen in this figure, the

use of this combined E value has greatly simplified

the visual output, allowing a quick visual inspec-

tion. In the case of this particular student, display-

ingE on the y-axis, instead of all the separate output

error values, allows us to quickly see that the student
has reached the correct solution, with E= 0, around

step 160.

We note in Fig. 2 that the value for E goes up

again after reaching the correct solution, and

becomes greater than 0 starting from step 180. As

mentioned earlier for the single outputs (Fig. 1), we

hypothesized that this student knew they had solved

the problem and was now exploring the effect of
changing other input variables. We looked more

closely at the log file, in order to see whether our

hypothesis was justified. The log file showed, in fact,

that after the correct solution had been reached, the

student began systematically exploring the effects of

changing the values of other variables. Immediately

after reaching the correct solution, different shapes

for the column were explored in nine successive
steps, without changing any of the other input

variables. Column shapes explored were: T,

hollow triangle, solid triangle, hollow rectangle,

solid rectangle, solid cylinder, and hollow cylinder.

Then, in the next 18 steps, different materials were

explored, including brass (as specified in the pro-

blem) and several types of steel. End constraints

(Supports controller), which were pre-set for this
problem, were also varied, so it was clear that this

student was exploring the effect of input parameters

on output variables. Comparing Fig. 2 with Fig. 1,

we can see how much more easily this sort of

exploratory behaviour can be picked up with the

aggregate output metric E.

4. Comparing student sessions

Having developed the metric E, and having seen

that it could be used to follow a single student’s

progress in solving a set task (Fig. 2), we next set out

to see if we could identify patterns of learning that

were more generally common among students. We

hypothesized that student approaches to the task
might fall into a small, recognizable number of

categories, which might reflect different ways in

which students engaged with the task.

Using the E value, we were able to find five

different categories into which student sessions

fell. We show below the E graphs for representative

students in two of these categories, and give our

interpretation of the problem-solving strategy used
by the whole group of students. For these two

categories, we have verified our interpretations by

complementing the E value with further informa-

tion from the log files.
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4.1 Category 1: Student arrives at the correct

solution, then stops

Students in Category 1 arrived at a solution, as
shown by reaching an E value of less than �, and
then terminated their session. A representative

student session is shown in Fig. 3. After setting the

problem physical data by step 16 (signified by the

Cost error indicator reaching zero), this student

then started moving toward the solution by adjust-

ing theLoad controller, reaching the solution at step

62. The student would have been optimizing the
Factor of Safety (visible on the responder screen),

and we can see in Fig. 3 that the magnitude of the

logarithm of the error in the Factor of Safety is also

moving toward 0 from step 16, and that the student
over-shot the correct load around step 30.

We compared student sessions in this category

with a session logged by an expert solving the same

set task. While this student took 62 steps, the expert

used 6 steps only, most of which were used to set the

fixed parameters of the problem (size, shape, and

material). Overall, within this group of students, the

problem was solved, i.e. E is within� of 0, within a
range of 16 to 554 steps (standard deviation 104).
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Fig. 1. Example of a single student session with each variable shown separately. The x-axis shows time, expressed as actions that changed
an input variable. The y-axis is the logarithmic ratio of the student solution and the single best solution, normalised to the value of the
solution. The overall session duration was 220 time intervals. The single best solution was derived at time interval 161, after which the
student entered an exploration phase. Panels are: (a) Cost. (b) Mass. (c) Safety. (d) Force-Area. (e) Slenderness (Transverse). (f)
Slenderness (Frontal).



Reasons for the large variation in the time to

solution will be elaborated in the Discussion sec-

tion.

4.2 Category 2: Student arrives at the correct

solution, then explores

The SiMLED software has scope for creativity, and

for exploring the effect of changing the values for

different input variables. Several students in Cate-

gory 2 arrived at the correct solution, as had the

students in Category 1, again as shown by reaching

an E value of 0. Unlike the students in Category 1,
however, these students continued the session. A

representative student session was shown in Fig. 2,

and discussed in the previous section, where we

described the usefulness of the metric E. While

students in Category 1 were using SiMLED as a

design tool to solve a problem, students in Category

2 were using SiMLED to explore the effect of

changing inputs, as well as to solve a design pro-
blem.

4.3 Categories 3 and 4: Student solves the wrong

problem

In Categories 3 and 4, the plot of E against time in

the student sessions looked superficially similar the

plots inCategory 1 andCategory 2: that is, the value

of E tended to converge. However, the value to
which E converged was not close to 0. Fig. 4 shows

an example session for Category 3, where the time

series for the student session flattens, and then stops.

As can be seen in Fig. 4, the last 40 steps of this
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Fig. 2.Display of the same student session shown in Fig. 1, but showing the aggregatemeasure
E, against time steps, instead of values of each of the output variables.

Fig. 3. Diagnostic parameters for a student in Category 1, reaching the correct solution after 62 actions.



student session show small changes in E. The E

value hovers around E = 4, however, and not

around the correct solution, where E = 0. The

small changes in E towards the end of the session,
seen in Fig. 4, like the small changes seen in

Category 1 (Fig. 3), suggested to us that the student

might have thought they were homing in on the

correct solution. Further examination of the log

files show that during these final steps of the solu-

tion, the error ratio for the Factor of Safety, the

value the student was most likely tracking, indeed

does hover near a value of 1 (shown by the log Error
Ratio for the F of S in Fig. 4), as one would hope for

when solving a structural problem. Having a Factor

of Safety near 1, but an E value far from zero

suggested to us that the student was solving a

problem, but not the set problem. Further detailed

examination of this log file confirmed this hypoth-

esis. In fact, this student had altered the pre-set end

constraints for the column, and then went on to
solve the problem with incorrect end constraints.

Several other students fell into this category, which

included the selection of an incorrect cross sectional

profile.

Category 4 bears the same relationship to Cate-

gory 3 thatCategory 2bears toCategory 1: that is, in

Category 3 the students solved the wrong problem,

then stopped, while in Category 4 the students
solved the wrong problem and then explored

further.

4.4 Category 5: Apparently not solving any

problem

In the last category, we have students whose log files

showno signs of systematically working to solve any

problem. That is, although the constraints were

often set up at the beginning of the session, inter-

rogation of the log files showed the effects of
changing input variables were not then explored in

a systematic fashion. We cannot rule out, however,

the idea that these students were exploring the

effects of changing input variables; we only know

that they were not exploring them in the systematic

way that we, as experts, would expect. Fewer than

10% of students studied fell into this category

(‘‘Other’’ in Fig. 5).

5. Discussion

While most studies in the emerging discipline of

Learning Analytics focus on outcomes, that is on
how much students learn, we have taken a process-

oriented approach. Methodologies for estimating

how much students learn exist (see, for example,

Breslow [18]). However, these measurements are

always proxies for what the student has learned.
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Fig. 4. Diagnostic parameters for a student in Category 3, reaching a wrong solution after 92 actions.

Fig. 5. Percentage of students falling into the various categories
described in the text: Category 1 (‘‘Solve’’); Category 2 (‘‘Solve
and Explore’’); Category 3 (‘‘SolveWrong’’); Category 4 (‘‘Solve
Wrong and Explore’’); and none of these categories (‘‘Explore’’
and ‘‘Other’’).



For example, high scores on a test might signify

successful learning, but might instead simply reflect

good test-taking skills, or easy tests. Neither can the

depth of learning be determined using standard

measures. As Siemens has pointed out in a recent

review [15], studies in Learning Analytics need to
extend their approach to capture the complexity of

the learning process.

In this study, we have taken a more process-

oriented approach. We have the used log files for

characterizing patterns of student learning where

the students of mechanical engineering design were

using simulation-based teaching educational soft-

ware. In this environment, we ask the question
‘‘How do the students learn?’’, rather than the

more subjective questions ‘‘What?’’ or ‘‘How

much?’’ do they learn. To answer the question of

how students learn in this environment, we use data

obtained by directly tracking student actions while

they are using this software. Although Clow has

questioned the usefulness of usage tracking in

Learning Analytics [11], his objections pertain to
its limitations for outcome-focussed work, and do

not apply to process-oriented studies such as ours.

Advantages of the process-oriented approach

include:

� The ability to use direct data, not proxies.

� The potential for further calculation and

informed manipulation to enhance the informa-

tion obtained from the direct data.
� Feedback on the learning process to the educator,

which in turn can lead to improved pedagogy.

� The potential for real-time intervention as stu-

dents are using educational software.

5.1 Direct data

A clear advantage of tracking and using direct data

about student usage is the objective nature of the

data. A click of a button on the computer screen is a

click of the button, and cannot be anything else.Our

use of time series analysis ensures that the data are

used directly, not just summaries of the data.

An advantage of using log files and plotting time
series is thatwe donot overinterpret single numbers.

As noted in Section 4.1, the number of steps

students took to achieve a solution to this set

problem varied from 16 to 554. If these numbers

are treated superficially, then they would seem to

say that there is a large variation in how quickly

students were able to solve this problem. Buried

within this range of 16 to 554 steps, however, when
we look more closely, we find a number of different

approaches. The SiMLED software has been

designed intentionally to give students a variety of

approaches, and to encourage them to explore.

For example, in the student session shown in

Fig. 3, the student approaches the solution (i.e.

approaches E = 0), relatively quickly between

steps 28 and 33, and then much more slowly for

another almost 30 steps thereafter. Examination of

the log file shows that after the student set up the

physical data by step 16, they began to change the
applied load by using an ‘inching’ option that

lowered the load by about 1% on each click, with

each click counting as a separate action in the log

file. This ‘inching’, gradually increased theFactor of

Safety until step 28, when the student opted to use a

‘thumbwheel’ that lowered the applied load much

more rapidly, i.e. using fewer steps. At step 33 this

student reverted to the inching controller, slowing
progress toward the solution. Other students used

alternative input methods such as typing in trial

values of the applied load, which generally reached

the correct solution sooner. Although students

using the inching option might superficially appear

to have learnedmore slowly, this is an artefact of the

flexibility built into the system.

Other students showed a similar fast-then-slow
profile.We found from time series analysis of the log

files that several of these students were seeking a

Factor of Safety of up to eight decimal places,

successively adjusting the sensitivity settings

within SiMLED and incrementing the load by

smaller and smaller amounts, leading to the appar-

ently slowapproach.Most students realized that the

default setting of two decimal places would have
been a more realistic stopping point.

Students were not instructed to solve the set

problem as quickly as possible. Consequently, sev-

eral students explored different materials and

shapes for the column along the way to the solution,

producing sudden swings in F of S, Cost and,

consequently, E, thus simultaneously slowing their

progress toward a solution and increasing their
learning. Thus time series analysis can bring a

richness to the analysis of students’ learning that

single numbers, and particularly aggregate num-

bers, overlook.

5.2 Further calculation

While it is common to talk about metrics in Learn-
ing Analytics and in Academic Analytics [11], these

metrics are generally simply values that are mea-

sured directly, such as ‘‘Test results’’ or ‘‘Atten-

dance’’. For the mechanical engineering design

simulation program we were working with, we

initially followed a similar approach, tracking the

values of the separate output variables individually.

However, we eventually found that combining the
individual variables into a singlemetric gave abetter

intuitive idea of what was going on.

Developing a combined metric requires domain

knowledge and thoughtfulness. In our case, for
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example, after some experimentation it was clear

that we needed to measure an error, or distance

from the correct output value, rather than the

answer itself. We also used a logarithm scale to

help minimize the differences between various vari-

able values, which might have different scales.
Similarly, a logarithmic scale helped equalize the

differences between errors in different values.

In our experience, it has been important to

separate the metric calculation from the logging of

variable values. That is, we do not attempt to

instrument the software to log the value for a

combined metric, but only the direct variables.

The combined metric is calculated during post-
processing of the direct data. Separating the

metric calculation from the data capture allows

more flexibility than embedding calculated metrics.

It allows the metric to be changed, refined, or added

to as becomes appropriate. While there is some

degree of problem-specificity in ametric, our recom-

mendation is to keep the metric as general as

possible, in the interests of reusability. Our formula-
tion ofE, for example, can generate distinct learning

patterns for all of the SiMLED Columns learning

tasks that we have set.

Two important consequences of using the com-

bined metric E can be seen immediately. First, we

can see the potential for automatically noting that a

student has found the correct solution, simply by

setting a flag in the software to note when E is less
that the small value of �. This could facilitate data
collection by the educator, and opens the door for

real-time feedback to the student as they are actually

using the software. Second, we can see the potential

for automatically inferring student strategies from

the convergence or fluctuations of E.

In our study, the ability to track single outputs

(for example, Factor of Safety, or Cost), as well as
the aggregate value E allowed us to understand

what the students were doing. The aggregate

metric would be generally useful formost problems,

while tracking single output variables is usually a

more problem-specific approach. Sometimes, the

most power comes from looking simultaneously at

two or three measures, even when one of them (for

example, E in our study) is complex.
We would recommend that educational software

be equipped with the capacity for logging actions,

and with support for educators to develop more

complex metrics on top of this. This layered

approach, allows for flexibility. Although in a

layered architecture, the combined variable, in our

case the metric E, is calculated after the data is

captured, there is no need to write the whole log
file before engaging in post-calculation. The metric

E could be calculated quickly enough to give the

impression of real-time to the studentwhere needed.

We suggest that the practice of combining the

values of output variables could be useful even in

less technical domains. For example, it might be

useful to combine variables such as ‘‘time to finish

test’’, ‘‘test score’’, and ‘‘laboratory attendance’’.

Bienkowski et al. [1] have even suggested that there
might be merit in bringing together administrative

and classroom-level data.

5.3 Feedback to the educator

Our work has shown that it is possible to detect

various patterns of student behaviour using data

capture, time series, and calculating complex
metrics. We have been able to use this information

to gain insight into the student learning process.

User behavior modelling can fruitfully ask the

question: ‘‘What do patterns of student behavior

mean for their learning?’’ [1].

Part of the beauty of the process-oriented

approach is that we are able to detect patterns of

learning that we had not anticipated. In the current
study, we were able to detect several students who

set out to solve thewrong problem, and often solved

that problem correctly. Our unexpected identifica-

tion of significant Categories 3 and 4 (together, 25%

of the cohort), students who solved the wrong

problem, is an example of how metrics can be used

by the educator to (a) better understand student

learning and (b) improve pedagogy. Because we
were looking at the process, we were able to note

students who had not set the constraints as stated in

the specification. Had we been looking for learning

outcomes, rather than at the learning process, we

would probably have considered students in these

categories as having poor learning, because they did

not get the correct answer. In fact, from our study

we can see that these students actually had been able
to solve a problem, but had startedwith amisunder-

standing of the problem. Looking at the students in

these categories further, we also noted where the

educator might have been able to further clarify the

problem at the start.

We detected yet another pattern in the log files.

Students in Category 5 did not set up the problem

constraints, and changed variable values in a dis-
organized fashion. These students did not seem to

know how to go about solving the problem. Again,

having this feedback, the educator might reflect on

whethermore instruction onapproaches toproblem

solving might be useful incorporated into the class-

room.

In a previous study [8], we have noted that student

goals in using educational software are often differ-
ent from the educators’ goals, and lead them to use

software in ways not initially envisioned by the

educator. In some cases, these unintended patterns

of students learning canbequite productive.Detect-
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ing these patterns, and bringing them to the atten-

tion of the educator, means they can be incorpo-

rated into the classroom pedagogy.

Our findings of distinct categories also pointed

out how monitoring log files using metrics can help

the educator clarify tasks for the current and future
cohorts of students.

5.4 Potential for real-time intervention

Another advantage of taking the time-series

approach to analytics is the potential for real-time

intervention.For example, when students have been

solving the wrong problem (Categories 3 and 4),
that erroneous track would show up in the log of

actions as a slow approach to a non-zero value of E.

The logwould also show an approach to a Factor of

Safety of 1. For active intervention, the slowly

decreasing E value could trigger a check for the E

value being approached, and if it is not zero, then a

check on the progress of the Factor of Safety.

Together these two situations could flag a high
likelihood of solving the wrong problem, and

importantly could trigger a message sent to the

screen, such as a pop-up window, warning the

student that they might be looking at a problem

other than the set problem. Of course, the student

who prefers to explore unaided should have the

option to disengage online guidance.

The layered approach mentioned above, where
basic actions are logged and complex metrics are

built on top of the logged actions, would help

increase the flexibility of this kind of intervention.

Interventions could be designed to be suitable for

different situations and different problems.We note

that even though some of the more complex metrics

need to be calculated from the direct student

actions, and therefore after these actions are
recorded, and the triggers would be detected after

the variables are constructed, the lag would be on

the order of microseconds, so in effect the student

would be seeing ‘‘real-time’’ intervention.

5.5 Limitations of this study

Certain conditions must be met before an educa-

tional software metric can be used effectively to
follow student activity and monitor progress over

the course of a learning session. Most importantly,

the relevant outputs need to either be numeric, as

here, or categorical values that can be assigned

relevant numeric values for subsequent analysis.

The vast majority of engineering education pro-

blems meet this condition.

In principle, the technique proposed here is
applicable for any type of problem where there is a

definable criterion for a ‘best’ or ‘better’ solution,

under any set of constraints. While we have based

our experiments on a task where there is a single,

known best solution, this is not an absolute require-

ment. Tasks with multiple best solutions are also

suitable for this approach, although eliciting fine

details of the learning progress might require a

slightly more complex analysis. The technique can

be effective for any multi-variable or multi-solution
problem, as long as reasonably continuous numer-

ical variables are part of the solution.

6. Conclusion

In our study, we have found that we can usefully

track student learning using software through

recording their actions in log files. Analyzing time

series data in the SiMLEDenvironment, as students

solved amechanical engineering design problem,we
detected different patterns of learning and gained

insight into the student learning process. A particu-

larly useful metric was developed by combining

several direct outputs. We suggest that usage track-

ing of this sort can support real-time feedback to

students on their progress and can be generalizable

to other technology-based learning systems.

This project has been carried out with the
approval of theHumanResearchEthics Committee

of the Faculty of Engineering at The University of

Melbourne.
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Appendix: The SiMLED Learning Platform

In this study we used the software package SiMLED (Simulation Modules for Learning in Engineering
Design) as a concrete example of the kind of software that can be used by students to learn about complex

problems. SiMLED was developed in the Department of Mechanical Engineering at The University of

Melbourne to facilitate student learning ofmechanical engineering design [16, 17]. SiMLEDwas developed as

a tool to solve directed tasks in mechanical engineering design and for open-ended exploration.

Simulations in the SiMLED modules allow students to change design parameters, such as material of

manufacture and structural dimensions, and then allows them to observe the effect of these design changes on

the structure and functionality of the component they are designing. The process is similar to experimenting in

aphysical design laboratory, but allows experimentationwith amuchwider range of dimensions andmaterials
than would ever be available in a physical environment. The essential characteristic of the object being

modelled is that its various features are defined parametrically, and that the student user can modify the

defining parameters interactively.

In this work,we have concentrated on the SiMLED learningmoduleColumns, where buckling and crushing

modes of failure can be investigated. When SiMLED is first opened, the student is presented with a choice of

input design parameters, controlled by the tabs, shown on the right hand panel in Fig. A and three different

representations for observing the effect of changing a parameter in the left hand panel of Fig. A.
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Fig. A. Start up SiMLED user interface, showing the Euler-Johnson column design
curve, the Factor of Safety (Fs) and the Cost in the Graph responder window on the left
andalternative generic shapeson the right,with thehollowcylinder (representedvisually)
chosen. There are three alternative tabbed responder (viewing) windows on the left and
six alternative controller (input) windows on the right.



Students can input design parameters by accessing one of the six ‘‘controller window’’ categories: Shape,

Material, Proportions, Size, Support, and Load (Fig. B). Each category will have one or more input design

parameters. For example, the Shape window allows students to change the generic sectional shape of the

object, and the Size window allows students to modify both the length and height of the object.

When a student changes the input design variables, the dependent variables, or performance variables

change in response. There are six dependent variables for the Columns module: Cost, Mass, Safety, SlendX

(slenderness for buckling in the X (Transverse) direction), SlendY (slenderness for buckling in the Y (Frontal)

direction), and PonA (axial load per cross-sectional area).

In the computer screen responder window, the changes are visualized, as if the student were working with

physical forms. The visible form of the column and the values for the dependent parameters are shown in the

responder window (Fig. C). The graph view is particularly useful in helping a student find an acceptable

solution.

The kind of information available from the graph view of the responder window is illustrated in Fig. D,

where two instances of the responder window are shown. The graph shows the Euler-Johnson curve and
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Fig. B. Controller windows. Sample SiMLED controller windows used for inputting the numerous design variables in the Columns
module.Controller variables: (a) Shape, (b)Material, (c) Proportions, (d) Size, (e) Support, (f) Load.The categoryof variable is chosen via
a tab at the top of the window, while specific values and selections for individual design parameters can be selected via drop-downmenus,
accessed by clicking on an icon, typed into the text boxes, altered by thumbwheels or incremented by buttons.



Factor of Safety for the column, given the design variables that the student has selected [17]. The shape of the

curvewill change, for examplewithmaterial selection, reflecting the underlying columndesign theory [19]. The

arrows in the lower right corner of the graph view enable the student to scale the axes of the graph to better

observe the consequence of parameter changes. The lower right corner shows a small icon of the Shape chosen.

This ensures that the student is under no misapprehension about the shape under consideration and saves the
student from continually flipping between graph and 3D or section views. The graph view can be helpful for

students searching for design parameters within a reasonable factor of safety, i.e. an acceptable solution. Fig.

D also highlights the importance of the target value cross-hairs associated with the Euler-Johnson curve.

Within the theory of column design, an unsafe design can occur in one of two orthogonal directions, and the

‘‘directional target’’ cross-hairs highlights this important fact, i.e. potentially ‘‘safe’’ in one direction and

‘‘unsafe’’ in the other.

The design safety factor Fs (F of S in Figs 3 & 4)) corresponds to the mode of failure that is most likely to

cause a potentially unsafe design scenario (a loss of structural integrity). The cross-hairs in Fig. D represent Fs

independently in the plane of the chart, i.e. the x- (l/r) and y- (P/A) directions, to encompass non-axisymmetric

design scenario. The directional target cross-hairs change position dynamically as the independent variables

are changed.

For structural integrity, the entire target must be within a shaded area of the Euler-Johnson curve (Fig. D,

top, with Fs > 1). The confidence the student designer can assume for the interim column is reinforced by the
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Fig. C. Two sets of alternative SiMLED Responder windows, as shown in the tabs at the top of the windows, the views are: Graph, 3-
Dimensional, and Cross-section. The top three panels show the three views for a hollow circular cylinder (pipe). The bottom three panels
show the three views for a rectangular hollow section (hollow square).



numerical value of the design safety factor, Fs shown in the upper right corner of the graph window. As the
target moves further from the Euler-Johnson curve towards the origin of the graph, Fs increases in value and

the interim design becomes safer. Of course, conflicting issues become apparent with increasing Fs, in

particular, increasing cost and associated inefficiency. The software has been described in more detail

elsewhere [17].

The facility to record student actions has been incorporated into the software as described previously [4].An

XML log file records significant student actions, and includes: (1) the name of the action, e.g. ‘‘change
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Fig. D. SiMLED user interface, showing the Euler-Johnson column design curve in the Graph
responder window on the left and the Support controller window on the right.

In the top panels, support is the same in both directions (overlapping grey icons both show Fixed at
the left end and Pinned at the right end). According to the diamond shaped ‘‘directional target’’ cross-
hairs, the associated column design is safe.

In the bottompanels, the support has beenmade asymmetrical. The directional target now separates
into two two-headed arrows, losing its prior appearance. The upper Fixed-Pinned direction, associated
with the grey vertical two-headed arrow icon in the graph responder window, is identified as being safe.
The lower Fixed-Free direction is identified as being unsafe, with both the column icon and the
horizontal two-headed arrow (shown in red on the student screen), to underscore the problemwith this
unsafe design scenario, in particular the most likely direction of failure.



responder window’’, ‘‘change material’’; (2) the time of the action; and (3) any parameters relevant to that

particular action, e.g. thematerial chosen, length, etc.Values of both the independent design variables and the

dependent performance variables were recorded in a log file.
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