
The Influence of Diffusion of Innovation Theory Factors on

Undergraduate Students’ Adoption of Scrum*

VILJANMAHNIČ and TOMAŽ HOVELJA
Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.

E-mail: viljan.mahnic@fri.uni-lj.si; tomaz.hovelja@fri.uni-lj.si

Since Scrum is the most widespread agile software development method, teaching it is an important issue to prepare

students for their professional careers. Scrum is often taught within the scope of a software engineering capstone course,

which makes it possible for students to learn Scrum practices through practical project work. In this study, we use the

Diffusion of Innovation theory (DOI) to analyze to what stage such a course enables students to assimilate the core Scrum

practices and the factors that have the most impact on Scrum adoption. The study is based on the results of a survey that

was conducted after each Sprint of the capstone course at theUniversity of Ljubljana, Slovenia; the course has four Sprints

and was attended by 88 undergraduates. It is shown that at the end of the course, all core Scrum practices reach either the

acceptance or the routinization stage, and 11 most influential DOI factors are identified.

Keywords: Scrum; capstone course; diffusion of innovation; software engineering education; agile software development

1. Introduction

Although agile methods for software development
[1, 2] were considered controversial at the begin-

ning, their adoption in the industry has reached

mainstream proportions. The Forrester’s Global

Developer Technographics Survey [3] found that

agile development process (used by 35% of respon-

dents) prevails over iterative and waterfall

approaches (used by 21% and 13% of respondents,

respectively), while 31% of respondents reported no
use of a formal process methodology. According to

the latest State of Agile Survey [4], the agile momen-

tum continues andmore bigger companies scale and

embrace agile methods as part of the larger vision to

deliver software faster, easier, and smarter.

Agileprojectsarealsoreportedtobemoresuccess-

ful; the results of the Standish Group’s 2011 Chaos

Report show that the success rate for agile projects
(42%) is threetimeshigher thanfor traditionalwater-

fall projects (14%). Agile teams report significant

improvements in productivity, quality, and stake-

holder satisfaction,andreasonable improvements in

cost [5]. Adopting agile methods also improves

management of the development process and custo-

mer relationships [6], decreases the amount of over-

time and increases customer satisfaction [7].
In order to fulfill industry needs and prepare

students for their professional careers, teaching

agile methods has become an important issue.

Until a few years ago courses on agile methods

were rather rare [8] and most attention was devoted

to teaching Extreme Programming [9–11] and its

practices, particularly pair programming [12] and

test-drivendevelopment [13, 14].However, given the
fact that Scrum [15, 16] became themostwidespread

agilemethod(accordingto[4],Scrumanditsvariants

are used by 72% of respondents) a significant shift

towards teaching Scrum has been noticed recently.
An outline of the existing literature [17] revealed

that the most widespread approach to teaching

Scrum is through practical work on student pro-

jects, e.g., [18–24]. This approach takes into account

the statement of Scrum creators that Scrum is

simple to understand yet difficult to master [25].

Therefore, in order to learn Scrum, the students do

not need extensive lectures but should try it in
practice. Courses of this type often exploit the

benefits of capstone projects that simulate profes-

sional working environment as much as possible.

Considerable effort has also been spent to find

alternative ways of teaching that would enhance the

learning of Scrum in an engaging way. Von Wan-

genheim et al. [26] introduced a manual paper and

pencil educational game in addition to theoretical
lectures, Rodriguez et al. [27] developed a tool that

simulates a Scrum-based team room using different

virtual elements, while Paasivaara et al. [28]

described a LEGO-based game that simulates

Scrum through building a product of LEGO

blocks. Paasivara et al. [29] also used distributed

Scrum to teach students global software engineering

skills. More recently, the consideration of learning
styles was suggested to enhance Scrum learning [30,

31] and the impact of agile coaching on students’

performance was studied [32]. Scrum was also used

in combination with a framework of design patterns

to develop teaching/learning haptic simulators [33].

Awell designed capstone course is a good place to

teach Scrum since many Scrum practices seem to be

controversial for beginners and can only be fully
understood after trying them in practice. A typical

* Accepted 8 May 2016. 2121

International Journal of Engineering Education Vol. 32, No. 5(A), pp. 2121–2133, 2016 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2016 TEMPUS Publications.

example are user stories, which only provide a short

description of each required functionality written

on a paper note card, while all the details must be

clarified in conversations with the customer repre-

sentative [34]. A study by Mahnic and Hovelja [35]

revealed that the students are suspicious about this
approach in the beginning, but their opinions sig-

nificantly improve after they gain more experience.

It was shown that the capstone course helped them

to grasp the main concepts and understand the

advantages and limitations of user stories, as well

as the factors that affect their successful use in

practice.

Therefore, it can be argued that teaching Scrum
through practical work is crucial for a proper under-

standing of its concepts and practices. In order to

make students operational on their jobs, it is impor-

tant that these practices are imparted in a way that

encourages their assimilation and proper execution

at the workplace.

In this paper, a study is described that was

conducted at the University of Ljubljana with the
aim of identifying the level of assimilation of Scrum

practices by students who attended the software

engineering capstone course in the Summer term

of the 2013–2014 academic year, as well as the

factors that affect their willingness to accept

Scrum as a software development methodology.

The study starts from the premise that Scrum is a

new promising methodology that can in many cases
replace traditional software development methods

that the students have already mastered before

attending the capstone course. Compared to tradi-

tional software processes that are predominantly

technical, Scrum places greater emphasis on the

social aspects of computing and stresses the role of

self-organizing and self-managing teams that are

collectively responsible for the development of the
required functionality. The tasks are no more

assigned to developers by the project manager, but

on the basis of discussion among the teammembers.

By allowing user requirements to evolve throughout

the project, tight collaboration with the customer is

required.Only the basic strategic aspects are defined

in advance, while operational details are planned

from iteration to iteration and Daily Scrum meet-
ings are used for monitoring current progress.

From this point of view, the introduction of

Scrum represents an innovation that significantly

changes the working habits of developers, thus

influencing their willingness to adopt the agile

approach. Therefore, the success of Scrum should

not only be measured in terms of project costs,

productivity, code quality, customer satisfaction
or delivery time (which is usually done by research-

ers in the area of software engineering and informa-

tion systems development), but considerable

attention should be devoted to factors affecting its

adoption and long-term acceptance.

For the purpose of the study, students’ opinions

about Scrum and its practices were gathered by a

comprehensive questionnaire that was answered

after each Sprint (altogether 4 times) in order to
analyze how students’ perceptions change when

they get more practice. In order to assess the level

of assimilation of Scrum practices, the innovation

diffusion model [36, 37] was used, while the Diffu-

sion of Innovations (DOI) theory [38] served as a

basis for studying factors affecting students’ will-

ingness to use Scrum.

The reminder of this paper is organized as fol-
lows: In Sections 2 and 3, respectively, research

questions and study design are described. The

results are presented in Section 4 and discussed in

Section 5. Section 6 provides a conclusion.

2. Research questions

In the information technology (IT) literature, the

best-known model describing the process in which

an innovation (i.e., an IT solution) is assimilated by

an organization, a group, or an individual, is the six-

stage model defined by Kwon and Zmud [36] and

Cooper and Zmud [37]. Each stage describes a

certain level to which an innovation penetrates an
adopting unit:

� Initiation: A match is found between an innova-

tion and its application by the adopting unit.

� Adoption: A decision is reached to adopt the

innovation.

� Adaptation: The innovation is adjusted and

installed; members of the adopting unit are
trained to use it. As a result, the innovation is

available for use in organization.

� Acceptance: Members of the adopting unit are

induced to commit to the innovation’s usage.

� Routinization:Usage of the innovation is encour-

aged as a normal activity.

� Infusion: The innovation is used in a comprehen-

sive and sophisticated manner so that the effec-
tiveness of the adopting unit increases.

According to Senapathi and Srinivasan [39] the

initial three stages relate to ‘adoptive’ behavior of an

innovation, while the last three stages relate to an

innovation’s ‘post-adoptive’ use. In order to be

effective, an innovation should reach one of the

post-adoptive stages.

Considering the aforementioned innovation dif-
fusion model, two research questions were defined:

� RQ1: How deeply (i.e., to which stage) do the

students assimilate Scrum practices after com-

pleting our capstone course?

Viljan Mahnič and Tomaž Hovelja2122

� RQ2: How does the stage of assimilation change

from Sprint to Sprint?

The depth of assimilation depends on a variety of

factors; therefore, it is also important to identify the

factors that most significantly influence adoption of

an innovation among its potential users.

Rogers’s DOI theory [38] suggests that the adop-
tion of an innovation depends on five sets of

characteristics, called factors: (1) innovation fac-

tors, (2) individual factors, (3) task factors, (4)

environmental factors, and (5) organizational fac-

tors. Each factor is further decomposed into multi-

ple items (traits), so that Rogers’s model comprises

altogether 29 factors.Using thismodel as a basis, we

wanted to answer the following research questions:

� RQ3: Which DOI factors importantly influence

the adoption of Scrum methodology?
� RQ4: How do students’ opinions about most

important DOI factors change from Sprint to

Sprint?

Since some authors (e.g., [39, 40]) claim that factors

affecting successful adoption of an innovation differ

between adoptive and post-adoptive stages, another

research question was added:

� RQ5:Howdoes the perceived importance ofDOI

factors change between adoptive and post-adop-

tive stages?

3. Study design

3.1 The capstone course

The study was conducted within the scope of the

software engineering capstone course at the Uni-

versity of Ljubljana, whose main aim is to teach
Scrum through practical work on software projects

from different real world problem domains [18, 20].

Additionally, by following recommendations for

using student subjects in empirical studies [41, 42],

the course also serves as a basis for different empiri-

cal studies [35, 43, 44].

The course lasts 15 weeks and is taken by under-

graduate Computer Science students in their last
semester. Before attending the course, the students

must complete classes on data bases, software

development processes, and Web programming.

Therefore, it is assumed that they have already

mastered traditional software development meth-

odologies and have enough technical skills to start

working on a more serious project.

The students are required towork in teamsof four
in order to develop a project on the basis of user

requirements provided by a domain expert playing

the role of the Product Owner. Each team must

follow Scrum rules and perform all practices pre-

scribed by the method.

The course consists of four Sprints. The first

Sprint (also called Sprint 0) lasts three weeks and

serves as a preparatory Sprint before the start of the

project. During Sprint 0 formal lectures take place

in order to teach students Scrum and how to apply

user stories for requirements specification and pro-
ject planning [34, 45]. These three weeks are also

used to prepare the development environment and

acquaint students with the initial Product Backlog,

containing a set of prioritized user stories for the

project they are going to develop. At the end of

Sprint 0, each team estimates the effort required for

implementation of each user story using planning

poker [46] and prepares the release plan.
The rest of the course is divided into three regular

Scrum Sprints, each lasting four weeks. Each Sprint

starts with a Sprint planning meeting, at which the

student teams negotiate the contents of the next

iteration with the Product Owner and develop the

initial version of the Sprint Backlog. During the

Sprint, the teams have tomeet regularly at theDaily

Scrummeetings andmaintain their SprintBacklogs,
adding new tasks if required and updating data on

the work spent and the work that remains. At the

end of each Sprint, the Sprint review and Sprint

retrospective meetings take place. At the review

meeting, the students present their results to the

instructors, while at the retrospective meeting both

students and instructors meet to review the devel-

opment process in the previous Sprint, giving sug-
gestions for improvements in the next.

The Product Owner strictly enforces the concept

of ‘‘done’’ and requires each user story to pass all

acceptance tests. All stories that do not conform to

user requirements are rejected and (if the short-

comings are not removed by the end of the Sprint)

a new story is defined in the Product Backlog

requiring completion of the missing features in
one of the remaining Sprints. After three Sprints

the first release should be complete and delivered to

the customer.

Strictly following the Scrum principles, all roles

are clearly defined. Students act as self-organizing

and self-managing Scrum Teams that are collec-

tively responsible for the implementation of the

required functionality. The instructors do not inter-
fere in the distribution of tasks among team mem-

bers and the estimation of effort, but play the role of

ScrumMasters of all teams responsible for the

Scrum process and teaching Scrum to everyone

involved in the project. They merely act as facil-

itators, ensuring that Scrum runs smoothly and

everybody obeys its rules and practices.

The role of the Product Owner is played by a
project domain expert representing the customer.

The Product Owner can be one of the instructors (if

the project is defined within the department) or a

The Influence of Diffusion of Innovation Theory Factors on Undergraduate Students’ Adoption of Scrum 2123

representative of a company (if the project is devel-

oped for a partner from industry). The Product

Owner must maintain the Product Backlog, prior-

itize user stories, and answer students’ questions

regarding user requirements. At the end of each

Sprint, he or she is also responsible for accepting or
rejecting the students’ implementations of user

stories while strictly enforcing the notion of

‘‘done’’, thus assuring that the implementation of

each story is practically usable.

The study described in this paper was conducted

in the Summer term of the 2013–2014 academic year

when the course was attended by 88 students. Each

team could choose between two different projects.
The first project was defined within the department

and consisted of the development of a Web-based

Scrum project management tool. The second pro-

ject was defined in partnership with a Slovenian IT

company and required the development of a Web

portal enabling different service providers to offer

their services through the internet, thus giving their

customers a possibility to find and book the services

from their homes.

3.2 Questionnaire

For the purpose of the study, a questionnaire was

developed that consisted of two parts. The first
part was intended to collect data required for

answering research questions RQ1 and RQ2. It

consisted of 13 questions referring to 13 core

Scrum practices described in Table 1. For each

question, 6 possible answers were offered, each of

them corresponding to one of the 6 stages of

assimilation defined by Cooper and Zmud [37].

Viljan Mahnič and Tomaž Hovelja2124

Table 1. Core Scrum practices studied in the first part of the questionnaire

Scrum practice Description

Maintenance of the
Product Backlog

The Product Backlog is a prioritized list of requirements for the system or product being developed. The
Product Owner is responsible for its contents, prioritization, and availability. The Product Backlog is
never complete, but evolves as the product and the environment in which it will be used evolves.

Using user stories for
requirements
specification

Each Product Backlog Item is represented as a user story consisting of a short description and a set of
acceptance tests. A story description is formulated in the language of the customer and is intentionally
short enough to be hand-written on a paper note card.

Cooperation with the
Product Owner

All details regarding each user story implementation should be clarified in communication with the
Product Owner. Therefore, good cooperation between the Product Owner and the Team is crucial for the
success of a project.

Effort estimation For the purposeof planning, user stories are estimated in storypoints usingoneof the techniquesproposed
by agile methods, i.e., planning poker or the team estimation game.

Release planning on the
basis of estimated velocity

Considering the estimated velocity of the Team, user stories are allocated to Sprints to establish a rough
completion date (or adapt the contents of the next release to the desired completion date).

Sprint planning At the beginning of each Sprint, the Product Owner and the Teammeet at the Sprint planning meeting to
define the contents of thenext Sprint.The amountofworkagreedmust not exceed the estimatedvelocityof
the Team.

Maintenance of the Sprint
Backlog

In the secondpart of the Sprint planningmeeting, theTeamcompiles a list of tasks required for turning the
selected subset of user stories into an increment of potentially shippable product functionality. The tasks
are estimated and assigned to Team members. During the Sprint, the Sprint Backlog evolves by adding
new tasks, if necessary, and decomposing roughly defined tasks into smaller ones.

Daily ScrumMeetings Every day, the Team gets together for a 15-minute meeting at which each Team member answers three
questions: What have you done since the previous meeting?What do you plan to do till the next meeting?
Are there any impediments in your way?

Progress monitoring
through burndown charts

Release and Sprint burndown charts show the amount of work remaining across time, thus visualizing the
correlation between the amount of work remaining and the progress of the Team in reducing this work.

Strict enforcement of the
concept of ‘‘done’’

The Product Owner only accepts those user stories that conform to the definition of ‘‘done’’. This
definition represents the project’s quality statement for a user story ensuring that the story is fully
developed and tested, that it works without errors, and that no more work is left to be done.

Sprint Review Meetings At the end of each Sprint, the Team presents the results of the Sprint to the Product Owner and any other
stakeholders who want to attend.

Sprint Retrospective
meetings

Before the next Sprint, the ScrumMaster and the Team meet to review the development process in the
previous Sprint, giving suggestions for improvements in the next.

Proper execution of the
prescribed roles (the
Product Owner, the
ScrumMaster, the Team)

The ProductOwner defines the vision of what is to be developed,maintains the ProductBacklog, provides
details regarding user requirements, and evaluates implementation of user stories. The ScrumMaster
ensures that everybody follows Scrum rules and practices. The Team acts as a self-organizing, self-
managing, and cross-functional development team that is collectively responsible for the success of the
project.

The answers were formulated as shown in Table 2

so that the students were not asked directly about

their level of assimilation, but had to choose the

description that best matched their experience with

the corresponding practice.

The second part of the questionnaire was

intended to collect data for answering research

questions RQ3, RQ4, and RQ5. It was compiled
on the basis of previous research by Mustonen-

Ollila and Lyytinen [47] who used the DOI theory

in their longitudinal study on the adoption of

information system process innovations. This part

consisted of 29 assertions covering all sets of factors

(i.e., Innovation, Task, Individual, Environment,

and Organization) incorporated in the Rogers’s

DOI model. The assertions were chosen in such a

way that, when used in combination with the phrase

‘‘I am willing to use Scrum since’’, they described

factors that possibly influence the acceptance of

Scrum from the part of students. For each assertion,

the students were asked how important it is using

a 7-point Likert scale (1—‘‘Entirely unimportant’’,
2—‘‘Unimportant’’, 3—‘‘Somewhat unimpor-

tant’’, 4—‘‘Neither important nor unimportant’’,

5—‘‘Somewhat important’’, 6—‘‘Important’’, 7—

‘‘Extremely important’’).

The structure of the second part of the question-

naire is shown in Table 3.

The Influence of Diffusion of Innovation Theory Factors on Undergraduate Students’ Adoption of Scrum 2125

Table 2. Possible answers to questions concerning the level of assimilation

Possible answers Corresponding level of assimilation

1 It is the first time that I have been acquainted with this practice. Initiation
2 I have not performed this practice yet. Adoption
3 I have enough knowledge to perform this practice. Adaptation
4 I have positive experience with this practice. Acceptance
5 I have performed this practice so many times that it has become a routine. Routinization
6 I perform this practice effectively and efficiently, which contributes to better execution of

other Scrum activities and improves the quality of the software developed.
Infusion

Table 3. Structure of the second part of the questionnaire

DOI factors Assertion

Innovation Relative advantage Scrum is better than the traditional disciplined approach to software development.
Ease of use Scrum is easier to understand and use in practice.
Compatibility Scrum better matches my preferred way of working, my values and experience.
Visibility It is possible to observe how other teams use Scrum.
Trialability Scrum can be easily trialed in a working environment.
Price The use of Scrum does not involve additional costs and effort.
Problem solver Scrum solves many problems concerning software development.
Standard Scrum has become a standard method for software development.
Technological edge Scrum is more advanced than other methods for software development.

Task Commercial advantage Scrum significantly contributes to better customer satisfaction.
User need recognition Scrum matches programmers’ needs in software development.
User resistance Scrum simplifies execution of difficult tasks.

Individual Own testing I can easily experiment with Scrum.
Personal contact network My friends and colleagues strongly recommend the use of Scrum.
Own rules and control

of work
Scrum can be easily adapted to my way of work.

Learning by doing I can learn Scrum through practical project work.

Environmental Cultural values We (the students) are well-disposed to changes required by the Scrum methodology.
Technological
infrastructure

We (the students) have the entire technological infrastructure required for successful use
of Scrum.

Community norms We (the students) use Scrum rules and practices as requested by the teacher.
Funding We (the students) have all resources at our disposal (literature, time, instructors’ support)

for successful use of Scrum.

Organizational Interpersonal networks Most students from previous generations strongly recommend the use of Scrum.
Peer networks I develop a Scrum project in a team of my classmates with whom I associate most.
Informal communication Scrum encourages spontaneous and informal communication among team members.
Technological experience I have a lot of experience with software development methodologies.
Working teams Scrum allows us to plan the work and solve most of the problems faced during the

development by ourselves.
Opinion leaders and

change agents
Most persons whose opinion I respect strongly recommend the use of Scrum.

Interdependence from
others

Each new Scrum user significantly increases the usefulness of Scrum.

Adopter type I usually start using new technologies earlier than my colleagues and friends.
Management hierarchy Teacher’s demand is the main reason that I use Scrum.

3.3 Statistical methods used

The questionnaire was answered four times during

the capstone course, i.e., after Sprint 0 and after

each of the three regular ScrumSprints. After Sprint

0, when the students finished theoretical lessons on

Scrum and started with practical work, nine dis-

tributions of answers significantly deviated from

normal distribution (skewness greater than �1,
kurtosis greater than �3). Afterwards, the number
of deviations diminished to four at the end of Sprint

3. In light of the above, as well as considering the

fact that ordinal scales were used to represent

different levels of assimilation (in the first part of

the questionnaire) and degrees of agreement with

assertions (in the second part of the questionnaire),

a decision to use non-parametric statistical methods
was made.

In order to answer research question RQ1, the

median of answers to each question in the first part

of the questionnaire was computed indicating how

deeply the students assimilated particular Scrum

practices after each Sprint. Similarly, in order to

answer research question RQ3, the median of

answers to each assertion in the second part of the
questionnaire was used to find DOI factors with

greatest impact on Scrum adoption.

Research questions RQ2, RQ4, and RQ5

required the before-after analysis. Since the survey

was anonymous and the number of respondents

varied slightly from Sprint to Sprint between 68

and 84, the responses obtained after each Sprint

were treated as independent samples. Therefore, the
Mann-Whitney-Wilcoxon test [48] was used to

identify possible significant changes in students’

opinions during the course. A two tailed p-value

of 0.05 or less had to be reached in order to

demonstrate that the distributions of the two

tested variables differed significantly from each

other.

4. Results

4.1 Research questions RQ1 and RQ2

Results referring to research questions RQ1 and

RQ2 (i.e., the first part of the questionnaire) are

gathered in Table 4. For each Sprint, themedians of

students’ responses regarding their use of each

Scrum practice are presented. Additionally, for

Sprints 1, 2 and 3, the p-values of the Mann-

Whitney-Wilcoxon test that compared each of
these Sprints to its immediate antecedent (i.e.,

Sprint 1 to Sprint 0, Sprint 2 to Sprint 1, and

Sprint 3 to Sprint 2) are shown.

The results clearly indicate that students quickly

assimilated all of the 13 core Scrum practices.While

immediately after Sprint 0 the great majority

reported only their acquaintance with Scrum but

no practical experience, their proficiency in using
Scrum practices deepened from Sprint to Sprint.

After Sprint 1, six out of 13 practices reached the

stage 4 (Acceptance), 6 practices were at stage 3

(Adaptation), and only one practice remained on

stage 2 (Adoption). The level of assimilation further

increased in Sprints 2 and 3. After Sprint 2, four

practices reached the stage 5 (Routinization), while

the remaining 9 practices were at stage 4 (Accep-
tance). At the end of Sprint 3, the median of

students’ responses corresponded to the routine

execution of 9 practices and acceptance of 4 prac-

tices.

Therefore, with regard to research question RQ1,

it can be concluded that the assimilation of Scrum

reached the Acceptance and Routinization stages

corresponding to post-adoptive usage of an innova-
tion according to classification by Senapathi and

Srinivasan [39].

With regard to research question RQ2, it is

evident that the level of assimilation increased

very quickly. The p-values of the Mann-Whitney-

Viljan Mahnič and Tomaž Hovelja2126

Table 4. Assimilation level of Scrum practices across Sprints

Scrum activity/Practice Sprint 0 Sprint 1 Sprint 2 Sprint 3

Median Median p-value Median p-value Median p-value

Maintenance of the Product Backlog 2 3 0.000 4 0.000 5 0.003
Using user stories for requirements specification 2 4 0.000 5 0.000 5 0.015
Cooperation with the Product Owner 2 4 0.000 4 0.000 5 0.106
Effort estimation 2 3 0.000 4 0.000 5 0.137
Release planning on the basis of estimated velocity 2 3 0.000 4 0.000 4 0.119
Sprint planning 2 3 0.000 4 0.000 5 0.033
Maintenance of the Sprint Backlog 2 4 0.000 5 0.000 5 0.080
Daily ScrumMeetings 2 4 0.000 5 0.001 5 0.798
Progress monitoring through burndown charts 2 3 0.000 4 0.000 4 0.169
Strict enforcement of the concept of ‘‘done’’ 2 4 0.000 4 0.000 5 0.173
Sprint Review Meetings 2 3 0.000 4 0.000 4 0.039
Sprint Retrospective meetings 2 2 0.000 4 0.000 4 0.004
Proper execution of prescribed roles (Product Owner,

ScrumMaster, Team)
2 4 0.000 5 0.000 5 0.305

Wilcoxon test indicate that the greatest growth was

achieved in Sprints 1 and 2 when the level of

assimilation statistically significantly differed from

preceding Sprints 0 and 1 for all practices studied. In
Sprint 3 the growth was somewhat slower, but still

statistically significant with regard to 5 practices out

of 13.

4.2 Research questions RQ3, RQ4 and RQ5

Results referring to research questions RQ3, RQ4

and RQ5 (i.e., the second part of the questionnaire)
are gathered in Table 5. For each Sprint, themedian

values for 29 factors that (according to the DOI

theory)possibly influence thediffusionofan innova-

tion are shown indicating how students rated their

importance on a 7-point Likert scale. The ‘‘p-value’’

columns in Sprints 1, 2, and 3 represent the results of

the Mann-Whitney-Wilcoxon test that we used to

identify how significantly their opinions changed
fromprecedingSprint.The last twocolumnscontain

p-values of the Mann-Whitney-Wilcoxon test that

compared students’ opinions in initial Sprints (i.e.,

after Sprint 0 and Sprint 1) to their opinions at the

end of the course (i.e., after Sprint 3).

The results indicate that the great majority of

DOI factors were rated either ‘‘somewhat impor-

tant’’ (the median value 5) or ‘‘important’’ (the

median value 6). At the end of the course, there
were only 2 factors considered ‘‘neither important

nor unimportant’’ (themedian value 4), and none of

the factors was rated unimportant (the median

value 3 or less).

The number of DOI factors that the students

rated ‘‘somewhat important’’ was almost constant

across Sprints, while the number of factors rated

‘‘important’’ increased from4 after Sprint 0, to 11 at
the endof the course.On theother hand, the number

of DOI factors considered to be ‘‘neither important

nor unimportant’’ decreased from 7 at the begin-

ning, to 2 at the end of the course. There was only

one factor rated ‘‘somewhat unimportant’’ (the

median value 3) at the beginning but not later.

The p-values of the Mann-Whitney-Wilcoxon

test indicate that students’ opinions were relatively
stable and did not change a lot between two con-

secutive Sprints. Most changes occurred between

Sprint 0 and Sprint 1 when a statistically significant

difference was identified with regard to 5 DOI

The Influence of Diffusion of Innovation Theory Factors on Undergraduate Students’ Adoption of Scrum 2127

Table 5. Students’ perceptions of DOI factors across Sprints

Sprint 0 Sprint 1 Sprint 2 Sprint 3

Sprint 3
vs.
Sprint 0

Sprint 3
vs.
Sprint 1

DOI factors Median Median p-value Median p-value Median p-value p-value p-value

Innovation Relative advantage 6 5 0.551 5 0.743 5 0.975 0.844 0.681
Ease of use 5 6 0.011 5 0.803 5 0.471 0.085 0.289
Compatibility 5 5 0.834 6 0.494 6 0.411 0.199 0.091
Visibility 5 5 0.570 5 0.028 5 0.258 0.009 0.001
Trialability 5 5 0.203 6 0.489 6 0.794 0.026 0.326
Price 5 5 0.048 6 0.466 5 0.688 0.001 0.217
Problem solver 5 5 0.971 5 0.483 6 0.024 0.005 0.004
Standard 5 4 0.296 5 0.329 5 0.072 0.140 0.004
Technological edge 5 5 0.796 5 0.305 5 0.409 0.120 0.052

Task Commercial advantage 6 5.5 0.624 6 0.745 6 0.167 0.338 0.099
User need recognition 5 5 0.923 5 0.536 6 0.420 0.143 0.103
User resistance 5 5 0.653 5 0.236 5 0.538 0.781 0.486

Individual Own testing 4 4 0.259 5 0.000 5 0.655 0.000 0.000
Personal contact network 4 4 0.821 4 0.140 4 0.255 0.014 0.005
Own rules and control of

work
5 5 0.328 5 0.171 5 0.651 0.004 0.064

Learning by doing 5 5 0.194 5 0.433 5 0.318 0.003 0.059
Environmental Cultural values 5 5 0.382 6 0.289 6 0.115 0.000 0.017

Technological
infrastructure

6 6 0.402 6 0.771 6 0.417 0.044 0.237

Community norms 4 5 0.000 5 0.355 5.5 0.875 0.000 0.261
Funding 5 6 0.496 6 0.280 6 0.251 0.009 0.030

Organizational Interpersonal networks 4 4 0.522 4 0.064 4 0.667 0.073 0.016
Peer networks 5 5 0.594 6 0.697 6 0.587 0.199 0.365
Informal communication 6 6 0.209 6 0.247 6 0.815 0.032 0.339
Technological experience 3 4 0.002 5 0.000 5 0.402 0.000 0.000
Working teams 5 5 0.077 6 0.506 6 0.449 0.002 0.121
Opinion leaders and change

agents
4 4 0.540 4 0.151 5 0.128 0.026 0.002

Interdependence from
others

4 5 0.008 5 0.478 5 0.201 0.000 0.028

Adopter type 4 4 0.661 5 0.001 5 0.997 0.002 0.002
Management hierarchy 5 6 0.201 6 0.980 5 0.116 0.951 0.110

factors out of 29. Afterwards, the number of statis-

tically significant changes diminished to 4 (between

Sprints 1 and 2) and 1 (between Sprints 2 and 3).

Therefore, it can be concluded that after Sprint 3 the

students’ opinions stabilized so that the results of

the survey after Sprint 3 can be used to interpret the
influence of DOI factors on their acceptance of

Scrum.

With regard to research question RQ3, these

results suggest that there are 11 DOI factors with

the median value 6 that mostly influence students’

willingness to accept Scrum as a new software

development methodology. These factors belong

to the following sets:

� Innovation factors: compatibility, trialability,

problem solver.

� Task factors: commercial advantage, user need

recognition.

� Environmental factors: cultural values, techno-

logical infrastructure, funding.

� Organizational factors: peer networks, informal
communication, working teams.

It is alsoworth noting that 9 (out of 10) changes in

students’ opinions between consecutive Sprints that

the Mann-Whitney-Wilcoxon test found to be sig-

nificant did not affect the findings of RQ3 since all

these changes referred to factors with lower impact,

i.e., having median values less than 6 after Sprint 3.
The only significant change in student opinions that

affected the result of RQ3 happened between

Sprints 2 and 3 when the survey revealed increased

importance of the problem solver factor.

Therefore, with regard to research question RQ4,

it cannot be concluded only that the student opi-

nions were relatively stable and did not change a lot

from Sprint to Sprint, but also that the changes in
their opinions did not influence the identification of

most important acceptance factors.

With regard to research question RQ5, the p-

values in the last two columns of Table 5 indicate (at

least at first sight) quite a lot of significant differ-

ences in students’ opinions between Sprint 3 and

initial Sprints 0 and 1. However, a more in-depth

analysis has shown that:

� Most of the significant differences (11 out of 18 in

comparison of Sprint 3 to Sprint 0 and 9 out of 12

in comparison of Sprint 3 to Sprint 1) referred to

factors that were found not to be important for

Scrum acceptance, thus not affecting the findings

of research question RQ3.

� All significant differences concerning important
acceptance factors were consistently in favor of

these factors. The perceived importance of these

factors grew during the course and was greater

after Sprint 3 than after Sprints 0 and 1, thus

indicating increasing awareness of importance of

these factors.

Therefore, research question RQ5 did not identify

such differences between adoptive and post-adop-

tive stages that would significantly affect the identi-

fication of most important acceptance factors.

5. Discussion

5.1 Research questions RQ1 and RQ2

With regard to research questions RQ1 and RQ2,
the results presented in Table 4 confirm the pre-

vailing opinion that agile software development

methods are best taught through practical project

work [49].

Immediately after Sprint 0, all Scrum practices

were rather new to the students, since most of them

had no previous experience with Scrum, but only

got acquainted with it during initial lectures. There-
fore, it is normal that the great majority chose

answer 2 (i.e., I have not performed this practice

yet.), thus indicating their assimilation of Scrum to

be at the adoption stage considering the 6-stage

model of Cooper and Zmud [37]. Afterwards, the

experience gained through practical project work

helped them to master Scrum practices quickly and

the assimilation level grew from Sprint to Sprint
reaching the acceptance and routinization levels at

the end of Sprint 3.

These results are in line with previous research

that the authors performed within the scope of the

software engineering course. A study on effort

estimating and planning [43] found that the initial

plans and effort estimates tend to be over-optimis-

tic, but the abilities of estimating and planning
improve from Sprint to Sprint so that most student

teams are able to define almost accurate Sprint plans

at the end of the course. A comprehensive analysis

of students’ opinions on user stories as a means for

requirements specification [35] revealed that (in

spite of initial doubts) the greatmajority of students

successfully master this practice after three Sprints.

From the viewpoint of the capstone course execu-
tion, it is worth noting the differences among

practices in terms of how quickly and how deeply

their assimilation takes place. Table 4 clearly shows

that the practices that Scrum requires to be per-

formed on everyday basis (e.g., maintenance of the

Sprint Backlog and Daily Scrum meetings) were

assimilated more quickly and reached a higher

assimilation stage than the practices that are per-
formed periodically (e.g., release planning, Sprint

reviewmeetings, andSprint retrospectivemeetings).

While this difference is understandable with

regard to the aforementioned practices, the lower

assimilation level of the progress monitoring

Viljan Mahnič and Tomaž Hovelja2128

through burndown charts indicates a possible defi-

ciency in the capstone course execution suggesting

more attention to be devoted to this issue. Students

should be encouraged to use Sprint burndown

charts on everyday basis in order to have control

over their projects and fulfillment of scope.
On the other hand, we were gratified that the

students quickly grasped the use of user stories for

requirements specification and proper execution of

prescribed roles.With regard touser stories, it seems

that our experience fromprevious years helped us to

overcome initial doubts and establish appropriate

expectations from the very beginning so that the

students assimilated this new lightweight technique
without problems. Successful use of user stories

greatly depends on proper execution of prescribed

roles, especially the role of Product Owner; there-

fore, it was beneficial for the course that these

practices became a routine very soon.

As already mentioned, the practices that are

performed only periodically (with exemption of

Sprint planning and strict enforcement of the con-
cept of ‘‘done’’) reached lower level of assimilation.

This problem can be alleviated by using shorter

Sprints and dividing the project into several

releases. In such a way the students would have

more possibilities to practice release and Sprint

planning as well as Sprint review and Sprint retro-

spective meetings. The concept of ‘‘done’’ could be

further enforced by evaluating user stories
promptly, not only at the end of the Sprint.

5.2 Research questions RQ3, RQ4 and RQ5

With regard to research question RQ3, 11 most

influential DOI factors were identified that should

be considered when teaching Scrum within the

scope of a software engineering capstone course
and preparing students to use it in their workplace.

Considering the innovation factors, the students

are keener to accept Scrum if they find it compatible

with their vision of how software should be devel-

oped, if they are able to try it in practice, and if they

find it useful for managing their software develop-

ment projects. With regard to task factors, they

should believe that using Scrum significantly con-
tributes to better customer satisfaction andmatches

the programmers’ needs in software development.

The high rating of the trialabilty factor stressed

once again the importance of practical work when

teaching agile methods to students. With regard to

other important innovation and task factors (i.e.,

compatibility, problem solver, commercial advan-

tage, and user need recognition) it is crucial that
students understand the problems that most fre-

quently occur in software development and know

how Scrum can be used to solve them. Ceschi et al.

[6] cite the results of surveys of more than 8,000

projects showing that most project failures involve

stakeholder problems causing that projects fail

because of people and project management issues

rather than technical issues. These problems are

exactly the ones that Scrum is focused on. There-

fore, during Sprint 0 Scrum should be presented to
students as an appropriate tool for solving these

problems and gaining commercial advantage.Addi-

tionally, the introduction of Scrum should be com-

patible with their preferred way of working as much

as possible.

The acceptance of Scrum also greatly depends on

environmental factors, which require its seamless

incorporation in the study process, not disturbing
the execution of other courses and complying with

students’ values regarding usefulness of the knowl-

edge obtained. It is important that the students are

provided with all required technological infrastruc-

ture and adequate support from the part of instruc-

tors playing the roles of ScrumMasters and Product

Owners.

The role of the Product Owner is particularly
important, since it is crucial for the success of a

Scrum project [20]. He/she must communicate the

vision of what is to be developed and define the

criteria by which it will be judged. In order to ensure

smooth running of the course, the Product Owner

must provide timely answers to questions on details

of user stories, and make quick evaluations of work

completed strictly enforcing the concept of ‘‘done’’.
A nonresponsive Product Owner can cause unpro-

ductive work periods, which make iteration plan-

ning more difficult or even impossible.

The required technological infrastructure should

also comprise a Scrum project management tool

that facilitates students the managing of their pro-

jects and helps the teaching staff with monitoring

students’ progress and reducing the burden of
administrative work. An open source or a commer-

cial tool of this kind can be used; however, an in-

house developed tool can provide facilities that

better match students’ and teachers’ needs [50].

With regard to organizational factors, the results

indicate that the acceptance of Scrum greatly

depends on social relationships among students.

Teamwork plays an important role and teams
composed of students that have been hobnobbing

together since freshman year are expected to obtain

better results. Therefore, the capstone course

designers should consider the possibility to allow

students to decide who they should work with when

forming student teams.

The results also expose the importance of infor-

mal communication and Scrum’s concepts of self-
organizing and self-managing teams, allowing the

students to plan their work and assign tasks by

themselves. It seems that students like the freedom

The Influence of Diffusion of Innovation Theory Factors on Undergraduate Students’ Adoption of Scrum 2129

that Scrum gives development teams and are ready

to accept responsibility to find the best way how to

accomplish the work committed.

On the other hand, the personal contact network

and interpersonal network factors appeared to be

least influential, being rated neither important nor
unimportant. It is possible that the students eval-

uated these two factors in view of the fact that the

use of Scrum was prescribed by the teacher, thus

perceiving the exchange of experiences and evalua-

tions of Scrum with their peers less important.

Findings of research questions RQ4 and RQ5

further corroborate the results of research question

RQ3. Most changes in students’ opinions that were
identified during before-after analysis concerned

adoption factors that appeared to be less important

for Scrum acceptance. On the other hand, students’

opinions regarding the 11 important factors found

within the scope of research question RQ3 were

consistent and indicated constant growth of their

importance from Sprint to Sprint.

5.3 Relevance for software engineering and

information systems research

While the primary purpose of this study was to

provide an in-depth analysis of students’ acceptance

of Scrum, its results can be used in software engi-

neering research to pose initial hypotheses regard-

ing Scrum adoption in industrial settings as
suggested by Craver et al. [41]. Several studies

have shown that in a project setting where the

students have made a true commitment, students

tend to act and think more like professionals [51]

and provide answers that are in line with industrial

practice [52]. Given the fact that the current body of

knowledge lacks studies on Scrum [53–55], using

student subjects in empirical studies can be helpful
in filling this gap.

At the time of this writing, we were only able to

find two studies dealing with acceptance of Scrum.

Overhage et al. [56] developed a framework of

drivers and inhibitors to developer acceptance of

Scrum by upgrading the extended Technology

AcceptanceModel [57], whileOverhage andSchlau-

derer [58] investigated long-term Scrum acceptance
from the viewpoint of threeDOI factors considering

only apart of the innovation dimension, i.e., relative

advantage, compatibility, and complexity. How-

ever, to the best of our knowledge, there has been

no studydealingwithScrumacceptance considering

the whole range of DOI factors.

On the other hand, the DOI theory served as the

basis for a longitudinal study on why organizations
adopt information system process innovations [47].

The authors analyzed factors that affected over 200

information system process innovation decisions

over a period that spanned four decades. It was

found that in all adoptions the innovation factor

played the most important role, while other factors

varied from one innovation type to another.

More research was also oriented towards extreme

programming (XP), although XP is by far less used

in industry than Scrum. Acceptance of XP in terms
of the innovation diffusion cycle was studied by

Mangalaraj et al. [40] who found individual, team,

technological, task, and environmental factors to

influence the acceptance of XP practices in an

organization.

5.4 Threats to validity

It is possible that the results concerning students’

perceptions of Scrum were affected by the way how

the capstone course was delivered. Therefore, the
stage of assimilation Scrum practices and students’

opinions on importance of DOI factors must be

interpreted in terms of the context in which Scrum

was introduced. It can be argued that the results are

valid within the context of a software engineering

capstone course and can be generalized with regard

to teaching such a course in a similar way.

From the viewpoint of using Scrum in industry
the main limitation of our study is that it was

conducted with students in an academic environ-

ment. However, in order to increase the validity of

findings, every effort was made to simulate an

industrial environment as closely as possible. Stu-

dents worked on projects dealing with real life

problems (one of them was defined in cooperation

with a software company) and followed the Scrum
method as strictly as their other academic duties

allowed.

It is also possible that students exaggerated in

their opinions concerning the stage of assimilation

of Scrumpractices. However, the results of previous

studies on students’ abilities of effort estimation and

planning [43] and their opinions on user stories [35]

also confirm that students obtain considerable
knowledge and experience to use Scrum practices

effectively and efficiently at the end of the course.

Another possible threat to validity stems from the

fact that students’ opinions were gathered by the

means of a questionnaire, which did not allow to

explain their opinions in more detail. Additionally,

it is possible that different students interpreted the

questions in a different way. Therefore, augmenting
the questionnaire with structured interviews with a

representative subset of students would improve the

validity.

6. Conclusions

The aim of our study was twofold: (1) to analyze the

level of assimilation of core Scrum practices when

Scrum is taught to undergraduates within the scope

Viljan Mahnič and Tomaž Hovelja2130

of a software engineering capstone course; (2) to

identify those DOI factors that most significantly

influence Scrum acceptance among students.

With regard to the first aim, the results of the

study confirm that the software engineering cap-

stone course is an appropriate place for exposing
students to Scrum. It is shown that practical work

helps students to assimilate core Scrum practices so

that they can use them in a way that corresponds to

routinization (9 practices) and acceptance stages

(4 practices) of the innovation diffusion model.

With regard to the second aim, 11 DOI factors

were identified that most importantly influence

students’ acceptance of Scrum. These factors
belong to innovation, task, environmental, and

organizational dimensions and should be consid-

ered when designing the capstone course.

It is expected that the findings of this study will

have implications on how Scrum is taught to under-

graduates. While the results in general show a high

level of assimilation of Scrum practices, the study

also revealed several possibilities for improvement.
Particularly those practices that Scrum requires to

be performed periodically should deserve more

attention since their assimilation was lower com-

pared to practices that are performed on everyday

basis. Therefore, it is suggested to use shorter

Sprints and split the project into two (or more)

releases in order to increase the number of release

planning, Sprint planning, Sprint review, and Sprint
retrospective meetings. More attention should also

be devoted to the use of burndown charts as ameans

for monitoring project progress.

With regard to DOI factors influencing Scrum

acceptance, the problem solver, commercial advan-

tage, user need recognition, and compatibility fac-

tors should be adequately addressed through

theoretical lessons during Sprint 0. The lessons
should instill appropriate expectations regarding

Scrum benefits so that the students could recognize

its usefulness for solving software development

problems and obtaining greater customer satisfac-

tion. These perceptions should be further amplified

through practical work on the project.

The environmental factors require the Scrum

course to be incorporated in the study process
seamlessly, provide students with all required tech-

nological infrastructure (including software for

managingScrumprojects), andensureproperexecu-

tion of the Product Owner and ScrumMaster roles.

In order to satisfy the organizational factors, the

course should encourage social relationships among

students, allow them to choose their own teams, and

let them organize their work themselves. These
factors concur with Scrum concepts of face-to-face

communication and self-managing teams, which

additionally facilitates Scrum acceptance.

The results of the study can also be used for

posing initial hypotheses regarding Scrum adoption

in industrial settings. From this viewpoint, it is

important that the study established a framework

covering the whole range of DOI factors, which can

be used for further research.

References

1. P. Abrahamsson, O. Salo, J. Ronkainen and J.Warsta,Agile
software development methods, VTT Electronic, Espoo, Fin-
land, 2002.

2. L.Williams, Agile software development methodologies and
practices, Advances in Computers, 80, 2010, pp. 1–44.

3. D. West and T. Grant, Agile Development: Mainstream
adoption has changed agility, Trends in real-world adoption
of agile methods, Forrester Research, January 20, 2010,
https:// www.forrester.com/Agile+Development+Mainstream
+Adoption+Has+Changed+Agility/fulltext/-/E-RES56100?
objectid=RES56100, accessed 1 February 2016.

4. VersionOne, 9th Annual State of Agile Survey, Atlanta, GA.
http://info.versionone.com/state-of-agile-development-
survey-ninth.html, accessed 1 February 2016.

5. S. W. Ambler, Has agile peaked? Let’s look at the numbers.
Dr. Dobb’s Journal, May 07, 2008, http://www.ddj.com/
architect/207600615?pgno=1, accessed 1 February 2016.

6. M. Ceschi, A. Sillitti, G. Succi and S. De Panfilis, Project
management in plan-based and agile companies. IEEE Soft-
ware, 22(3), 2005, pp. 21–27.

7. C.MannandF.Maurer,Acase studyon the impactof Scrum
on overtime and customer satisfaction, Proceedings of the
Agile Development Conference (ADC’05), Denver, CO, 24–
29 July 2005, pp. 70–79.

8. D. F. Rico and H. H. Sayani, Use of agile methods in
software engineering education, Proceedings of the Agile
2009 Conference, Chicago, IL, August 24–28, 2009, pp.
174–179.

9. O. Hazzan and Y. Dubinsky, Teaching a software develop-
ment methodology: The case of Extreme Programming,
Proceedings of the 16th Conference on Software Engineering
Education andTraining (CSEET’03),Madrid, Spain,March
20–22, 2003, pp. 176–184.

10. Y. Dubinsky and O. Hazzan, eXtreme programming as a
framework for student-project coaching in computer science
capstone courses, Proceedings of the IEEE International
Conference on Software-Science, Technology & Engineering
(SwSTE’03), Herzlia, Israel, 4–5 November 2003, pp. 53–
59.

11. A. Shukla andL.Williams,AdaptingExtremeProgramming
for a core software engineering course, Proceedings of the
15th Conference on Software Engineering Education and
Training (CSEET’02), Covington, KY, 25–27 February
2002, pp. 184–191.

12. L. Williams, Lessons learned from seven years of pair
programming at North Carolina State University, ACM
SIGCSE Bulletin, 39(4), 2007, pp. 79–83.

13. P. J. Schroeder and D. Rothe, Teaching unit testing using
test-driven development, 4th Annual Workshop on Teaching
Software Testing (WTST 4), Florida Institute of Technol-
ogy, Melbourne, FL, February 4–6, 2005. http://www.
testingeducation.org/conference/wtst4/pjs_wtst4.pdf,
accessed 1 February 2016.

14. S. Xu andV.Rajlich, Empirical validation of test-driven pair
programming in game development, Proceedings of the 5th
IEEE/ACIS International Conference onComputer and Infor-
mation Science and 1st IEEE/ACIS International Workshop
on Component-Based Software Engineering, Software Archi-
tecture and Reuse (ICIS-COMSAR’06), Honolulu, HI, 10–
12 July 2006, pp. 500–505.

15. K. Schwaber,Agile ProjectManagement with Scrum, Micro-
soft Press, Redmond, 2004.

16. K. Schwaber and M. Beedle, Agile Software Development
with Scrum, Prentice-Hall, Upper Saddle River, 2002.

The Influence of Diffusion of Innovation Theory Factors on Undergraduate Students’ Adoption of Scrum 2131

17. V. Mahnic, Scrum in software engineering courses: an out-
line of the literature, Global Journal of Engineering Educa-
tion, 17(2), 2015, pp. 77–83.

18. V. Mahnic, Teaching Scrum through team-project work:
students’ perceptions and teacher’s observations, Interna-
tional Journal of Engineering Education, 26(1), 2010, pp. 96–
110.

19. T. Reichlmayr, Working towards the student Scrum—
developing agile Android applications, Proceedings of the
118th ASEE Annual Conference and Exposition, Vancouver,
Canada, June 26–29, 2011, p. 12.

20. V.Mahnic,A capstone course on agile software development
using Scrum, IEEE Transactions on Education, 55(1), 2012,
pp. 99–106.

21. L. Werner, D. Arcamone and B. Ross, Using Scrum in a
quarter-length undergraduate software engineering course.
Journal of Computing Sciences in Colleges, 27(4), 2012, pp.
140–150.

22. M. Kropp and A. Meier, Teaching agile software develop-
ment at university level: Values, management, and crafts-
manship, Proceedings of the 26th Conference on Software
Engineering Education and Training, San Francisco, CA,
May 19–21, 2013, pp. 179–188.

23. A. Scharf and A. Koch, Scrum in a software engineering
course: an in-depth praxis report, Proceedings of the 26th
Conference on Software Engineering Education and Training
(CSEE&T 2013), San Francisco, CA,May 19–21, 2013, pp.
159–168.

24. S. D. Zorzo, L. De Ponte and D. Lucredio, Using Scrum to
teach software engineering: a case study, Proceedings of the
Frontiers in Education Conference, Oklahoma City, OK,
October 23–26, 2013, pp. 455–461.

25. K. Schwaber and J. Sutherland, The Scrum Guide, 2013,
http://www.scrumguides.org/, accessed 1 February 2016.

26. C. G. Von Wangenheim, R. Savi and A. F. Borgatto,
SCRUMIA–An educational game for teaching SCRUM in
computing courses, Journal of Systems and Software, 86(10),
2013, pp. 2675–2687.

27. G. Rodriguez, A. Soria and M. Campo, Virtual Scrum: a
teaching aid to introduce undergraduate software engineer-
ing students to scrum, Computer Applications in Engineering
Education, 23(1), 2015, pp. 147–156.

28. M. Paasivaara, V. Heikkilä, C. Lassenius and T. Toivola,
Teaching students Scrum using LEGO blocks, Companion
Proceedings of the 36th International Conference on Software
Engineering, Hyderabad, India, May 31–June 7, 2014, pp.
382–391.

29. M. Paasivaara, C. Lassenius, D. Damian, P. Raty and A.
Schroter, Teaching students global software engineering
skills using distributed Scrum, Proceedings of the 35th Inter-
national Conference on Software Engineering, San Francisco,
CA, May 18–26, 2013, pp. 1128–1137.

30. E. Scott, G. Rodriguez, A. Soria and M. Campo, Are
learning styles useful indicators to discover how students
use Scrum for the first time?, Computers in Human Behavior,
36, 2014, pp. 56–64.

31. E. Scott, G. Rodriguez, A. Soria and M. Campo, Towards
better Scrum learning using learning styles, Journal of
Systems and Software, 111, 2016, pp. 242–253.

32. G. Rodriguez, A. Soria and M. Campo, Measuring the
impact of agile coaching on students’ performance, IEEE
Transactions on Education, 59(3), 2016, pp. 202–209.

33. C. Fernandez, G. Esteban, F. J. Rodriguez-Lera, F. Rodri-
guez-Sedano and D. Diez, Design patterns combination for
agile development of teaching/learning haptic simulators,
International Journal of Engineering Education, 32(2B),
2016, pp. 1036–1052.

34. M. Cohn, User Stories Applied for Agile Software Develop-
ment, Addison-Wesley, Boston, 2004.

35. V. Mahnic and T. Hovelja, Teaching user stories within the
scope of a software engineering capstone course: analysis of
students’ opinions, International Journal of Engineering
Education, 30(4), 2014, pp. 901–915.

36. T. H. Kwon and R. W. Zmud, Unifying the fragmented
models of information systems implementation, in R. J.
Boland and R. A. Hirschheim (eds.): Critical Issues in

Information Systems Research, Wiley & Sons, New York,
1987, pp. 227–251.

37. R. B. Cooper and R. W. Zmud, Information technology
implementation research: A technological diffusion
approach,Management Science, 36, 1990, pp.123–139.

38. E. M. Rogers, Diffusion of Innovations, 5th edition, Free
Press, New York, 2003.

39. M. Senapathi and A. Srinivasan, Understanding post-adop-
tive agile usage: An exploratory cross-case analysis, Journal
of Systems and Software, 85(6), 2012, pp. 1255–1268.

40. G. Mangalaraj, R. Mahapatra and S. Nerur, Acceptance of
software process innovations—the case of extreme program-
ming,European Journal of InformationSystems, 18, 2009, pp.
344–354.

41. J. Carver, L. Jaccheri, S. Morasca and F. Shull, Issues in
using students in empirical studies in software engineering
education, Proceedings of the 9th International Software
Metrics Symposium, Sydney, Australia, September 3–5,
2003, pp. 239–249.

42. J.C.Carver, L. Jaccheri, S.MorascaandF. Shull,A checklist
for integrating student empirical studies with research and
teaching goals, Empirical Software Engineering, 15(1), 2010,
pp. 35–59.

43. V. Mahnic, A case study on agile estimating and planning
using Scrum, Elektronika ir Elektrotechnika (Electronics and
Electrical Engineering), 111(5), 2011, pp. 123–128.

44. V. Mahnic and T. Hovelja, On using planning poker for
estimating user stories, Journal of Systems and Software,
85(9), 2012, pp. 2086–2095.

45. M. Cohn, Agile Estimating and Planning, Prentice Hall,
Upper Saddle River, 2006.

46. J. Grenning, Planning poker or how to avoid analysis
paralysis while release planning, 2002, http://www.renaissance
software.net/files/articles/PlanningPoker-v1.1.pdf, accessed 1
February 2016.

47. E. Mustonen-Ollila and K. Lyytinen, Why organizations
adopt information system process innovations: a longitudi-
nal study using Diffusion of Innovation theory, Information
Systems Journal, 13(3), 2003, pp. 275–297.

48. H. B. Mann and D. R. Whitney, On a test of whether one of
two random variables is stochastically larger than the other,
Annals of Mathematical Statistics, 18(1), 1947, pp. 50–60.

49. V. Devedžić and S. R. Milenković, Teaching agile software
development: A case study, IEEETransactions onEducation,
54(2), 2011, pp. 273–278.

50. V. Mahnic and A. Casar, A computerized support tool for
conducting a Scrum-based software engineering capstone
course, International Journal of Engineering Education,
32(1), 2016, pp. 278–293.

51. P. Berander, Using students as subjects in requirements
prioritization, Proceedings of the 2004 International Sympo-
sium on Empirical Software Engineering (ISESE’04), 19–20
August 2004, Redondo Beach, CA, pp. 167–176.

52. M. Svahnberg, A. Aurum and C. Wohlin, Using students as
subjects—an empirical evaluation,Proceedings of the Second
International Symposium on Empirical Software Engineering
andMeasurement (ESEM 2008), Kaiserslautern, Germany,
October 9–10, 2008, pp. 288–290.

53. T. Dybå and T. Dingsøyr, What do we know about agile
software development?, IEEESoftware, 26(5), 2009, pp. 6–9.

54. P.Abrahamsson,K.ConboyandX.Wang, ‘Lots done,more
to do’: the current state of agile systems development
research. European Journal of Information Systems, 18(4),
2009, pp. 281–284.

55. T. Dingsøyr, S. Nerur, V. Balijepally and N. B. Moe, A
decade of agile methodologies: Towards explaining agile
software development, Journal of Systems and Software,
85(6), 2012, pp. 1213–1221.

56. S. Overhage, S. Schlauderer, D. Birkmeier and J. Miller,
What makes IT personnel adopt Scrum? A framework of
drivers and inhibitors to developer acceptance, Proceedings
of the 44th Hawaii International Conference on System
Sciences, Koloa, Kauai, HI, January 4–7, 2011, pp. 1–10.

57. V. Venkatesh and F. D.Davis, A theoretical extension of the
technology acceptancemodel: four longitudinal field studies.
Management Science, 46(2), 2000, pp. 186–204.

Viljan Mahnič and Tomaž Hovelja2132

58. S. Overhage and S. Schlauderer, Investigating the long-term
acceptance of agile methodologies: an empirical study of
developer perceptions in Scrum projects, Proceedings of the

45th Hawaii International Conference on System Sciences,
Wailea, Maui, HI, January 4–7, 2012, pp. 5452–5461.

Viljan Mahnič is a Full Professor and the Head of the Software Engineering Laboratory at the Faculty of Computer and

Information Science of the University of Ljubljana, Slovenia. His teaching and research interests include agile software

development methods, software process improvement, empirical software engineering, and software measurement. He

received his Ph. D. in Computer Science from the University of Ljubljana in 1990.

Tomaž Hovelja is an Assistant Professor at the Faculty of Computer and Information Science of the University of

Ljubljana, Slovenia.His researchareas are social, economic andorganizational factors of ITdeployment in enterprises and

IT projects success criteria. He received his Ph. D. in Economics from the University of Ljubljana in 2006.

The Influence of Diffusion of Innovation Theory Factors on Undergraduate Students’ Adoption of Scrum 2133

