
Linux Based Virtual Networking Laboratories for Software

Defined Networking*

VLADIMIR DJURICA and MIROSLAV MINOVIĆ
University of Belgrade, Faculty of Organisational Sciences, Jove Ilića 154, 11 000 Belgrade, Republic of Serbia.

E-mail: {djuricav | miroslav.minovic}@fon.bg.ac.rs

With the fullymature and a vast number of available virtualization solutions, there is an uptake in creating the opportunity

for remote and/or virtual laboratories to either supplement or fully replace physical networking laboratories. Our

approach focuses on nodes, rather than environments hosting the nodes. The paper addresses setting up virtual

laboratories made of widely available, general purpose, operating systems based on Linux that act as a network operating

system. We discuss several Software Defined Networking solutions, and lay out the configuration setup for virtual

laboratories. We evaluate them by the opportunity they provide in the context of learning and a potential experience. We

conclude with an observation that with an increasing number of Linux based network operating systems, management of

network forwarding devices becomes management of servers, which leads to the unification of the cloud fabric.

Keywords: remote laboratory; virtual classroom; education in computer networking; Linux-based network operating systems

1. Introduction

The role and significance of virtual laboratories,

either remote or local, in computer networking

education, and especially Software Defined Net-

working (SDN) is continuously growing [1]. There

are ongoing considerations of its learning effective-

ness [2], the ability to mimic real environments, as

well as reflections on drawbacks and opportunities.

Currently, virtual laboratories are either hosted ona
private infrastructure or public clouds. They are

running on a variety of proprietary or open source

solutions, and can provide either a fully virtualized

environment, or be a supplement to the existing

physical infrastructure. In our opinion, some of the

key features that the virtual networking labora-

tories provide are: (i) increased access to labora-

tories, (ii) decreased price of experimentation, (iii)
increased flexibility and number of options, (iv)

increased scalability, (v) ability to save state, (vi)

ability to migrate device, (vii) ability to perform

templating.

The goal of this paper is to survey and evaluate

the setup of several computer networking virtual

laboratories that can be used for education and

experimentation. We further compare solutions by
their primary use cases. We focus primarily on

SDN, and Linux based network operating systems

for bare-metal switches. We assess YANC, Open-

Switch, Cumulus VX andMininet as virtual labora-

tory solutions, as well as review their technical

capabilities (Tables 5 and 6).

Our hypothesis is that the Linux based virtual

laboratories can be used to create inexpensive, both
traditional and SDN computer networking labora-

tories, including virtual and non-virtual, as well as

local and remote setups.
Computer networks are the major Internet build-

ing block and its evolution is essential to its growth.

Every network architecture contains control and

(packet) forwarding plane. In traditional architec-

tures those two planes are tightly coupled together.

For that reason, the traditional architectures have

proved to be complex, slow to respond to changes

and difficult to manage. As an answer to these
challenges, there have been many attempts to

make networks more programmable [3–7]. Soft-

ware Defined Networking (SDN) [8] is an approach

to computer networking architecture, which

enables the innovation, programmability and sim-

plified network management. It breaks the vertical

integration by decoupling control and data planes,

providing logically centralized control and network
programmability.

In the last several years, there has been an uptake

in the development of network operating systems

based on Linux. These systems are portable across

multiple hardware platforms, unlike many existing

proprietary solutions. Furthermore, they can also

be easily ported into any general purpose hypervi-

sor, and used to setup a virtual teaching facility, or
experimentation testbed. These virtual laboratories

can be setup in one of the following ways: (1) local

virtual laboratory, running on a host-based hyper-

visor (known as type 2 virtualization), where a

researcher/student can set up the laboratory on its

own computer, (2) remote virtual laboratory, run-

ning on a bare-metal hypervisor (known as type 1

virtualization), mainly used by institutions, and (3)
an augmented laboratory based on the Linux oper-

* Accepted 13 December 2016. 877

International Journal of Engineering Education Vol. 33, No. 2(B), pp. 877–886, 2017 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2017 TEMPUS Publications.

ating system. The third option means that by instal-

ling the software along with the package dependen-

cies to any Linux based machine, it is possible to

create a virtual laboratory. Such laboratory can sit

on a personal computer, as well as on a remote

server, bare-metal or virtualized.
For the above mentioned cases of full stack

virtualizations (options 1 and 2), we setup labora-

tories that use images which would normally be

deployed to the physical hardware without any

modification. We suggest use of vendor agnostic,

industry recognized Open Virtualization Format

for distributing full virtualization based labora-

tories. This way, the students are not limited by
choice of a hypervisor tool andmay experience a full

production environment. Full virtualization is par-

ticularly valuable for the cases of writing and testing

networking applications, especially for the

advanced courses in computer networking. Also,

compatibility and portability of such applications is

not an issue.

There is a limited number of laboratories and
tools used for SDN related experimentation. Mini-

net [9] has been often used for these purposes, while

other tools that we mention in this paper are mostly

not being used, or not at all. We also wanted to

highlight that SDN is a coined term for the entire

suite of heterogeneous solutions, and it is still

evolving. Our goal is to setup labs for SDNcategory

of bare-metal network switches based on open
source and free software, as well as consider other

experimentation, Linux based, platforms such as

YANC. We present our experience with setting up

laboratories based on images deployable to the

bare-metal withoutmodifications. For the solutions

we build from ground, we assume Ubuntu distribu-

tion,while highlighting that any otherDebian based

distribution can be used. While this is not a full
survey of all the tools that are available, it showcases

solutions that have emerged in the last four years,

and whose potential and the current adoption

encourages us to think of them as solid tools both

for students and industry.

We start with explaining approaches in computer

networking: traditional computer networking (Sec-

tion 2), Software Defined Networking (Section 3),
focusing on bare-metal switches (Section 4). Section

2 contains the problem statement. Section 3 dis-

cusses SDN as an answer to the challenges posed in

the traditional architecture design. Then, in Section

4, we discuss the network switch operating systems

for bare-metal switches and laboratory solutions

such as: YANC, OpenSwitch, Cumulus Linux and

Mininet. This section contains an example on how
to setup a laboratorywith abasic topology, together

with a general approach and guidelines. Finally, in

the discussion section (Section 5), we perform the

evaluation of each of the laboratories and conclude

the paper in Section 6.

2. Traditional computer networking

In this and the following section, we discuss the

concepts andmain challenges in computer network-

ing.We start with an introduction of the traditional

networking concepts that lays out the setting and

provides a better learning experience for the reader.

Next, wemake a connection between the traditional

computer networking, SDN and bare-metal

switches, as we provide the state of the art overview
of the field for which we are setting up the virtual

laboratories for.

Computer networks consist of network elements

performing different functions such as switching,

routing, firewalling, etc. [10]. Based on functional-

ity, a network is composed of two planes: control

plane and data, or forwarding plane. The control

planemakes traffic decisions and is considered to be
a network’s brain [11]. The forwarding plane per-

forms data forwarding functions based on control

plane’s decisions. In traditional computer network-

ing, control and data planes are coupled together,

typically in a proprietary vendor box [10], as

depicted in Fig. 1. Network elements are indepen-

dent, distributed and converge to a certain state

based on the information exchange. They run large
number of networking protocols that are, in many

cases, proprietary and closed solutions [8]. The

greatest challenges that the traditional networks

face are: (i) significant number of users that need

or use a fraction of features available within a

network device, (ii) increased capital expenses of

vertically integrated control and data planes

approach to the network boxes, (iii) slow innova-
tion due to the complexity of changes in network

protocols, (iv) difficult or impossible experimenta-

tion with new protocols (v) slow adoption of new

features due to the complexity of a specific vendor

change request process (subject to acceptance,

desired timeline, specific needs, quality, etc.), (vi)

diverse configuration interfaces across vendors and

products, and (vii) decentralized management of
non-programmable networks (challenge in automa-

tion and orchestration that results in high operating

expenses and are error-prone). Finally, there is (viii)

a huge inertia in the evolution of the Internet due to

the need for agreement among multiple organiza-

tions and large capital investments (i.e., Internet

ossification [12]).

The first attempt to answer the above mentioned
challenges resulted in the appearance of program-

mable networks [5]. Then, the SDN approach

followed [10], driven by the desire to innovate at a

software speed, and make the development of

Vladimir Djurica and Miroslav Minović878

computer networks similar to any other software

solution.

Another significant aspect of computer network-

ing, either traditional or SDN, is network virtuali-
zation [13]. The motivation for virtualization has

been: (i) increased and more efficient utilization of

hardware resources that can be shared, (ii) isolation,

mainly for security, privacy, and management rea-

sons, (iii) aggregation of physical resources to form

large virtual resources, larger than physical, (iv)

dynamic allocation of resources that can be done

on demand and (v) simplified management through
generalized programming abstractions.

Within programmable networks [5], predecessors

of SDN, the concept of network virtualization was

not new. In telecommunications, there was X.25

protocol that had a division of logical virtual

circuits and physical substrate to the supporting

virtual calls and permanent virtual circuits. Then,

there was a concept of virtual local area networks
(VLANs) that allowed full logical separation and

isolation of different networks. Virtual Private Net-

works (VPNs) came as an option to keep the traffic

private across public infrastructure.A virtual point-

to-point connection establishes the VPN, either by

using tunneling protocol or a traffic encryption.

Later on, network virtualization flourished in sev-

eral categories: virtualization of network interface
cards (NICs) (vNIC and pNIC), virtualization of

switches (vSwitch [14], VALE [15]), and virtualiza-

tion of LAN’s in clouds (such as VXLAN,NVGRE

and STT).

3. Software defined networking

SDN is an approach to computer networking that

assumes: (i) decoupling of control and data planes,

(ii) definition of interactions between the planes

through the well defined abstractions (API’s), (iii)

logically centralized management, (iv) programma-

bility, (v) and the open standard concept.

Data plane is a collection of simple forwarding
devices, typically a hardware, that performs for-

warding actions based on control plane decisions

such as forward, drop, forward to controller or

header rewrite. Control plane performs traffic deci-

sions and instructs forwarding plane, through a

southbound API, most commonly OpenFlow [16].

Control plane has full topology overview over its

domain and a complete control over multiple data
plane elements and its states. This control logic lives

inside SDN controller and is also called network

operating system. Controller provides services to

the SDN applications via a north bound API.

Depending on the architecture design, there can be

single or multiple controllers. In the instance of

multiple controllers, peer-to-peer information

exchange can be established through an east-west
API.To support themulti controller environment, a

network hypervisor is used and provides the ability

to create a new topology as an overlay to the existing

hardware topology.

Next, to clarify some other key concepts, we

define NFV, NV and discuss their relations to

SDN. SDN separates control from forwarding,

while providing logically centralized management,
orchestration and automation of network

resources. NFV optimizes network services, while

decoupling network functions from proprietary

hardware appliances, running them in software

with the goal to do a better and faster service

innovation and provisioning. NV is a technology

enabler for multi-tenancy by providing the support

for coexistence of various network architectures. It
is also an enabler for coexistence of multiple SDN

controllers.

Another almost fundamental thing for SDN

context is an OpenFlow protocol. Conceived at

Stanford and initially used on campus networks

[16], OpenFlow has been considered as the first

standard communication interface between control

and data planes. It is an open protocol for flow
programming in network devices, supporting pro-

duction from experimental traffic isolation. This

feature becomes the key testbed for conducting

network experiments. It became possible to try

new, non-IP based network protocols. Key building

blocks of an OpenFlow switch are: (i) flow table,

having a matched action (forward, drop, flood,

header rewrite, send to controller) for any flow, (ii)
secure channel, for communication between a

switch and a controller and (iii) OpenFlow protocol

Linux Based Virtual Networking Laboratories for Software Defined Networking 879

Fig. 1. Traditional, vertically integrated computer networks architecture.

that provides a communication standard between a

switch and a controller.
The motivation for OpenFlow came as a com-

promise between the legacy technology with large

deployment base and the new SDN concept. Since

this protocol brought the standardized API to

control data plane, networks were ready to

become more programmable, more software

defined. What OpenFlow offered was to leverage

the existing hardware by performing firmware
upgrade within network equipment, thus making

it OpenFlow enabled. To this end, we recognize two

types of OpenFlow switches: (i) dedicated, repre-

senting a simple data path forwarding element that

does not support l2/l3 processing, and (ii) Open-

Flow enabled switches, representing a vendor
switch that performs a firmware upgrade to support

the OpenFlow protocol.

Adding a new protocol to the OpenFlow enabled

network environment is achieved by the implemen-

tation that takes place inside the controller. The

steps include: (i) defining a new flow, (ii) tying it at

the desired ports, (iii) setting the forwarding of all

packets to the controller, and, finally, (iv) the new
protocol sets the flow entries in all other OpenFlow

switches within the experimental network slice.

The key benefit of the SDN approach in the

computer networking education is the ability to

Vladimir Djurica and Miroslav Minović880

Fig. 2. Possible representation of SDN architecture.

easily access and modify components and function-

alities of the systems that are traditionally either

difficult or impossible to modify [8, 10]. Further-

more, it can be done in a programmatic fashion,

taking the learning and experimentation to a new

level for both lecturers and students.

4. Network switch operating systems/for
bare-metal switches

More recently, an emerging form of the forwarding

element in SDN architectures, is a network white

box or a bare-metal switch. Unlike vendor proprie-

tary switches, these network elements can accept

variety of switch operating systems, commonly

Linux based. These are hardware agnostic switch

operating systems, as long as the driver support
exists. Combined with bare-metal switches, the

approach allows flexibility of choice and the envir-

onment optimization, while preventing vendor or

single solution locking.

There is a growing number of switch operating

systems based on Linux, such as OpenSwitch [17],

Cumulus Linux [18], Switch Light OS [19], PicOS

[20], that can be ported on to the bare-metal net-
work switches. In order for these operating systems

to support different hardware, only drivers are

needed. For this reason, we anticipate the future

uptake in use of these systems as well as the growth

in their diversity.

In the context of education, the experimentation

becomes possible within any hypervisor or Linux

based operating system, depending on a particular
solution, which unlocks and simplifies new ways of

setting up the laboratories and experiments.

Further, we present individual solutions.

4.1 Yet Another Network Controller (YANC)

YANC SDN controller [21] uses Linux operating

system and extends it to become a network operat-

ing system. The key challenge in SDN controller

solutions that YANC is trying to tackle, is a mono-

lithic SDNapplication design that is typically tied to

a programming language supported by the control-

ler. This is gating the pace and diversity of innova-
tion of SDN applications. Furthermore, most of

controllers have issues with platform portability

across various hardware architectures. Linux,

being a general and highly represented operating

system, can be deployed across varieties of archi-

tectures. It can run on a commodity and legacy

hardware, while securing the support for the future

hardware architectures without a need to vet across
the industry.

Within theYANC architecture, network applica-

tion design is not limited by the controller. The

abstraction of control plane protocol, such as the

OpenFlow, is represented by the driver in YANC

architecture. Supporting a new protocol assumes

writing a new driver, that can easily be added,

upgraded, replaced or removed. Administration of

applications’ behavior, rights andother interactions

is performed by a system administrator, andmanip-
ulations of the network state can be achieved using

standard Linux file system commands.

4.1.1 YANC Lab

With a slight modification, this can be used on any

Linux. We will run it on Ubuntu, a Debian based

distribution, and create the topology inFig. 3, as per

instructions in Table 1.

4.2 OpenSwitch

OpenSwitch was originally outsourced by Hewlett

Packard (Enterprise), and, a year later, changed the

project custodian to Linux Foundation. Open-

Switch is an open source, Linux based operating

system. Its command line interface and commands
are similar to those used for Cisco equipment. For

this reason, industry networking professionals are

expected to have a very steep learning curve and

easily leverage their existing knowledge.

Native Linux applications can be run on Open-

Switch, and it can be integrated with various exist-

ing solutions, such asQuagga, andprovides a restful

API for application level control. The appliance
itself provides an ability to control not only through

the command line interface and API, but also

through the web user interface, available through

the standard web port 80.

4.2.1 OpenSwitch lab

We assume VirtualBox [22] for this lab. The case

study considers two hosts trying to ping each other.

The same lab base will be used for Cumulus VX

below. Table 2 contains the setup instructions.

Linux Based Virtual Networking Laboratories for Software Defined Networking 881

Fig. 3. Yanc-of-adapter SDN controller.

4.3 Cumulus linux

CumulusLinux is a network operating systembased

onDebianLinux. It isaproprietarysolution, created
byCumulusNetworks [18].Thegoal is tohaveLinux

run on a commodity hardware spanning across

generalized hardware architecture. The motivation

is to overcome the following challenges: (i) limited

scalability in traditional networking environments,

(ii) complexity in configuration changes and its

propagation across network elements, (iii) high

cost of the equipment and its operation.
Many existing Linux tools, can potentially be run

natively on this operating system. Bash (or other)

scripting environment(s) can be fully utilized for

automation tasks. Furthermore, a nowadays de

facto industry standard orchestration, automation

and provisioning tools are supported such as Chef,

Puppet, CFEngine. Any industry standard pro-
gramming language that Debian supports can be

used, too. Switch driver is part of the Linux kernel,

and writing and adding a new driver is required to

provide support for a new hardware device. Rout-

ing, automation, orchestration, monitoring, appli-

cations, etc., are all in the user space and, therefore,

part of the hardware abstraction layer. Finally, cost

can be reduced through the utilization of a common
(software) platform for an existing hardware, and

by providing the ability to port system across a

diversified number of vendors and multiple CPU

architectures (x86, PowerPC and ARM).

Vladimir Djurica and Miroslav Minović882

Table 1

Command Description

sudo apt install git � Install Git versioning system needed for cloning yanc repository
from GitHub.

git clone https://github.com/ngn-colorado/yanc.git � Cloning yanc repository to local Ubuntu machine

sudo apt install util-linux - install util-linux dependency
sudo apt-get install bison
sudo apt-get install flex
sudo ./configure
sudo make j8
sudo make install

� Change to ’yanc’ directory
� Download https://github.com/libfuse/libfuse and unpack fuse-
2.9.6.tar.gz

� installing FUSE dependency
� installing util-linux dependency
� installing bison tool dependency
� installing flex tool dependency
� run configuration
� create build for FUSE dependency

sudo make � go back to yanc folder and run make for yanc

sudo mkdir /net - create folder
sudo chown <user> : <group> /net - make user owner of the folder
sudo ./yanc -f /net

� create /net folder
� make user owner of the folder
� run yanc
� this should started the yanc file system with /net as its mount
point.

/<yanc-path>/apps/of-adapter/ - change folder to
git submodule init
git submodule update
sudo apt install dbus
export PKG_CONFIG_PATH=�/yanc/apps/of-adapter/lib/om-
lib/om/ipc/dbus:$PKG_CONFIG_PATH
sudo apt-get install libdbus-glib-1-dev

� For this step, we will need a separate terminal windows.
� Next, we are starting yanc-of-adapter, utility that allows yanc file
system connection toOpenFlowbased switches.Wewill be using
Mininet for this operation.

� We will use git submodule commands to allow om-lib
submodule.

� Check: echo $PKG_CONFIG_PATH, if it’s empty add path
where ’dbus’ folder is located.

� to avoid reporting missing file dbus-1.pc install libdbus-glib-1-
dev

cd /<yanc-path>/apps/of-adapter/
sudo make
sudo ./yanc-of-adapter -h

� change directory
� make build
� This should create an executable named yanc-of-adapter.
� To check if this step has been successful we run yanc-of-
adapter -h

sudo apt-get install mininet
sudo mn
mininet> pingall

� Next, OpenFlow switches should allow yanc-of-adapter
connection to yanc file system.

� We will use Mininet to create virtual OpenFlow switches and
connect them to yanc-of-adapter acting as SDN controller. First
we install Mininet and then test for connectivity.

sudo ./yanc -f /net � Next we are going to run yanc file system, yanc-of-adapter and
Mininet. This will mount yanc under /net directory

<yanc-path>/apps/of-adapter
sudo ./yanc-of-adapter /net unix:path=/var/run/dbus/
system_bus_socket -vvv

� Open new terminal
� go to the folder ’of-adapter’
� start yanc-of-adapter (requires root privileges)

mn --controller=remote,ip=127.0.0.1,port=6633 � Open a new terminal and go to <mininet-folder>/bin
� create topology

4.3.1 Cumulus VX lab

Cumulus Linux VX comes in open virtualization

(OVF) format, nonspecific to any hypervisor. It can

be easily imported into a variety of hypervisors. For

the purpose of this, and all labs, we assume the

VirtualBox, the open source software. We will do a

simple lab of installing two switches, establishing
the connection and testing connectivity. Each of

themwill be running in a separate VM. InCumulus,

switch is called a leaf. For this lab (Table 3), we will

use swp1 (swpX stands for switch port, X for port

number). We consider the following topology:

Linux Based Virtual Networking Laboratories for Software Defined Networking 883

Table 2

Command Description

Download appliance � https://archive.openswitch.net/artifacts/periodic/master/latest/
appliance/

Virtual Host: Switch #1, Switch #2 (same settings)
Add network adapter
Attached to: Internal Network
Name: swp1
Promiscuous mode: Allow All
Cable Connected

� import appliances
� setup cable connection between hosts

user: root (no password)
type: vtysh
configure terminal
interface eth1
ip address 192.168.0.1/30
no shutdown

� configure Switch #1

user: root (no password)
type: vtysh
configure terminal
interface eth1
ip address 192.168.0.2/30
no shutdown

� configure Switch #2

ping 192.168.0.1 � test connectivity (e.g. from host #1 ping host #2)

Fig. 4. Cumulus Linux VX lab topology.

Table 3

Command Description

Download Cumulus VX 3.0.0 appliance � https://cumulusnetworks.com/cumulus-vx/download/

Virtual Host: Leaf1, Leaf2 (same settings)
Add network adapter
Attached to: Internal Network
Name: swp1
Promiscuous mode: Allow All
Cable Connected

� import appliance Leaf1
� setup cable connection between hosts
� repeat these steps for Leaf2

user: cumulus
password: CumulusLinux!

� Login to the system

sudo nano /etc/network/interfaces
add the following lines for swp1:
auto swp1
iface swp1
address 192.168.0.1/30
save the /etc/network/interfaces file

� Define swp1 and swp2 interfaces on leaf1

sudo ifup swp1 � bring up the interface leaf1, swp1

sudo nano /etc/network/interfaces
add the following lines for swp1:
auto swp1
iface swp1
address 192.168.0.2/30
save the /etc/network/interfaces file

� repeat steps for leaf2

sudo ifup swp1 � bring up the interface, leaf2, swp1

ip link show dev swp1 � check link state on leaf1, leaf2

ping -c 4 192.168.0.2 � from leaf1 ping leaf2 to verify connectivity

4.4 Mininet

Mininet is an early SDN tool [9]. It’s particularly

significant use case is ability to create a large

number of network resources and run the experi-

ment on the top of that topology. Mininet is

capable of emulating network elements such as

hosts, switches (l2/l3), routers and links, while

running on a single instance of Linux operating
systems. It is installable on most distributions. It

leverages the OpenFlow [16] as a switch control

protocol. There are two enhancements of Mininet:

Mininet Cluster Edition (CE), Mininet 2.0 (HiFi).

The first one is the extension for large scale simula-

tion at the order of thousands of nodes, and the

second one is a newer version with the functionality

extensions such as container based virtualization
support, bandwidth limitation, etc.

4.4.1 Mininet Lab.

The easiest is to download and import Mininet’s

full-stack virtual machine from: https://github.com/

mininet/mininet/wiki/Mininet-VM-Images and im-

port into the hypervisor such as VirtualBox. Alter-

natively, a package-based install for, say,Ubuntu, is
shown in Table 4.

5. Discussion

Most of the research efforts today focus on building

the environment for setting up network topologies

and running the experiments, such as Open Virtual

Lab (OVL) [23] and Virtual Network User Mode

Linux (VNUML) [24]. We consider the above

solutions from the network node standpoint, poten-
tially running in one such environment.

First, in Table 5, we evaluate setting up the

laboratories across several criteria. We treat them

as a laboratory solution, rather than just a product.

The following are the evaluation criteria:

� Solution: Solution Name

� HW Resources: Minimum hardware resources
that are required to setup a lab.

� Portability: Is it possible to configure a lab, and

then move it to another place, e.g. other hypervi-

sor / machine?

� Cloudification: Is it possible to setup a solution in

the cloud environment, either private or public?

� Setup: How challenging is a full setup of the

laboratory?
� Learning curve: For a particular SDN solution.

Vladimir Djurica and Miroslav Minović884

Table 4

Command Description

sudo apt-get install mininet � install mininet package

sudo service openvswitch-controller stop
sudo update-rc.d openvswitch-controller disable

� deactivate open-vswitch controller

sudo mn –test pingall � test Mininet

Table 5 Evaluation of laboratory solutions

Solution HW Resources Portability Cloudification Setup Difficulty Learning curve

YANC Minimum Linux Yes Yes Complex � requires advanced Linux
knowledge

� new concepts (state management
via file system)

� slow learning curve

OpenSwitch 1 x vCPU
512 MB RAM

Yes Yes Easy � mimics a typical large vendors
command line interface

� provides the familiar traditional
networking experience

� assumes prior industry knowledge,
steep learning curve

� with no prior knowledge, medium
learning curve

Cumulus VX 1 x vCPU
256 MB RAM

Yes Yes Easy � requires intermediate Linux
knowledge

� provides familiar Linux experience
� with prior Linux or networking
knowledge, medium learning curve

Mininet Minimum Linux Yes Yes Easy � new concepts by representation
(different commands but familiar
concepts)

In all our tests, we used the latest Ubuntu with its
minimum requirements. Further resource savings

can be made with different distributions, as well as

installation choices and configurations. For that

reason, wherever a different Linux distribution can

be used, we refer to Minimum Linux. For the

reference, Ubuntu system requirements [25] are:

� 1 x vCPU (Single core 700 MHz processor)

� 512 MB RAM (System Memory)

Below is the evaluation of the laboratory solu-

tions based on a survey with three groups with 30

students each at theUniversity of Belgrade, Faculty

of Organisational Sciences. The above instructions

were provided to the students upfront. Students
were asked to rate the setup difficulty and evaluate

the learning curve for the given solution.

Cumulus VX is a community version so its

limitation is that it is not a production-ready

system. It is good for educational purposes, but

the scope of experimentation with VX (community

edition) is limited.Mininet is an emulator and shows

some challenges in accurately representing the
behavior of a real system [26]. Mininet is also a

very powerful tool for the proof of concept SDN

applications using general purpose operating sys-

tems, and existing programming languages, and can

be easily translated into an production environ-

ment. YANC laboratory also relies on Mininet.

Table 6 provides another set of technical capabilities

that is important for considering solution.
YANC and OpenSwitch can potentially be used

equally in laboratories and the production. YANC

provides a new bold experimentation which might

be successful in the future. Students would benefit

from learning different concepts, operating systems

more, andwould face the SDNcontroller. As for the

OpenSwitch, its use case is leaned towards the

traditional environment. Therefore, if a course
curriculum is targeted towards exposing students

to the vendor equipment for the purpose of doing

real world experiment using the existing technolo-

gies, OpenSwitch would be a viable alternative.

6. Conclusions

Computer Networking is changing from the tradi-
tional towards the SDN driven approaches that

consider the separation between control and for-

warding planes. The potential education tools are

growing in the number and diversity. With the

virtualization solutions available, there is a gap,

but also a significant opportunity to create remote

and/or virtual laboratories to either complement or

replace physical laboratories. Together, general
purpose network operating systems and Software

Defined Networking (SDN) solutions have made

such laboratories easily achievable, and contain a

rich ensemble of learning and experimentation

testbeds in computer networking. We explored

the opportunity to set up virtual education labora-

tories, while focusing on using Linux based net-

work operating systems. Several designs were
proposed and the steps for building each of them

were outlined. We discussed the solutions and

evaluated them based on the provided opportu-

nities for learning and gaining experience, as well as

showcased the best use case for each of the labora-

tories.

Our future research will explore opportunities

for building a laboratory that consists of nodes
with heterogeneous SDN technologies, and their

evaluation using the similar criteria as before.

Further, we plan to explore the ability to orches-

trate such nodes in a programmatic fashion, in

order to provide a learning experience for the

higher level networking functions and applications.

We believe that the networking laboratory built on

the top of general operating systems converges
towards managing servers only, and suggest these

systems to be managed using the existing orches-

tration frameworks, such as Chef and Puppet,

scripting like Bash or general purpose program-

ming languages, e.g. Python. To this end, we plan

to continue exploring the ability to express and

teach high level network policies in virtual class-

room environments.

Linux Based Virtual Networking Laboratories for Software Defined Networking 885

Table 6. Technical capabilities of a solution

Increased Access Lower Price
Increased
Flexibility

Increased
Scalability State Save

Migration
capability

Perform
Templating

YANC Yes Yes Yes No No** Conditional***

OpenSwitch Yes Yes Yes Yes Yes Conditional***

Cumulus VX Yes* Yes Yes Yes Yes Conditional***

Mininet Yes Yes Yes No No** Conditional***

* Limited to the VX version. If advanced functionalities are need, the full version might be required.
** While the feature is not supported by default, it can be attained by installing the KVM or running it in the hypervisor.
*** Templating is the feature of the hypervisor. Since all of the tools can be installed and ran in the hypervisor of the choice, virtual
laboratory can be set to have this feature for each of the tools considered.

References

1. R. Heradio, L. de la Torre, D. Galan, F. J. Cabrerizo, E.
Herrera-Viedma and S. Dormido, Virtual and Remote Labs
in Education: a Bibliometric Analysis, Comput. Educ., 98,
2016, pp. 14–38.

2. X. Chen, G. Song and Y. Zhang, Virtual and Remote
Laboratory Development: A Review, Earth Sp. 2010 Eng.
Sci. Oper. Challenging Environ., 2010, pp. 3843–3852.

3. J. T. Moore and S. M. Nettles, Towards practical program-
mable packets, in Proceedings of the 20th Conference on
Computer Communications (INFOCOM). Citeseer, 2001.

4. K. Calvert, Reflections on network architecture: an active
networking perspective, ACM SIGCOMM Comput.
Commun. Rev., 36(2), 2006, pp. 27–30.

5. A. T. Campbell, H.G.DeMeer,M. E.Kounavis, K.Miki, J.
B. Vicente and D. Villela, A survey of programmable net-
works, ACM SIGCOMM Comput. Commun. Rev., 29(2),
1999, pp. 7–23.

6. A. Lazar, K.-S. Lim, F. Marconcini and others, Realizing a
foundation for programmability of atm networks with the
binding architecture, Sel. Areas Commun. IEEE J., 14(7),
1996, pp. 1214–1227.

7. A. T. Campbell, I. Katzela, K. Miki and J. Vicente, Open
signaling for ATM, internet and mobile networks (OPEN-
SIG’98),’ ACM SIGCOMM Comput. Commun. Rev., 29(1),
1999, pp. 97–108.

8. D. Kreutz, F. M. V Ramos, P. Esteves Verissimo, C. Esteve
Rothenberg, S.Azodolmolky andS.Uhlig, Software-defined
networking: A comprehensive survey, Proc. IEEE, 103(1),
2015, pp. 14–76.

9. R. L. S. DeOliveira, C.M. Schweitzer, A. A. Shinoda and L.
R. Prete, Using Mininet for emulation and prototyping
Software-Defined Networks, in 2014 IEEE Colombian Con-
ference on Communications and Computing, COLCOM
2014—Conference Proceedings, 2014.

10. B. A. A. Nunes,M.Mendonca, X. N. Nguyen, K. Obraczka
and T. Turletti, A survey of software-defined networking:
Past, present, and future of programmable networks, IEEE
Commun. Surv. Tutorials, 16(3), 2014, pp. 1617–1634.

11. H. Farhady, H. Lee, and A. Nakao, Software-Defined
Networking: A survey, Comput. Networks, 81, 2015, pp.
79–95.

12. D. Taylor and J. Turner, Towards a diversified internet,
White Pap. Novemb., 2004.

13. T. Koponen, K. Amidon, P. Balland, M. Casado, A.
Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude, P.
Ingram and others, Network virtualization in multi-tenant
datacenters, in USENIX NSDI, 2014.

14. B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J.
Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, K.
Amidon, A. Networks and M. Casado, The Design and
Implementation of Open vSwitch, 12th USENIX Symp.
Networked Syst. Des. Implement., 2015, pp. 117–130.

15. L. Rizzo and G. Lettieri, VALE, a switched ethernet for
virtual machines, Proc. 8th Int. Conf. Emerg. Netw. Exp.
Technol.—Conex. ’12, no. June, p. 61, 2012.

16. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J.Rexford, S. Shenker and J.Turner,OpenFlow:
enabling innovation in campus networks,ACMSIGCOMM
Comput. Commun. Rev., 38(2), 2008, pp. 69–74.

17. ‘‘OpenSwitch.’’
18. C. Networks, ‘‘Cumulus Linux’’, 2014.
19. B. S. Networks, ‘‘Switch Light’’.
20. Pica8, ‘‘Pica8 PicOS’’.
21. M. Monaco, O. Michel and E. Keller, Applying operating

systemprinciples to SDNcontroller design, inProceedings of
theTwelfthACMWorkshop onHotTopics inNetworks, 2013,
p. 2.

22. W.M. Fuertes and J. E. L. Vergara, A quantitative compar-
ison of virtual network environments based on performance
measurements, 14th Work. HP Softw. Univ. Assoc., 2007.

23. M. Anisetti, V. Bellandi, A. Colombo, M. Cremonini, E.
Damiani, F. Frati, J. T. Hounsou and D. Rebeccani, Learn-
ing computer networking on open paravirtual laboratories,
IEEE Trans. Educ., 50(4), pp. 302–311, 2007.

24. F.Galan,D. Fernandez, J. Ruiz, O.Waliti and T. deMiguel,
Use of virtualization tools in computernetwork laboratories,
in Information Technology Based Proceedings of the Fifth
International Conference on Higher Education and Training,
2004, ITHET 2004., 2004, pp. 211–216.

25. ‘‘Ubuntu System Requirements’’, 2016.
26. F. Keti and S. Askar, Emulation of Software Defined Net-

worksUsingMininet in Different Simulation Environments,
in Proceedings—International Conference on Intelligent Sys-
tems, Modelling and Simulation, ISMS, 2015, vol. 2015-
Octob, pp. 205–210.

Vladimir Djurica is a PhD candidate at University of Belgrade, Faculty of Organizational Sciences. He has an extensive

experience in working as an IT Manager across Europe. Vladimir has worked as a consultant at Google and is currently

working at Brocade Communications Systems. His research interests are in cloud technologies, virtualization and

computer networks.

Miroslav Minović is an associate professor in the Department of Information Technology and a senior researcher at the

Laboratory for Multimedia Communications. He obtained his PhD in Information Technology. He published a lot of

journal and conference papers onHCI,Multimedia and biometric technologies.Miroslav is amember of IEEE society and

acts as aNational Contact Point for Serbia within the EuropeanAssociation for Biometrics. He serves as a guest editor for

the International Journal of Engineering Education.

Prof. Minovic has been engaged in several commercial projects utilizing the actual information technologies and has

developed a broad range of informational systems and solutions.

Vladimir Djurica and Miroslav Minović886

