
Using the SRec Visualization System to Construct Dynamic

Programming Algorithms*

J. ÁNGEL VELÁZQUEZ-ITURBIDE and ANTONIO PÉREZ-CARRASCO
Departamento de Informática y Estadı́stica, Escuela Técnica Superior de Ingenierı́a Informática, Universidad Rey Juan Carlos 28933

Móstoles, Madrid, España. E-mail: {angel.velazquez,antonio.perez.carrasco}@urjc.es

Dynamic programming is a demanding algorithm design technique. In this article, we introduce an extension of the

recursion visualization system SRec, intended to support dynamic programming. The contributions of the chapter are

threefold. Firstly, we present SRec support to several phases of the systematic development of dynamic programming

algorithms: generation of recursion trees, checking recursion redundancy in a recursion tree, generation of the dependency

graph associated to a recursion tree, and matching the graph to a table. These facilities require high degree of interactivity

to be effective. The article illustrates these facilities with the construction of a dynamic programming algorithm for the 0/1

knapsack problem. Secondly, we address several pragmatic issues: usage in educational scenarios, our experience with

dynamic programming algorithms, and limitations. Thirdly, the article reports on the results of an evaluation of the system

usability. The results were very positive, providing evidence on the adequateness of extensions. Furthermore, they allowed

identifying minor opportunities for improvements.

Keywords: algorithms; multiple recursion; dynamic programming; program visualization; human-compter interaction; SRec

1. Introduction

Visualization means creating a mental image of something not actually present to the sight. It is a process

especially useful for abstract entities, such as software. There are many forms of software visualization.

According to Price et al. [1], ‘‘program visualization is the visualization of actual program code or data

structures in either static or dynamic form’’, whereas ‘‘algorithm visualization is the visualization of the
higher-level abstractions which describe software’’. A large number of visualization and animation systems

were developed in the last two decades [2]. A number of issues regarding the educational use of software

visualization have also been addressed. Thus, the form of the learning activity in which visualizations are used

has been acknowledged to be the most important feature for educational effectiveness [3] (although no

definitive conclusions seem to exist on how to achieve such an effectiveness [4]).

Although visualization systemsmay be studied frommany points of view, one distinctive issue is their scope

[1]. Some systems are general purposewhile others have a limited scope.Many systems or librarieswere built to

support different classes of algorithms. Someof themare algorithmsoperating on specific data structures, such
as trees (e.g. [5]), graphs (see a partial review in [6]) or strings (e.g. [7]). Other systems allow illustrating either

algorithms that solve a specific problem (such as sorting [8]) or a class of algorithms (such as geometric

algorithms [9]). Finally, a few systems provide specific visualizations for an algorithm design technique, such

as the greedy [10], branch-and-bound [11], or divide-and-conquer [12] techniques.

Algorithm design techniques are very important for algorithm instruction because they offer a criterion to

structure algorithm courses that is more general than solving relevant but particular problems. A de facto

consensus exists about themost important design techniques. If we browse well-known textbooks (e.g. [13–15,

16]), they unanimously include chapters devoted to three algorithm design techniques (namely, divide and
conquer, greedy algorithms, and dynamic programming), as well as chapters on other techniques. Dynamic

programming is a technique to solve optimization problems, being the most complex of the abovementioned

techniques.

The article presents an extension of the recursion visualization system SRec [17], intended to support the

construction of dynamic programming algorithms. The article is structured as follows. In section 2, we present

background for the work here presented. Section 3 describes the extensions of SRec, illustrated with the

development of a dynamic programming algorithm for the 0/1 knapsack problem. Section 4 presents several

issues regarding the educational use of SRec for the dynamic programming technique. In Section 5we describe
an evaluation of usability conducted over SRec. Finally, we present our conclusions and identify lines for

future work.

* Accepted 13 December 2016.908

International Journal of Engineering Education Vol. 33, No. 2(B), pp. 908–917, 2017 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2017 TEMPUS Publications.

2. Background

We first introduce the system SRec and we then summarize how to design dynamic programming algorithms.

2.1 The SRec system

SRec is a system aimed at displaying recursive processes coded in Java [17]. It provides several graphical
representations: traces, the control stack and, above all, recursion trees. Recursion is a feature found at the

syntactic level of programming languages, therefore we may classify SRec as a program visualization system.

However, the high abstraction level of a recursive invocation (compared to other statements, such as an

assignment) results in that, for many algorithms, the visualization of their recursive behavior shows the most

important events of the algorithm execution. Consequently, this kind of program visualization is often at the

level of abstraction of algorithm animations.

From the point of view of a user of SRec, he/she may write a Java program and run it; as a side effect, SRec

automatically generates a visualization of the recursive processes occurring during the program execution.
The user typically uses SRec by iteratively performing the following process: load a file—select a method—

launch an execution—interact with the visualizations generated.

Interaction with visualizations is a key element for students’ engagement and for the usefulness of SRec as a

tool for understanding and analysis. The simplest interaction is the (manual) animation of an algorithm

execution, which displays how the algorithm visualization varies as the execution advances (forward or

backward). SRec also provides other ways of interacting with a visualization [18]: change the graphical

properties of the visualization components, filter the amount of data to display, change the relative order of

data, browse a large visualization, look for specific data in a visualization, and give statistics about a
visualization. In the rest of the paper, we include several figures that illustrate some of these interactions.

Fig. 1 shows the user interface of SRec, where the editor panel was collapsed to leavemore room for the two

visualization panels. The lower panel contains a collection of fourteen recursion trees, where the framed tree is

displayed in the upper panel on a larger scale. The upper panel displays a recursion tree through a

global+detail interface [21]. This interface is composed of two views, global and detail, which occupy the

lower and the higher part of the panel, respectively. The contents of the global view of the tree are unreadable

but its shape can be distinguished. A part of the tree displayed in the global view is framed and is displayed in

the detail view with larger resolution. The resulting interface allows both navigating the whole visualization
and examining selected parts in detail.

SRec also provides several educational facilities, including the exportation of a visualization to a graphical

file. About half the figures contained in the paper were obtained using the export function.

Using the SRec Visualization System to Construct Dynamic Programming Algorithms 909

Fig. 1. Capture of the SRec user interface, showing a subset of 14 recursion trees for the 0/1 knapsack problem.

2.2 Dynamic programming

Dynamic programming algorithms are obscure algorithms, very difficult to understand. They are not too

complex, as they are iterative algorithms that compute values and store them in tables. However, their

rationale is difficult to grasp. Their development can be simplified by decomposing it into a series of phases. In

particular, we may follow a methodology formed by four phases [14, chap. 15] [16, chap. 20]:

(1) Characterize the structure of an optimal solution.

(2) Develop a recursive algorithm that computes an optimal value in a top-down fashion.

(a) Check the redundancy of the recursive algorithm using a recursion tree.

(3) Develop an equivalent, iterative algorithm that computes an optimal value in a bottom-up fashion. In

turn, this phase may be decomposed into several steps:

(a) Analyze the redundancy pattern after converting the recursion tree into a dependency graph.

(b) Design a table capable to store the value of all the subproblems (that is, the results of the different

recursive calls).
(c) Design an iterative algorithm that computes all the subproblems without redundancy, preserving

their dependencies and using a table to store their results.

(4) Extend the iterative algorithm to determine the decisions associated to the optimal value computed.

Steps of phase 3 are explained in full detail in technical publications [19, 20]. We focus here on phases 2(a)

and 3(a–b), where a redundant, recursive algorithm is handled.
We illustrate the features of SRec with the 0/1 knapsack problem [13, chap. 8] [15, cap. 6] [16, chap. 20].

Consider a set of objects and a knapsack. Each object is characterized by a weight wi and a profit pi. The

knapsack has limited capacity c. Each object i can be either introduced (reducing the spare capacity s of the

knapsack, 0� s� c, inwi) or not introduced into the knapsack. In the former case, the objectmust haveweight

wi less or equal to the spare capacity s of the knapsack and, as a consequence, an associated profit pi is gained.

The problem is to determine a subset of the objects that produces maximum-profit while it does not overload

the knapsack capacity.

Assume the n objects are numbered from 0 to n--1. We define kn(i,s) as the subproblem consisting in
determining a maximum-profit subset of objects i..n-1 provided the spare knapsack capacity is s. Obviously,

the complete problem can be solved by the initial call kn(0,c).

Given this modeling of the problem, the following recursive algorithm solves it:

knðn; sÞ ¼ 0 for 0 � s � c

mði; sÞ ¼
knði þ 1; sÞ if s < wi

maxðknði þ 1; sÞ; knði þ 1; s� wiÞ þ piÞ if s � wi

for 0 � i � n� 1; 0 � s � c

8
<
:

Assuming that weights and profits have integer values, it can be coded in Java as follows:

public static int knapsack01 (int[]weights, int[] profits, int capacity){
return knapsackAux(weights,profits,capacity,0,capacity);

}
private static int knapsackAux (int[] weights, int[] profits, int capacity,

int i, int spare) {
if (i==weights.length)

return 0;
else if (spare<weights[i])

return knapsackAux (weights,profits,capacity,i+1,spare);
else

return
Math.max (knapsackAux (weights,profits,capacity,i+1,spare),

knapsackAux (weights,profits,capacity,i+1,spare-weights[i])+profits[i]);
}

where knapsack01 is the main method and knapsackAux is an auxiliary, recursive method.

3. Development of a dynamic programming algorithm

In this section,we present SRec support to four steps of the developmentmethodologydescribed in section 2.2:

generation of an adequate recursion tree, redundancy analysis of the recursion tree, transformation of the

recursion tree into a dependency graph, and laying the graph nodes out in the cells of a table.

J. Ángel Velázquez-Iturbide and Antonio Pérez-Carrasco910

3.1 Generation of recursion trees

A previous step to checking redundancy in a recursive algorithm is to generate an adequate recursion tree.

Note that each recursion tree is bound to a different test case. Some test cases, especially for small input data,

do not exhibit redundancy. Other cases may be too large to be easily understood and analyzed. A good

approachwould be to generate simultaneously a set of recursion trees and selecting a ‘‘good’’ one. SRec allows

generating such a set in an atomic operation. The SRec dialog to launch an execution was modified so that

several values can be specified as input data. As a consequence, several executions of the algorithm are

launched and a visualization is displayed for each test case.
There are two ways of giving several values for a parameter:

� Specifying several values, separated by commas.

� Specifying a range of values, using the syntax ‘lower value .. higher value. This syntax is only allowed for

integer values.

If several values are given to several parameters, the Cartesian product of all the values is computed,

launching as many algorithm executions as different cases result.

Consider again the recursive algorithm proposed in Section 2.2 for the 0/1 knapsack problem. The

parameters that control the recursive process are the index and weight of objects, and the spare knapsack

capacity. The resulting recursion trees will probably not be too large with four objects. We may generate a
number of similar but differing recursion trees as follows. Profit values are irrelevant for recursion, so they can

be given arbitrary values (e.g. {8,1,5,7}).Weights of objects may differ in just one unit andmay be arranged in

decreasing order (e.g. {5,4,3,2}). If these parameters have the same value in a number of executions but the

knapsack capacity successively varies by one unit, their corresponding trees will show incremental changes.

Theminimum value for the knapsack capacity that makes sense is the highest value for which no object can be

introduced (for theweight values given above, capacity 1); themaximum sensible valuewill be equal to the sum

of the object weights (i.e. 14). Therefore, fourteen cases can be used to represent a complete range of situations

for this instance of the 0/1 knapsack problem.
Fig. 1 shows the result of invoking knapsack01 with the 14 test cases designed in the previous paragraph,

where the tree displayed in the upper panel corresponds to the case of the knapsack capacity equal to 8. Each

node of a recursion tree hosts input values in its higher half and output values in its lower half. Actually, such a

visualization is the result of first generating automatically a visualization and then the user performing several

operations on the visualization. The first operation was to filter some parameters. In particular, the three

parameters of themainmethod were filtered in the auxiliarymethod because their value does not change from

call to call. Therefore, they are only displayed in the call to the main method knapsack01, yielding a more

compact and readable visualization. A second interaction was to zoom the resulting visualization to an exact
fit of the panel. Finally, the third operation performed was looking for occurrences of redundant calls. This

operation is intended for the step described in the following subsection.

3.2 Redundancy analysis

Some multiple recursive algorithms are asymptotically very efficient, such as divide-and-conquer sorting

algorithms (i.e. mergesort and quicksort) [13, chap. 7] [14, chaps. 4 and 7] [15, chap. 5] [16, chap. 19]. However,

other multiple recursive algorithms are very inefficient. This happens when recursive calls do not represent

independent but overlapping subproblems. Consequently, many calls are invokedmore than once, recomput-

ing their value in each invocation.Recursive algorithms designed for dynamic programming correspond to the
latter class of redundant algorithms.

SRecmakes the analysis of redundancy easier with a function that allows searching recursive calls. The user

specifies input values in a dialog and SRec highlights all the nodes in the recursion tree that match the search

criterion. The search function is very flexible, as it allows specifying the value of only some parameters or even

of output values. A complementary function restores the original colors to nodes highlighted. As explained in

the last paragraph of the previous section, Fig. 1 includes the results of searching occurrences of knapsackAux

(4,3). These nodes are highlighted in both the global view and the detailed one of the top panel (in the figure, in

light tone). Alternatively, the usermay select a node of the tree and, using themouse right button, command to
highlight nodes that contain the same values as the selected node.

3.3 Dependency graphs

After checking that a recursive algorithm is computed redundantly, redundancy must be removed. A number

of techniques exist for this goal, being tabulation [19] themost common in dynamic programming algorithms.

Using the SRec Visualization System to Construct Dynamic Programming Algorithms 911

The resulting algorithms are iterative algorithms that store the value of the different subproblems in a table.

The iterative algorithm solves subproblems in a sequential order that preserves the dependencies of the

original recursive algorithm.

Dependencies among subproblems can be determined by first generating a dependency graph [19, 20], i.e. an

acyclic directed graph. The dependency graph associated to a recursion tree is built by joining all the

occurrences of each call in a single node, preserving arcs between calls.
Fig. 2(a) shows the dependency graph generated automatically by SRec from the recursion tree displayed in

the upper panel in Fig. 1. Note that nodes are distributed in an apparently arbitrary way.

SRec allows the programmer to rearrange the nodes and try to identify some redundancy pattern. Fig. 2(b)

shows the result of relocating the nodes so that nodes sharing the value of the first parameter are placed in the

same column. It can be noticed that each node always depends on one or two nodes placed at its right.

J. Ángel Velázquez-Iturbide and Antonio Pérez-Carrasco912

(a)

(b)

Fig. 2. Dependency graph for the 0/1 knapsack problem obtained from the recursion
tree displayed in Fig. 2 (a) automatically (b) after manually rearranging the nodes.

3.4 Tabulation

Once the dependency pattern of recursive calls is known, the programmermust determine a sequential order of

computation of the subproblems that preserves dependencies, and must design a table adequate to store the

values of all the subproblems. SRec also gives support to this task.

The programmermaymake SRec to lay the dependency graph out on a one- or bi-dimensional table, where

he/she must only specify its dimensions. However, the result is often poorly constructive.
An alternative function allows the user to specify with expressions a matching between recursive calls and

table cells. Fig. 3 shows the dialog for this function, where parameter i is associated to each row y of the table,

and parameter s is associated to each column x. In general, the dialog allows specifying how to compute the

table cell corresponding to each recursive call. SRec determines automatically the dimensions of the table

necessary to store all the calls.

Figure 4 shows the result of the previous dialog. Note that we have generated a dependency graph that is

rotated 90o right that that displayed in Fig. 2(b).

Finally, the programmer will determine a sequential computation order that preserves the dependencies
shown in the table. In this example, subproblems must be computed by rows bottom-up. However, cells in a

row can be indistinctly computed either from left to right or right to left. If we choose to proceed right to left

within each row, the following iterative algorithm can be coded:

public static int knapsack01 (int[] weights, int[] profits, int capacity) {
int[][] table = new int[ws.length+1][c+1];
for (int s=0; s<=c; s++)

table[ws.length][s] = 0;
for (int i=ws.length-1; i>=0; i--) {

for (int s=c; s>=ws[i]; s--)
table[i][s] = Math.max(table[i+1][s], table[i+1][s-ws[i]]+ps[i]);

for (int s=Math.min(c,ws[i]-1); s>=0; s--)
table[i][s] = table[i+1][s];

}
return table[0][c];

}

Using the SRec Visualization System to Construct Dynamic Programming Algorithms 913

Fig. 3. Dialog to specify by means of expressions the mapping between the
method parameters and the table cells for the 0/1 knapsack problem.

Fig. 4. Table generated for the 0/1 knapsack problem by means of mapping y = i, x = s.

4. Experience

We have used the new version of SRec since autumn of the academic year 2015/16 in the optional fourth-year

course ‘‘AdvancedAlgorithms’’ offered at ourUniversity toComputer Science students. SRecwas used by the

instructor to prepare materials and in the classroom. In addition, students could use the tool for their

assignments, either to document their designs with figures or as a development tool.

The facilities described in this article were used for the dynamic programming technique. Actually, it was

incrementally addressed in two steps:

1. Removal of redundant recursion. The methodology outlined in Section 2.2 was presented in detail and

exercised. It was adapted to derive either tabulated or memoized algorithms. We focused on numeric

algorithms, including:

� Fibonacci series
� Recursive definition of combinatorial numbers.

� Problem of the sporting competition [13, chap. 8].

2. The dynamic programming technique. Emphasis was given to the design of recursive algorithms for

optimization algorithms, a non-trivial task. Recursion removal was exclusively accomplished using

tabulation. A number of algorithms were handled, including the most common in algorithm textbooks:

� 0/1 knapsack, which is the problem used to illustrate this paper.

� Coin change [13, chap. 8].

� Sequence alignment [15, chap. 6].
� Longest common subsequence [14, chap. 15].

� Matrix-chain multiplication [13, chap. 8] [14, chap. 15] [16, chap. 20].

� Multistage graph [22, chap. 5].

� Single-source shortest path (Bellman-Ford’s algorithm [14, chap. 24] [15, chap. 6] [16, chap. 20]).

We detected a limitation of SRec for generatingmultiple recursion trees for graph problems. The amount of

memory necessary to store a detailed description of each execution step exhausts the memory available in a

laptop. Therefore, one single animation can be launched each time.

Wemust also note that the conventional, bi-dimensional representation of tables restrict SRec to algorithms

with one- or bi-dimensional tables. Consequently, we cannot handle the recursive algorithm for the all-pairs

shortest paths problem (Floyd’s algorithm [13, chap. 8] [14, chap. 25] [16, chap. 20]), which has three varying

parameters and therefore needs a tri-dimensional table in a first approach. The bi-dimensional matrix used by

Floyd’s algorithm can only be deduced in a later step of the methodology, after analyzing dependencies and
invariant computations in the tri-dimensional table.

5. Usability evaluation

In our course ‘‘Advanced algorithms’’, students must solve one assignment per chapter of the syllabus. We

made use of the assignment on recursion removal to evaluate SRec usability in the academic year 2015/16.

Students attended at a laboratory session, which was two hours long. Given a redundant algorithm, students

had to convert it into two efficient algorithms (a tabulated algorithm and a memoized one). Students were

given a report outline, and had one week to complete the work and submit it to the instructor through the

virtual campus. However, they also had to submit a (partial) report at the end of the laboratory session.
The instrument to measure usability was a questionnaire, which students had to fill at the end of the

laboratory session. The questionnaire consisted of three parts:

� Multiple-choice questions on general properties. They assessed six general claims about SRec.

� Multiple-choice questions on specific elements. They assessed the quality of fourteen elements of SRec.
� Open questions on general issues. It comprises six open questions about positive and negative features of

SRec.

Answers to multiple-choice questions were in a Likert scale ranged from 1 (very bad) to 5 (very good). We

gathered 13 questionnaires.
The first part of the questionnaire asked students to give their opinion in six multiple-choice questions,

directly related to ease of use, satisfaction, and perceived utility and quality. Table 1 shows the questions and

the mean and standard deviation of their scores. (The median is a most adequate measure for ordinal values,

but we show the mean for a more intuitive perception of students’ opinions.)

Notice that themarks obtained for all the properties are very high. The highest rated property is ease of use;

J. Ángel Velázquez-Iturbide and Antonio Pérez-Carrasco914

actually, this property was rated 4 or 5 by all the students. They were also rated high: satisfaction (4.46) and

usefulness to understand or analyze recursive algorithms (4.46 and 4.31). The lowest gradewas obtained for its

usefulness to design tables and for its overall quality. These two factors also obtain the highest standard

deviation.

Studentswere also asked about the quality of specific elements of the system.The results are show inTable 2,
in decreasing order of mean.

Notice that most elements rated above 4 are related to visualizations, thus they are elements that were

refined after past usability evaluations [23]: generation of animations, animation controls, exporting

visualizations, the recursion tree view, and control of the amount of information to display. It was a nice

surprise that two of the features included in this new version of SRec were also rated high: generation and

handling of dependency graphs, and tabulation of nodes.

Medium-high rateswere obtained for three elements of the user interface (menus, icons, andpanels) and two

functions to interact with visualizations (graphical format and the zoom). Finally, two medium rates are
obtained for two features: search and highlight of redundant nodes, and explanation of errors. All of these

elements should be reviewed.

A third part of the questionnaire contained six open questions about positive and negative aspects. We

analyzed them using a qualitative methodology starting with no a priori categories, as grounded theory

advocates [24]. We followed three steps. First, we prepared answers for their analysis. Afterwards, we

performed two rounds of analysis and identification of categories.

Answers given were not directly usable for analysis. Some answers had no informative value (e.g. ‘‘I did not

use the tool enough to find any negative feature’’), other answers were composed of simpler suggestions or
comments, and others were inadequate for the corresponding question. Therefore, in a first step we re-

catalogued the answers as ‘‘simple’’ answers to only four questions. The results are shown in Table 3.

Using the SRec Visualization System to Construct Dynamic Programming Algorithms 915

Table 1. Results to multiple-choice questions on general properties

Property Mean Std. deviation

Easy to use 4.77 0.44
If the user liked the tool 4.46 0.66
Useful to understand the behavior of the recursive algorithm 4.46 0.52
Useful to analyze redundancy in the recursive algorithm 4.31 0.85
Useful to design a table adequate to remove redundancy 4.08 1.04
General quality 4.08 0.95

Table 2. Results to multiple-choice questions on the quality of specific elements of SRec

Element Mean Std. deviation

Generation process of animations 4.56 0.73
Animation controls 4.45 0.69
Generation and handling of dependency graphs 4.38 0.65
Export visualizations 4.38 0.77
Recursion tree view 4.31 0.85
Tabulation of nodes 4.14 0.69
Control of the amount of information to display 4.09 0.70
Organization of menus 3.91 0.70
Control of the visualization graphical format (colors, etc.) 3.82 0.98
Organization and design of icons 3.64 0.50
Interaction with panels 3.50 1.35
Zoom control 3.50 0.97
Search and highlight of nodes 3.36 1.43
Explanation of compilation/run-time errors 3.14 1.21

Table 3. Results to open questions, after being analyzed and re-catalogued

Question Number of informative simple answers

Positive features of SRec 13
Useless features that you would discard 3
Negative features of SRec 14
Useful features to be included 5

Thirteen answers were gathered that identified positive features of SRec. They were of three classes:

� Usefulness to understand recursive algorithms (5 answers). Two representative quotations follow: ‘‘It

makes much more definite the way of building the tree and the recursion produced in it’’, ‘‘The behavior of
algorithms is watched in a visual way and that makes their understanding easier’’.

� Ease of use (3 answers). One quotation: ‘‘Very definite and intuitive. Easy’’.

� Other features (5 different answers).

There only were three answers that identified elements that could be suppressed or simplified (zooming,

animation control, and configuration of visualizations). We do not consider these answers relevant as such

elements provide comprehensive and useful functions.
The third category of answers are about negative features of SRec,whichmust be considered suggestions for

improvement. From the fourteen answers gathered, the following ones were given by more than one student:

� Poor performance with large recursion trees (3 answers). One representative answer follows: ‘‘Slow for

relatively large trees. It sometimes gets hanged’’.

� User interface (2 answers).

� Icons (2 answers).
� Configuration of visualizations (2 answers).

� Redundancy analysis (2 answers).

The first comment has no remedy, as poor asymptotic behavior of an algorithm is independent from any

particular implementation. However, the other suggestions deserve closer examination.

Finally, five comments were gathered demanding including new features. The only one suggested by several

(two) students was to generate the iterative algorithm from the table.

6. Conclusions

The article presents several extensions of the system SRec intended to support the development of dynamic

programing algorithms.Wemayhighlight several issues. Firstly,we donot knowof anyprogramvisualization

system that visually supports the construction of algorithms. Secondly, the extensions included dealt with

different graphical representations. Some extensions provided additional operations on recursion trees,

whereas others introduced new graphical representations (namely dependency graphs and tables). Thirdly, a

key issue in the adequate support of SRec to the different tasks is interactivity. In the article, we have shown the

need for dynamic programming algorithms of, at least, operations to filter data, zoom visualizations, navigate
very large visualizations, search nodes, and rearrange nodes. Fourthly, we conducted a usability evaluation

that proved that the approach used to implement these extensions was adequate. The usability evaluation

conducted yielded very high results to the extensions. Different suggestions for improvement are being

analyzed to build a new version of the system.

There still is room for additional extensions of SRec regarding dynamic programming algorithms. In

particular, it would be very useful to support the (probably semiautomatic) generation of iterative algorithms

from tables.

Acknowledgments—This work was supported by research grants TIN2011-29542-C02-01 and TIN2015-66731-C2-1-R of theMinistry of
Economy andCompetitiveness, S2013/ICE-2715 of theRegionalGovernment ofMadrid, and 30VCPIGI15 of theUniversidadRey Juan
Carlos.

7. References

1. B. Price, R. Baecker and I. Small, An introduction to software visualization, in J. Stasko, J. Domingue,M.H. Brown andB.A. Blaine
(eds), Software Visualization, MIT Press, 1998, pp. 3–27.

2. C.A. Shaffer,M.L.Cooper,A. J.D.Alon,M.Akbar,M. Stewart, S. Ponce andS.H.Edwards,AlgorithmVisualization: The State of
the Field, ACM Transactions on Computing Education, 10(3), 2010, article 9.

3. C. Hundhausen, S. Douglas and J. Stasko, A meta-study of algorithm visualization effectiveness, Journal of Visual Languages and
Computing, 13(3), 2002, pp. 259–290.

4. J. Urquiza-Fuentes and J. Á. Velázquez-Iturbide, A survey of successful evaluations of program visualization and algorithm
animation systems, ACM Transactions on Computing Education, 9(2), 2009, article 9.

5. G. Roessling and S. Schneider, An integrated and ‘‘engaging’’ package for tree animations, Proceedings of the Third Program
VisualizationWorkshop,A.Korhonen (ed.),UniversityofWarwick,DepartmentofComputer Science,ResearchReportCS-RR-707,
2004, pp. 23–28.

6. J. Á. Velázquez-Iturbide, O. Debdi and M. Paredes-Velasco, A review of teaching and learning through practice of optimization
algorithms, in R. Queirós (ed.), Innovative Teaching Strategies and New Learning Paradigms in Computer Programming, IGI Global,
2015, pp. 65–87.

7. R. Baeza-Yates and L. O. Fuentes, A framework to animate string algorithms, Information Processing Letters, 59, 1996, pp. 241–244.

J. Ángel Velázquez-Iturbide and Antonio Pérez-Carrasco916

8. D. Furcy, T. Naps and J. Wentworth, Sorting Out Sorting—The sequel, in Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2008, pp. 174–178.

9. A. Tal andD.Dobkin, Visualization of geometric algorithms, IEEETransactions on Visualization andComputer Graphics, 1(2), 1995,
pp. 194–204.

10. J. A. Velázquez-Iturbide, O. Debdi, N. Esteban-Sánchez and C. Pizarro, GreedEx: A visualization tool for experimentation and
discovery learning of greedy algorithms, IEEE Transactions on Learning Technologies, 6(2), 2013, 130–143.

11. K. V. Ramani and T. P. Rama Rao, A graphics based computer-aided learning package for integer programming: The branch and
bound algorithm, Computers & Education, 23(4), 1994, 261–268.

12. J. Á. Velázquez-Iturbide, A. Pérez-Carrasco and J. Urquiza-Fuentes, A design of automatic visualizations for divide-and-conquer
algorithms, Electronic Notes in Theoretical Computer Science, 224, 2009, 159–167.

13. G. Brassard and P. Bratley, Fundamentals of Algorithmics, Prentice-Hall, Englewood Cliffs, NJ, 1996.
14. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2009.
15. J. Kleinberg and É. Tardos, Algorithm Design, Pearson Addison-Wesley, 2006.
16. S. Sahni, Data Structures, Algorithms and Applications in Java, Silicon Press, Summit, NJ, 2005.
17. J. Á. Velázquez-Iturbide,A. Pérez-Carrasco and J.Urquiza-Fuentes, ‘‘SRec:An animation systemof recursion for algorithmcourses,

inProceedings of the 13thAnnualConference on Innovation andTechnology inComputer ScienceEducation, ITiCSE2008, pp. 225–229.
18. J. Á. Velázquez-Iturbide andA. Pérez-Carrasco, InfoVis interaction techniques in animation of recursive programs,Algorithms, 3(1),

2010, pp. 76–91.
19. R. S. Bird, Tabulation techniques for recursive programs, ACM Computing Surveys, 12(4), 1980, pp. 403–417.
20. A. Pettorossi, A powerful strategy for deriving efficient programs by transformation, in Proceedings of the ACMSymposium on Lisp

and Functional Programming, 1984, pp. 273-281.
21. A. Cockburn,A.Karlson andB. B. Bederson,A review of overview+detail, zooming, and focus+context interfaces,ACMComputing

Surveys, 41(1), 2008, article 2.
22. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Pitman, 1978.
23. J. Á. Velázquez-Iturbide, A. Pérez-Carrasco andO. Debdi, Experiences in usability evaluation of educational programming tools, in

C. González (ed), Student Usability in Educational Software and Games, IGI Global, 2013, pp. 241–260.
24. B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strategies for Qualitative Research, Aldine, Chicago, 1967.

J. Ángel Velázquez-Iturbide received the Computer Science degree and the Ph.D. degree in Computer Science from the

Universidad Politécnica deMadrid, Spain, in 1985 and 1990, respectively. In 1985 he joined the Facultad de Informática,

Universidad Politécnica deMadrid. In 1997 he joined the UniversidadRey Juan Carlos, where he is currently a Professor,

as well as the leader of the Laboratory of Information Technologies in Education (LITE) research group. His research

areas are software and educational innovation for programming education, and software visualization. Prof. Velázquez is

a member of IEEEComputer Society and IEEE Education Society, and a member of ACMand ACMSIGCSE. He is the

Chair of the Spanish Association for the Advancement of Computers in Education (ADIE).

Antonio Pérez-Carrasco received the Computer Science degree and the Ph.D. degree in Computer Science from the

UniversidadRey JuanCarlos (URJC),Madrid, Spain, in 2008 and 2011, respectively.Hewas anAssistant Professor in the

UniversidadRey JuanCarlos from2008 to 2013,where hewas amember of theLaboratoryof InformationTechnologies in

Education (LITE) research group.He is anAssistant Professor in theUniversidad Internacional deLaRioja (UNIR) since

2012. That year, he also joined SICE, an ACS company, where he is currently working as an IT Project Manager on

Intelligent Transport System projects.

Using the SRec Visualization System to Construct Dynamic Programming Algorithms 917

