
An Intelligent Tutoring System for Computer Numerical

Control Programming*

QINBO LI1 and SHENG-JEN HSIEH2

1Department of Computer Science & Engineering, Texas A&MUniversity, USA.
2Department of EngineeringTechnology& IndustrialDistribution andDepartment ofMechanical Engineering, TexasA&MUniversity,

College Station, TX 77843-3367, USA. E-mail: hsieh@tamu.edu

G-code is the language used to control computer numerical control (CNC)machines.AlthoughmostCAD/CAMsoftware

can generate G-code based on a design and machine tools needed, the ability to understand G-code is valuable, especially

when amachining jobdoes not run smoothly. Intelligent tutoring systems (ITS) have been shown tobe successful in helping

students to learn programming. However, G-code is different from general purpose computer programming languages.

CNC programming also requires that students master many hardware-related facts and concepts, such as cutting speed

and feed rate, and tools for several types of drilling. We built a web-based ITS for CNC programming called CNC-Tutor,

and proposed a data-driven approach to generate proper hints and feedback during students’ problem-solving process.

The approach is based on finding past submissions that are most similar to a student’s solution. The similarity is measured

using a ‘‘behavior & machine state distance’’ metric. The system was evaluated by 93 undergraduate students. Results

suggest that the design is instructionally effective, and that students’ subjective impressions of the system were positive. It

also appears that CNC Tutor‘s explanations and feedback are a good fit for active, visual learners.

Keywords: intelligent tutoring system; computer integrated manufacturing; mechanical engineering

1. Introduction

Intelligent tutoring systems (ITS) are computer-

based teaching environments to help students

learn deep domain knowledge [1, 2]. ITS may

incorporate mathematics, cognitive science, natural

language processing, and human-computer interac-
tion [3]. In recent years, the use of ITS in classrooms

and communities has increased and they have been

shown to be effective [20, 21, 24–27]. However, to

the best of our knowledge, an ITS for Computer

Numerical Control does not currently exist.

Hsieh and Cheng [4] proposed a system architec-

ture to help students learn ladder logic program-

ming for programmable logic controllers (PLC).
This system is a web-based tutoring system that

contains pre-test, case-based reasoning, and post-

test. It can also customize the learning sequence

based on the students’ knowledge levels, which are

measured by students’ feedback and user question-

naires.

BITS [5] is a Bayesian intelligent tutoring system

for computer programming. It uses a Bayesian net-
work to represent the structure of the problem as

well as the students’ knowledge. A Bayesian net-

work consists of a directed acyclic graph (DAG)and

a conditional probability distribution (CPD) table.

Each node in the DAG is related to a concept in the

domain. A directed link from a node to another

node, say, nodeA to nodeB, indicates that nodeA is

the prerequisite to learn node B. The DAG is
constructedmanually and theCPDtable is obtained

by previous exams in that course. The main func-

tions that BITS provides are navigation support,

prerequisite recommendations, and learning

sequence generation. The navigation support func-

tion classifies each node into three categories:

already known, ready to learn, and not ready to

learn, based on the students feedback and the
predefined CPD table. Next, the student can start

to learn the recommended ready to learn nodes.

Prerequisite recommendations provide recom-

mended concepts when the student is stuck on the

current node. The last function enables students to

choose a particular lecture they want to learn with-

out learning all the lectures before it. This is done by

finding theminimumprerequisite based on theCPD
table and the students’ knowledge and then gener-

ating the learning sequence.

Another tutoring system for programming, Quiz-

JET [6], supports authoring, delivery and assess-

ment of parameterized questions for Java

programming. Parameterized questions are pat-

terns of questions that are created initially by

domain experts, and the pattern is replaced by
randomly generated parameters at the presentation

time. This way, many similar questions can be used

to evaluate students’ performance. The questions

cover critical topics in Java such as objects, classes,

interfaces, inheritances, and exceptions. The advan-

tage of this approach is that the authoring cost is

significantly reduced and the possibility of plagiar-

ism is also reduced. Students who solved more
questions using this system showed better overall

* Accepted 1 October 2018.252

International Journal of Engineering Education Vol. 35, No. 1(A), pp. 252–261, 2019 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2019 TEMPUS Publications.

performance in the final exam.QuizPACK (Quizzes

for Parameterized Assessment of CKnowledge) [7],

is a similar system for theC programming language.

JO-Tutor is another ITS for JAVA [8]. It can

generate problems automatically based on ran-

domly instantiated templates. The topics of the
problem include functions, classes, inheritance,

polymorphism, and so on. It also has an expert

module to solve these problems to judge the

response and provide feedback.

Automatically generating hints and feedback is

another area of focus in programming tutors [9, 11,

22, 23]. Computer programming is known to be ill-

defined [12] because the solution space is too large or
even infinite, especially when incorrect solutions are

taken into consideration.Rivers andKoedinger [13]

proposed a data-driven approach to generate pro-

gramming hints automatically. They use abstract

syntax trees (ASTs) [10] to reduce the solution

space: different programs with the same semantics

can reduce to the same abstract syntax tree using

copy propagation. The next step is to find the AST
in prior student data that has the closest distance to

the AST of the current program. The final step is

generating hints based on the difference between the

AST of the current program and theASTs of a prior

correct program.

Jin, et al. [9] proposed a hint generation approach

that can generate hints automatically based on the

completed solutions. They used a linkage graph to
represent the solution space. In the linkage graph,

the nodes are the program statements while the

edges are the order dependencies. To generate

hints, the algorithm first compares the linkage

graph of a student’s program with the linkage

graph from the past-completed programs. It will

then find the closest one in the Markov decision

process (MDP) and generate hints based on the next
best state in the MDP. Then the new linkage graph

will be added to the dataset. Their experiment found

that among 16 submissions, the approach was able

to generate meaningful hints for 14 of them.

Table 1 shows a comparison of different ITS for

programming. Note that ‘‘Feedback = Yes’’ means

that detailed feedback information is provided, not

just whether the solution is correct.
For the domain of computer numerical control,

however, existing ITS development approaches are

not applicable or will not work well. In addition

learning problem solving skills, students must also

master a large number of facts and concepts about
the CNCmachine before trying to write a program.

Such concepts and facts include, for example, the

physical characteristics of the machine, the usage of

CNC programming terminology, the correct spin-

dle, and feed rate [14, 15].

We built an ITS for CNC called CNC-Tutor and

proposed a data-driven approach that can generate

proper feedback and hints during a student’s pro-
blem-solving process. A Hint is a message of the

next-step action that leads to the correct solution,

and feedback is a list of messages about the missing

facts ormisconceptions that the studentmight have.

This approach generates hints and feedback based

on similar correct solutions from an archive of

programs by former students. The similarity is

measured by the proposed ‘‘Behavior & Machine
state distance’’ metric. Experiments show that the

generated hints can help the students solve the CNC

problem and the generated feedback can help the

students to find their misconceptions. A survey

about the effectiveness of CNC-Tutor found a

positive impact on the students.

An Intelligent Tutoring System for Computer Numerical Control Programming 253

Table 1. Comparison of different ITS for programming

Target Feedback Hints Web-based

BITS C/C++ No No Yes
QuizJET Java No 0.008 Yes
QuizPACK C++ No No Yes
JO-Tutor Java No No No
SQL-Tutor SQL Yes No Yes
PLC-Tutor PLC Yes No Yes

Fig. 1.Part of theDAGfor the curriculum structure knowledge in
the domain model.

2. System architecture

In the domain of computer numerical control, there

are two types of knowledge that students need to

learn: concepts/facts and problem-solving skills.

The CNC tutoring system consists of a learning

module, a quizmodule, and an exercisemodule. The

learningmodule and the quizmodule are focused on
teaching concepts and facts, while the exercise

module focuses on improving the students’ pro-

blem-solving skills. Underlying these three modules

are two data models: the domain model and the

student model.

The domainmodelmanages all the data related to

the domain knowledge, such as what are the pre-

requisites of a lesson, how to generate questions for
a lesson, what are the answers and feedback for a

question, and so on.We use a directed acyclic graph

(DAG) to represent the curriculum structure knowl-

edge in the domain model. In the DAG, each node

represents a piece of learning content. An edge from

a source node to a destination node indicates that

the source node is a prerequisite to learn the

destination node. Currently, the system has 49
nodes and 65 edges. Fig. 1 shows a portion of the

DAG.

The student model traces the students’ state, for

example, whether a student has passed a quiz, how

many facts a student already knows, and so on. The

student model is essentially a copy of the DAGwith

an additional attribute for each node, which is

whether the student has mastered the learning
content or not. There are many questions for each

piece of learning content, and the system will

randomly select one or more questions.

In addition, in order to evaluate students’ CNC

code and generate hints and feedback, there is a

model called CNC interpreter under the exercise

module. We noticed that students fail to solve a

CNC programming problem usually because of the

lack of problem solving skills as well as misconcep-

tions or missing facts. CNC-Tutor can improve
students’ problem-solving skill by providing hints

during their problem solving process. When the

students submit an incomplete or incorrect solution,

CNC-Tutor can generate feedback to help them

figure the problem, such as information about the

syntax error, and/or links to the learning content

about their misconceptions. Fig. 2 illustrates the

overall system architecture of CNC-Tutor.

3. Methodology

Thekey feature ofCNC-Tutor is that it can generate

proper hints or feedback as students are writing the

CNC code. In the domain of ITS, the term ‘‘feed-

back’’ can represent many different kinds of mes-

sages provided by the system (examples, hints,

correctness, etc.) [17]. However, in our system, a

hint is amessage of the next-step action that leads to
the correct solution, while feedback is a list of

messages about the missing facts or misconceptions

that the students might have. Feedback is only

provided when students fail to solve a problem.

Although CNC code is not as complex as general

purpose programming code such as C++, the solu-

tion space of a CNC programming problem is still

very large. First, there are many choices of cutting
paths to cut a part, as long as the outcome matches

with the blueprint. Even if the cutting paths are

fixed, students can choose different settings to cut

the part. In addition, CNC code can be written in

Qinbo Li and Sheng-Jen Hsieh254

Fig. 2. System architecture of CNC-Tutor.

one line or inmultiple lines with the same semantics.

Third, there is no fixed order in which to write CNC

code. Therefore, analyzing and generating hints for

CNC code is challenging.

We noticed that if students follow the same path

in the solution space (i.e., they choose the same
strategy to solve a problem), the behavior (the

cutting paths) of their programs will be the same,

and the machine state’s transition during the execu-

tion in the CNC simulator will be similar, regardless

of individual differences in coding. We propose an

approach that can compare the similarity between a

current student’s solutions and labeled past data to

automatically generate proper feedback. The simi-
larity of different CNC code is measured by using a

novel construct that we call Behavior & Machine-

state distance.

3.1 Behavior & machine-state distance

Behavior distance is computed by calculating the

Euclidean distance between the cutting path of a

current student’s solution and past solutions. If the

behavior distance is smaller than a specified toler-

ance, then those solutions follow the same cutting

path. The behavior distance is calculated before the

machine state distance, because it is meaningless to
compare machine states if the cutting paths are

different.

The machine state distance is calculated by com-

paring the difference of each state. Because the

parameters, settings, and machine states are used

to cause an effect on the parts, before comparing the

distance between the machine states, their behavior

must be the same. That is, the current coordination
of the tool end and the motion to be executed must

be the same. Therefore, each line of code in one

program is aligned to the code that has the same

behavior of another program. This process is called

‘‘Behavior alignment’’. Fig. 4 shows an example of

‘‘Behavior alignment’’.

Machine state is discussed in detail in the CNC

interpreter section. For computational efficiency,
only a portion of the machine state is recorded to

calculate the machine state distance. Fig. 3 illus-

trates an example of CNC code and its correspond-

ing machine states when the execution is at the line

‘‘N0090’’.

3.2 The CNC interpreter

To evaluate a CNC program and calculate Behavior

& Machine-State Distance, we built a CNC inter-

preter. Because the CNC interpreter was developed

inPHPand is heavily basedon theNational Institute

of Standards and Technology (NIST) RS274NGC
project [18], we named it RS274NGC-PHP.

The CNC program interpreter follows the RS274

An Intelligent Tutoring System for Computer Numerical Control Programming 255

Fig. 3. CNC code example and one of its machine states.

Fig. 4. An example of behavior alignment.

standard. It is designed for a three-axis CNC

machine. The axes are X, Y, and Z, which form a

right-handed coordinate system of orthogonal

linear axes. Algorithm 1 in the appendix describes

the overall process of the CNC interpreter. The

preprocessing stage removes meaningless charac-
ters and formats the uploaded code. The interpreter

will then read the code and save the information to a

data structure called Block. Block contains all the

information needed for the CNC simulator to

execute the code. As the interpreter reads the code,

it checks the syntax. If it detects a syntax error in a

function, it will save the error message and its

function name and return the error code. In addi-
tion to the NIST RS274NGC, our CNC interpreter

can record the machine state as well as the trajec-

tories after the execution of each line of code.

3.3 Hint generation

During the problem-solving process, the students
can request hints by clicking the ‘‘hint’’ button. The

system will then find the code in the database with

the closest match in terms of Behavior & Machine-

state distance. If the behavior and machine state of

the current code is similar to past code, the next line

of the machine state of the past code is used to

generate a hint. For each different machine state, a

natural language hint is generated. Because CNC
programming is highly domain specific, we use a

template-based method to generate natural lan-

guage hints. For example, Fig. 5 shows the template

for a deep hole operation (G83).

Algorithm 2 in the Appendix describes the hint

generation procedure and Fig. 6 shows an example

of how hints are generated. In Fig. 6, (a) and (b) are

the current student’s code and the historical code,
respectively; (c) is themachine state of the last line of

the code in (a); (d) is themachine state of the 9th line

of the code in (b); and (e) is the generated hints based

on the machine state difference between (c) and (d).

3.4 Feedback generation

After the student submits CNC code, the exercise

model will call the CNC interpreter to execute the

Qinbo Li and Sheng-Jen Hsieh256

Fig. 5. Hint generation template for deep hole operation (G83).

Fig. 6. Hint generation process

code and judge whether the result matches the

requirement. An incorrect submission may be

caused by syntax error or behavior error. The

exercise will generate a candidate list of instruc-
tional content, which might contain the concepts or

facts that the student missed.

Associated with the label of an incorrect CNC

code in the database is a list of instructional content

that can help the student to fix the error in the code.

Assuming the database contains some labeled data,

the exercise model will then search the past labeled

data to find the most similar code based on the
Behavior & Machine-state distance metric and use

the labels to rank the candidate list. The goal is to

rank the most related learning content as high as

possible, because the students might only click the

items near the top. If multiple codes have the same

Behavior & Machine-state distance as the current

code, the system will vote to rank the candidate list.

Then the feedback list is returned to the student as
feedback. Algorithm 3 in the Appendix describes

the procedure of the feedback generation process.

Our assumption is that the instructional content

in the learning module contains all the information

the students need to master to be able to solve the

exercise problems. The students can click on the

feedback items to review the learning content and

then come back to solve the problem.

4. Evaluation

The system was evaluated in five ways: pre-test and

post-test; accuracy of the generated hints and feed-

back; learning style evaluation; and the students’

opinion survey.

4.1 Pre-test and post-test

There were 93 students who participated in the
evaluation of the CNC-Tutor. We designed a pre-

test and a post-test that focused on CNC concepts

and facts, as well as CNC programming. The

students first took the pre-test. After completing

the pre-test, they were asked to go through selected

topics in theCNC-Tutor, and try towriteCNCcode

to solve an exercise problem. The average time spent

with the CNC-Tutor was about one hour. Students
were then asked to take the post-test. Based on the

students’ initial knowledge of CNC, they were

divided into two population groups: the first

group (Group 1) had 51 students who had limited

knowledge of CNC while the second group (Group

2) had 42 studentswhohad somebasic knowledge of

CNC. An analysis was performed to compare the

two groups. The paired T-test results revealed that
the null hypothesis was rejected for both groups of

students. This suggests that CNCTutor use resulted

in significant improvement in learning.

Table 2 summarizes the test statistics, critical

value and conclusions for each test, where the null

hypothesis is �d = 0, sample sizes were 51 and 42,

and the � value is 0.05.

For Group 1, the average score on the pre-test
and the post-test were 30.08 and 62.45, respectively.

For Group 2, the average score on the pre-test and

the post-test were 37.45 and 62.64, respectively. The

two groups had similar post-test scores, while

Group 2 had higher pre-test score because they

already had basic knowledge of CNC program-

ming. The post-test scores for both groups—62.45

(Group 1) and 62.64 (Group 2) were almost iden-
tical. This may imply that CNC Tutor is efficient in

teaching students the subject matter regardless of

prior background. The post-test scores for both

groups were about 63 out of 100 possible points.

This suggests that the pre-tests and post-tests may

have been too difficult and different from the

exercises presented in CNC Tutor.

4.2 The accuracy of the generated hints

The hint generation approach was evaluated in two
ways. First, we had 42 students use CNC-Tutor to

write code for an exercise. Whenever the students

requested hints, the system recorded their code and

the generated hints. Of the 220 hints recorded, we

found 162 hints were meaningful: the accuracy of

the hint generation approach was 73.6%. Most of

the failed cases were due to the students choosing

cutting paths or parameters that the database did
not have yet. This can be improved as the database

records additional correct solutions.

Because the hint generation approach is data-

driven, the more data the database has, the higher

accuracy can be achieved. Therefore, the second

evaluation approach focuses on the adaptability of

the hint generation approach. We divided 38 stu-

dents into two groups, each with 19 students. The
students were asked to write CNC code to cut along

a simple path. To have a better code coverage, we

generated hints for each line of their code. For the

first student group, the database contained only five

An Intelligent Tutoring System for Computer Numerical Control Programming 257

Table 2. Instructional effectiveness analysis results

Test statistic Critical value Conclusion

Group 1 (n = 51) –10.26 2.01 Reject null hypothesis
Group 2 (n = 42) –6.99 2.02 Reject null hypothesis

correct sample codes, which were used to generate

the hints. For the second group, the database

contained the five sample codes plus the codes

from the first group. It is noteworthy that the code

in the second group contained both correct and

incorrect codes. Our approach generated 50 mean-
ingful hints out of 79 (65.8% accuracy) for the first

group, and 66 meaningful hints out of 74 (89.2%

accuracy) for the second.

The feedback generation approach requires

labeled data in the database. We took 60 samples

of the students’ code to evaluate the feedback

generation approach. We labeled 30 of the codes

and used the other 30 for evaluation. We treated
feedback generation as a ranking problem, because

our goal is to help the students find outmissing facts

or misconceptions by ranking the most helpful

learning content as high as possible. Therefore, we

used normalized discounted cumulative gain

(NDCG) to evaluate the performance of our feed-

back generation approach. The calculation of

NDCG is shown below, where p means the
number of items; reli means the importance of

item i; and IDCG means ideal DCG value.

NDCG ¼ DCG

IDCG

DCG ¼
Xp

i¼2

reli

log2 i

We calculated NDCG@1 and NDCG@3

(NDCG@n means the NDCG value for the first n

items), because during the evaluation by the stu-

dents, we observed that most of them only clicked

on the first three items in the feedback list. To

calculate the NDCG score, we set the importance

of the first three relevant items as 3, 2, and 1. The

value of NDCG@1 and NDCG@3 were 0.6 and

0.662, respectively.

4.3 Learning style analysis

Among the 93 students who participated in the pre-

test and post-test evaluation, 40 also participated in

a survey of learning styles [19]. The learning styles

have four dimensions: (1) active (ACT) or reflective

(REF), (2) sensing (SEN) or intuitive (INT), (3)

visual (VIS) or verbal (VRB), and (4) sequential
(SEQ) or global (GLO).Active learners prefer to get

involved in experiments, while reflective learners

prefer to think about the information first. Sensing

learners like usingwell-establishedmethods to solve

a problem and are patient in learning new facts,

while intuitive learners usually are innovative in the

problem solving process, and dislike repetitive

work. Visual learners prefer to learn by viewing
diagrams, demonstrations, and so on, while verbal

learners prefer to learn through text and dialogue.

Sequential learners tend to absorb new information

sequentially, while global learners tend to choose

instructional content in the order they like.

We analyzed the correlation coefficient between

learning style and learning gain in the pre-test and

post-test. For each dimension of the learning style,
we set a value from –11 to 11. For the four learning

styles, the correlation coefficients were –0.21, –0.13,

–0.23, and 0.09, respectively. The result shows that

active learners and visual learners tend to benefit

more from CNC-Tutor, compared with reflective

learners and verbal learners.

Qinbo Li and Sheng-Jen Hsieh258

Fig. 7.Average ratings on student opinion survey; group1 is on the left (limitedCNCknowledge), andgroup2 is on the
right (basic CNC knowledge).

4.4 Opinion survey

There were 93 students who completed an opinion

survey about the system, illustrated in Fig. 7. As

described above, students were in two groups based

on prior CNC knowledge. The students in the first

group had limited knowledge of CNC while the

students in the second group possessed basic knowl-

edge of CNC. The major difference of the ratings
was on the third question: The instructional materi-

als were easy to understand, for which the first

group gave only 4.75 points, while the second

group gave 5.09. Overall, the survey of the CNC-

Tutor shows a positive impact of CNC-Tutor on the

students’ learning experience.

4.5 Discussion and lessons learned

These results suggest that the CNC Tutor design is

instructionally effective, and that students’ subjec-

tive impressions of the system are positive; however

the average post-test score was around 62 out of

100. Perhaps the test questions need to be modified
to better align with CNC Tutor’s test bank or a

greater variety of practice questions is needed in the

tutor test bank. It appears that we may safely

continue to develop similar types of Intelligent

Tutoring Systems for other engineering subjects. It

also appears that CNC Tutor’s explanations and

feedback are a good fit for active, visual learners.

Possible enhancements include the addition ofmore
video and/or simulation tools to help learners

visualize abstract concepts.

5. Conclusions

We built an Intelligent Tutoring System for the

domain of ComputerNumerical Control, especially
CNC programming. Our main observation is that

students fail to solve CNC programming problems

mainly due to two reasons: lack of problem solving

skills andmisconceptions. InCNC-Tutor, the learn-

ing module and the quiz module focused on teach-

ing facts and concepts, while the exercise module

focused on improving the student’s problem solving

skills. We proposed algorithms to interpret user’s
CNC code, and then provide hints and generate

feedback based on past performance data.

Experiments showed that the developed

approach can generate meaningful hints over 85%

of the time, and the feedback can help the students

find out missing facts and misconceptions effec-

tively. The pre-test and post-test results and opinion

survey show a positive impact on students’ learning
gains and experience in learning CNC program-

ming. A correlation coefficient suggests that CNC-

Tutor had a stronger influence on learning outcome

for active and visual learners.

Currently, CNC-Tutor contains only basic facts,

concepts and CNC programming knowledge.More

in-depth lectures and exercises can be added to the

CNC-Tutor. Because analyzing and labeling CNC

code is labor-intensive, we may consider using a

crowdsourcing approach that allows students them-
selves to provide help messages. Future plans also

include continuing to develop intelligent tutoring

systems for engineering applications and embed-

ding animations, simulations, and/or videos into

future system designs to make abstract concepts

easier to grasp.

Acknowledgment—This material was supported by a National
Science Foundation Advanced Technology Education Program
grant (No. 1304843) and a gift from Rockwell Automation.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation
or Rockwell Automation.

References

1. V. Petrushin, Intelligent tutoring systems: architecture and
methods of implementation. A survey, Journal of Computer
& System Sciences International, 33, 1995, pp. 117–139.

2. V. Tsiriga and M. Virvou, A Framework for the Initializa-
tion of Student Models in Web-based Intelligent Tutoring
Systems, User Modeling and User-Adapted Interaction, 14,
2004, pp. 289–316.

3. A. C. Graesser, M. W. Conley and A. Olney, Intelligent
tutoring systems, APA Educational Psychology Handbook,
3, 2012.

4. S. J. Hsieh and Y.-T. Cheng, Algorithm and intelligent
tutoring system design for programmable controller pro-
gramming, The International Journal of Advanced Manufac-
turing Technology, 71, 2014, pp. 1099–1115.

5. C. J. Butz, S.HuaandR.B.Maguire,Aweb-based intelligent
tutoring system for computer programming, in Web Intelli-
gence, 2004, WI 2004, Proceedings, IEEE/WIC/ACM Inter-
national Conference on, ed, 2004, pp. 159–165.

6. I.-H. Hsiao, P. Brusilovsky and S. Sosnovsky, Web-based
parameterized questions for object-oriented programming,
in Proceedings of World Conference on E-Learning, E-Learn,
ed, 2008, pp. 17–21.

7. P.BrusilovskyandS. Sosnovsky, Individualized exercises for
self-assessment of programming knowledge: An evaluation
of QuizPACK, Journal on Educational Resources in Comput-
ing (JERIC), 5, 2005, p. 6.

8. S. Abu-Naser, A. Ahmed, N. Al-Masri, A. Deeb, E. Mosh-
taha and M. AbuLamdy, An intelligent tutoring system for
learning java objects, International Journal of Artificial
Intelligence and Applications (IJAIA), 2, 2011.

9. W. Jin, T. Barnes, J. Stamper, M. J. Eagle, M. W. Johnson
andL. Lehmann, Program representation for automatic hint
generation for a data-driven novice programming tutor, in
International Conference on Intelligent Tutoring Systems, ed,
2012, pp. 304–309.

10. K. Rivers andK. R.Koedinger, ACanonicalizingModel for
Building Programming Tutors, in Intelligent Tutoring Sys-
tems: 11th International Conference, ITS 2012, Chania,
Crete, Greece, June 14–18, 2012. Proceedings, Berlin, Hei-
delberg, 2012, pp. 591–593.

11. T. Lazar and I. Bratko, Data-Driven Program Synthesis for
Hint Generation in Programming Tutors, in Intelligent
Tutoring Systems: 12th International Conference, ITS 2014,
Honolulu, HI, USA, June 5–9, 2014. Proceedings, Cham,
2014, pp. 306–311.

12. N.-T. Le and W. Menzel, Using Weighted Constraints to
Diagnose Errors in Logic Programming-The Case of an Ill-

An Intelligent Tutoring System for Computer Numerical Control Programming 259

defined Domain, International Journal of Artificial Intelli-
gence in Education, 19, 2009, pp. 381–400.

13. K. Rivers and K. R. Koedinger, Automatic generation of
programming feedback: A data-driven approach, in The
First Workshop on AI-supported Education for Computer
Science (AIEDCS 2013) 50, ed, 2013.

14. A. Overby A, CNC machining handbook: building, pro-
gramming, and implementation: McGraw-Hill, Inc., 2010.

15. J. Valentino and J. Goldenberg, Introduction to computer
numerical control: Pearson, 2012.

16. A. Mitrovic, B. Martin and M. Mayo, Using Evaluation to
Shape ITSDesign:Results andExperienceswithSQL-Tutor,
User Modeling and User-Adapted Interaction, 12, 2002, pp.
243–279.

17. S.Gross,B.Mokbel,B.HammerandN.Pinkwart,Feedback
provision strategies in intelligent tutoring systems based on
clustered solution spaces,DeLFI2012:Die 10. e-Learning(S.
27–38)

18. T. R. Kramer, F. M. Proctor and E. Messina, The NIST
RS274NGC interpreter-version 3, 2000.

19. R. M. Felder, L. K. Silverman and others, Learning and
teaching styles in engineering education, Engineering Educa-
tion, 78, 1988, pp. 674–681.

20. V.Aleven, B.M.McLaren, J. Sewall andK.R.Koedinger,A
new paradigm for intelligent tutoring systems: example-
tracing tutors, International Journal of Artificial Intelligence
in Education, 19(2), 2009, pp. 105–154.

21. S. J. Hsieh and P. Y. Hsieh, Animations and intelligent
tutoring systems for programmable logic controller educa-
tion, International Journal of Engineering Education, 19(2),
2003, pp. 282–296.

22. R.RChoudhury,H.Yin andA.Fox, Scale-driven automatic
hint generation for coding style, 13th International Confer-
ence on Intelligent Tutoring Systems (ITS 2016), 9684, 2016.

23. T. W. Price, R. Zhi and T. Barnes, Hint generation under
uncertainty: the effect of hint quality on help-seeking beha-
vior,18th InternationalConference onArtificial Intelligence in
Education, 2017, pp. 311–322.

24. 24. A. Ogan, E. Yarzebinski, P. Fernández and I. Casas,
Cognitive tutor use in Chile: understanding classroom and
lab culture, 17th International Conference onArtificial Intelli-
gence in Education, 2015, pp. 318–327.

25. H.A. A.Hasanein and S. S. A.Naser, An intelligent tutoring
system for cloud computing, International Journal of Aca-
demic Research and Development, 2(1), 2017, pp. 76–80.

26. D.Hooshyar,R. B. Ahmad,M.Wang,M.Yousefi,M. Fathi
and H. Lim, Development and evaluation of a game-based
Bayesian intelligent tutoring system for teaching program-
ming, Journal of Educational Computing Research, 56(6),
2018, pp. 775–801.

27. C. S. González, P. Toledo and V. Muñoz, Enhancing the
engagement of intelligent tutorial systems through persona-
lization of gamification, International Journal of Engineering
Education, 32(1), 2016, pp. 532–541.

Qinbo Li and Sheng-Jen Hsieh260

Appendix

Algorithm 1

CNC_interpreter_simulator(code)

Pre–process (code)

for each line of code

Read the code and save the information into Block

if there exists syntax errors

return the error code

end

Call CNC simulator to execute

return the trajectories and the machine states

end

Algorithm 2

Hint_generation(code A)

CNC_interpreter_simulator(code A)

for each current code in the database

Calculate the distance with A

end

Find the code (B) with the smallest distance with A

Calculate the machine state difference between A and B

Generate natural language hints using the templates

Algorithm 3

Feedbackgeneration(code A)

result, machine state = CNC_interpreter_simulator(code A)

if result is incorrect

foreach historical code B in database

distance = calculate_distance(A, B)

end

similar code = K_Nearest_Neighbors(distance)

feedback list = get the feedback label from the similar code

return the feedback list

End

An Intelligent Tutoring System for Computer Numerical Control Programming 261

Qinbo Li was a Master of Science student in the Department of Computer Science and Engineering at Texas A&M

University at the time of this work. He is now a PhD student at Texas A&MUniversity, advised by Dr. Yoonsuck Choe.

His research interests are Artificial Intelligence, Machine Learning, and Computer Graphics.

Sheng-Jen (‘‘Tony’’) Hsieh, PhD is a Professor in the College of Engineering at Texas A&MUniversity. He holds a joint

appointment with the Department of Engineering Technology and the Department of Mechanical Engineering. His

research interests include engineering education, cognitive task analysis, automation, robotics and control, intelligent

manufacturing system design, and micro/nano manufacturing. He is also the Director of the Rockwell Automation

laboratory at Texas A&M University, a state-of-the-art facility for education and research in the areas of automation,

control, and automated system integration.

